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Finite differences and orthogonal

polynomials
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In memory of Professor A. Ghizzetti

Riassunto: Il lavoro mostra un’utile applicazione della conoscenza di una rap-
presentazione esplicita per i polinomi ortogonali di Karlin-McGregor, scoperti indipen-
dentemente anche da Carlitz. La rappresentazione di tali polinomi mediante una serie
ipergeometrica mostra già che essi potrebbero, al più, essere funzioni razionali. Nel la-
voro viene mostrato, partendo direttamente dalla rappresentazione ipergeometrica, che
essi sono in effetti polinomi. Una simile argomentazione è anche usata per ottenere i
q-analoghi dei polinomi di Hermite, nel caso continuo, come limite di una classe più
generale di polinomi ortogonali.

Abstract: Explicit representations of specific sets of orthogonal polynomials are
often not as useful as one would like them to be. However, being able to work with
them can be useful. There is a set of polynomials found by Karlin and McGregor
and by Carlitz at the same time. The representation they found as a hypergeometric
series shows these are at least rational functions. I can now show directly from the
hypergeometric representation why they are polynomials. A similar argument is used to
obtain the continuous q-Hermite polynomials as a limit from more general orthogonal
polynomials.

Part of this research was done while I was visiting the Laboratory for Theoretical
Physics at Univ. of Paris VII.
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1 – Introduction

When trying to find explicit formulas for orthogonal polynomials,

one seems to have to use hypergeometric or basic hypergeometric series.

Usually no such representation can be found, and even when it can the

series is often frustrating, with facts one wants seemingly just out of

reach. I have had many such problems, and can now solve a couple

of them. The first deals with the polynomial rn(x) which satisfies the

recurrence relation

(1.1) x(n + b)rn(x) = brn+1(x) + nrn−1(x).

Carlitz [3] and Karlin and McGregor [6] studied these polynomi-

als, found their orthogonality relation, found a generating function, and

discovered the explicit formula

(1.2) rn(x) = x−n
2F0

(−n, b(1 − x−2)

—
; −x2/b

)
.

It is unlikely there is a nicer explicit representation, yet this is an annoying

formula, for it looks like a rational function rather than a polynomial. For

years this bothered me, but no one else remarked on it to me, so it was

not clear whether I was alone in this feeling. In June, when I was visiting

in Paris, G. Valent asked me if I could prove directly from (1.2) that

rn(x) is a polynomial. At the time I had to say no, and mentioned that

this had bothered me for a couple of decades. However, a couple of days

later I was able to change this answer to yes. The reason is easy but

interesting, and a variant of it solves another problem which has annoyed

me for almost as long. This deals with the limit

lim
a→0

a−n
3ϕ2

(
q−n, aeiθ, ae−iθ

0, 0
; q, q

)

which leads to the continuous q-Hermite polynomial Hn(cos θ|q).
For those who are not used to the notation for hypergeometric and

basic hypergeometric series, a hypergeometric series is a series Σcn with
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cn+1/cn a rational function of n. If the shifted factorial is defined by

(a)n = a(a + 1) · · · (a + n − 1), n = 1, 2, . . . ,(1.3)

= 1 , n = 0,

then

(1.4) pFq

(
a1, . . . , ap

b1, . . . , bq

;x

)
=

∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n!
.

For basic hypergeometric series, the term ratio is a rational function

of qn. The multiplicative shifted factorial is

(a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1), n = 1, 2, . . . ,(1.5)

= 1 , n = 0.

A special case of the general basic hypergeometric series which is sufficient

for our purposes here is

(1.6) p+1ϕp

(
a0, . . . , ap

b1, . . . , bp

; q, x

)
=

∞∑

n=0

(a0; q)n · · · (ap; q)n

(b1; q)n · · · (bp; q)n

xn

(q; q)n

.

We will use two series which can be summed

2F1

(−n, a

c
; 1

)
=

(c − a)n

(c)n

(1.7)

1ϕ0

(
a

–
; q, x

)
=

(ax; q)∞
(x; q)∞

(1.8)

when |x| < 1, |q| < 1 and (a; q)∞ is the limit of (1.5) when n → ∞.

2 – Finite differences and the Carlitz, Karlin-McGregor poly-

nomials

The polynomials rn(x) mentioned above satisfy the recurrence rela-

tion

(2.1) x(n + b)rn(x) = brn+1(x) + nrn−1(x),
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r−1(x) = 0, r0(x) = 1.

Thus it is clear they are polynomials. However, this is far from clear

from the representation

(2.2) rn(x) = x−n
2F0

(−n, b(1 − x−2)

—
; −x2

b

)
.

For this to be a polynomial, when the 2F0 is written as a series in terms

of powers of x, the first n terms must vanish. This must happen, but it

was not clear why. To show directly that it does, we take a side excursion

involving finite differences.

If f(x) is defined on the integers x = 0, 1, . . . , define

(2.3) ∆f(x) = f(x + 1) − f(x),

and

(2.4) ∆n+1f(x) = ∆[∆nf(x)].

A simple induction gives

∆nf(x) =
n∑

k=0

(
n

k

)
(−1)kf(x + n − k)(2.5)

= (−1)n
n∑

k=0

(
n

k

)
(−1)kf(x + k)

= (−1)n
n∑

k=0

(−n)k

k!
f(x + k).

If f(x) is a polynomial of degree m, then ∆f(x) is a polynomial of

degree m − 1. This implies that if f(x) is a polynomial of degree m and

m < n, then

(2.6) ∆nf(x) = 0

for all x.

In particular, (2.5) then implies that

(2.7)
n∑

k=0

(−1)k

(
n

k

)
(k + 1)m = m!

n∑

k=0

(−n)k(m + 1)k

k!(1)k

= 0
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for m = 0, 1, . . . , n − 1. This also follows immediately from (1.7) when

c = 1 and a = m + 1.

To see how this gives the required vanishing of the power series co-

efficients in the expansion of rn(x), rewrite this as

(2.8) xnrn(x)=
n∑

k=0

(−n)k

(
1 − x2

b
b
) (

1− x2

b
(b + 1)

)
· · ·

(
1− x2

b
(b+k−1)

)

k!
.

Now write this as a series in powers of x. The first two terms are

n∑

k=0

(−n)k

k!
− x2

b

n∑

k=0

(−n)k

k!
[kb + k(k − 1)/2].

Both of these sums vanish, since they are just instances of (2.6) when f(x)

is a polynomial of degree 0, 1 and 2 and the n’th difference is evaluated

at x = 0. The next term has the factor

x4

b2

∑

1≤j≤-≤k

(b + j − 1)(b + 7 − 1)

and this is a polynomial of degree 4 in k. The degree goes up two with

each successive term, so is the same as the exponent of x, and thus the

coefficient of x2k vanishes as long as 2k < n. This is exactly what we

wanted to prove.

3 – The continuous q-Hermite polynomials as a limit of more

general orthogonal polynomials

The continuous q-Hermite polynomials which L. J. Rogers discovered

[10] are the bottom polynomials in one part of a chart of the classical

hypergeometric polynomials which are basic hypergeometric series. At

the top of this chart is a set of orthogonal polynomials with four degrees

of freedom in addition to the q of basic hypergeometric series. The most

general orthogonal polynomials are

(3.1)
Wn(cos θ; a, b, c, d|q)

(ab; q)n(ac; q)n(ad; q)n

=a−n
4ϕ3

(
q−n, qn−1abcd, aeiθ, ae−iθ

ab, ac, ad
; q, q

)
.
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When max(|a|, |b|, |c|, |d|,±q) < 1, the orthogonality is

(3.2)

1∫

−1

Wn(x)Wm(x)
h(x, 1)h(x, q1/2)h(x,−1)h(x,−q1/2)

h(x, a)h(x, b)h(x, c)h(x, d)

dx

(1 − x2)1/2
= 0, m )= n .

See [2] or [4].

The continuous q-Hermite polynomials are defined by

(3.3) Hn(cos θ|q) =
n∑

k=0

(q; q)nei(n−2k)θ

(q; q)k(q; q)n−k

and their orthogonality is

(3.4)

1∫

−1

Hn(x|q)Hm(x|q)h(x; 1)h(x, q1/2)h(x,−1)

h(x,−q1/2)(1 − x2)−1/2dx = 0, m )= n.

when −1 < q < 1. See [4]. Thus the continuous q-Hermite polynomials

are a multiple of the Wn(cos θ) when a = b = c = d = 0. It is easy to set

b = c = d = 0 in (3.1), but letting a → 0 is not an easy limit to take.

To take this limit, we use an argument similar to the one in section

2, but with the q-binomial theorem (1.8) taking the place of the Chu-

Vandermonde sum (1.7). First, use the q-binomial theorem to expand

(aeiθ; q)m(ae−iθ; q)m as a double series. The result is

(3.5) a−n
3ϕ2

(
q−n, aeiθ, qe−iθ

0, 0
; q, q

)
=

= a−n
n∑

m=0

(q−n; q)m

(q; q)m

qm
m∑

j=0

(q−m; q)j

(q; q)j

ajeijθqmj ·
m∑

k=0

(q−m; q)k

(q; q)k

ake−ikθqmk

= a−n
∑

j,k

aj+kei(j−k)θ

(q; q)j(q; q)k

∑

m

(q−n; q)m(q−m; q)j(q
−m; q)kq

(j+k+1)m

(q; q)m

.

When j + k < n, the sum on m is

(3.6)
n∑

m=0

(q−n; q)mqm

(q; q)m

pj+k(q
m),



[7] Finite differences and orthogonal etc. 141

where pj(x) is a polynomial of degree j in x. Since

(3.7)
n∑

m=0

(q−n; q)m

(q; q)m

q-m = (q-−n; q)n = 0.

when 7 = 1, 2, . . . , n, the sum in (3.6) vanishes. Thus the coefficients of

aj+k vanish when j + k < n. When j + k = n, the coefficient of aj+k is

n∑

k=0

ei(n−2k)θ

(q; q)n−k(q; q)k

n∑

m=0

(q−n; q)m

(q; q)m

qmAm(q)

where

Am(q) = (qm − 1)(qm − q) · · · (qm − qk−1)(qm − 1) · · · (qm − qn−k+1)

= qmn + lower terms.

Finally, (3.7) forces all except the term with qmn to vanish, and when

7 = n + 1, (3.7) gives (q; q)n. The terms with higher powers of a vanish

when a → 0, so

(3.8) lim
a,b,c,d→0

a−nWn(cos θ; q, b, c, d|q) = Hn(cos θ|q).

4 – Comments

There are still results of the above type which I can not do by a

similar argument. Two which I have considered off and on for a couple

of decades are the following.

Hermite polynomials live at the bottom of the chart of the classical

orthogonal polynomials which are hypergeometric series. They are limits

of all the polynomials above them. Laguerre polynomials are one level

higher. The limit relation from Laguerre to Hermite polynomials was

first derived in [9] from differential equations. Laguerre polynomials are

orthogonal with respect to xαe−x on [0, ∞), and Hermite polynomials are

orthogonal with respect to e−x2
on (−∞,∞). This limit result can also

be proven from the orthogonality relation. Shift [0, ∞) to [−α,∞) to put
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the maximum at x = 0, and then rescale. The measure before rescaling

is a constant multiple of

e−x+α log(1+ x
α ) = e

−x+α

[
x
α − x2

2α2

]
+O(x3α−2)

= e−x2/2α+O(x3α−2).

The rescaling is x → (2α)1/2x. Laguerre polynomials are given by

(4.1) Lα
n(x) =

(α + 1)n

n!

n∑

k=0

(−n)k

(α + 1)kk!
xk =

(−1)nxn

n!
+ lower terms,

and Hermite polynomials satisfy the recurrence relation

2xHn(x) = Hn+1(x) + 2nHn−1(x),

so

Hn(x) = 2nxn + lower terms.

Thus

lim
α→∞

(
2

α

)n

Lα
n((2α)1/2x + α) =

(−1)n

n!
Hn(x).

I do not know how to do this directly from the representation (4.1),

although it is easy to prove from the recurrence relations the polynomials

satisfy, from the orthogonality, from the Rodrigues type formulas both

polynomials satisfy, or from differential equations.

Pollaczek found a very interesting set of orthogonal polynomials which

generalize Legendre polynomials and Szegö extended them to generalize

ultraspherical polynomials. With a different normalization, the even case

of these polynomials satisfies

(4.2) x[(a + 1)n + b]Pn(x) = (an + b)Pn+1(x) + nPn−1(x).

Explicit representations as hypergeometric series can be found. One

form is

(4.3) Pn(x) = (aα)−n
2F1

(−n, −B

b/a
;−α

)
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where

ξ = [(a + 1)2x2 − 4a]1/2(4.4)

α =
x(a + 1) + ξ

2a
, β =

x(a + 1) − ξ

2a
B = b(β − x)/ξ.

I do not know how to show directly that (4.3) gives a polynomial

in x. Such an argument might be related to the argument in section 2,

since the polynomials in section 2 are the special case a = 0 of these

polynomials of Pollaczek and Szegö. See [1] for these polynomials, and a

q-extension, for which the same question is still unsolved.

I am afraid that the real message of this paper is that some things

which can not be done easily by one method, although they are easy by

other methods, can occasionally be done in the hard setting, but so far

I have not learned anything new of real interest by doing them this way.

That is a disappointment, but life is frequently full of disappointments.

References for other limit relations are given below. See [5], [8]. These

show how some limit relations can be proven. The q-chart I mentioned

above has not been published, and it is not clear what is the best way to

present it. The one for hypergeometric orthogonal polynomials is given in

[2] with the continuous Hahn polynomials being missed and replaced by

their symmetric special case. An extended printed version of this chart

with the continuous Hahn polynomials placed correctly has been made

[7], and can be seen in some faculty offices in a number of countries, both

in mathematics and physics departments.
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