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L1-norm convergence of Hermite-Fejér interpolation

based on the Laguerre and Hermite abscissas
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Riassunto: In questo lavoro, vengono provati dei risultati di convergenza per
l’interpolazione di Hermite-Fejér, basata sugli zeri di polinomi ortogonali, sia di tipo
Laguerre generalizzato, che di tipo Hermite. Questi risultati sono poi applicati per
dedurre la convergenza di formule di integrazione prodotto.

Abstract: Convergence results are proved for Hermite–Fejér interpolation at
the zeros of polynomials orthogonal with respect to generalized Laguerre and Hermite
weights. These results can be applied to convergence of product integration rules.

1 – Introduction

The purpose of this paper is the investigation of the convergence,

in the weighted L1–norm, of Hermite–Fejér interpolation, based on the

zeros of orthogonal polynomials associated with generalized Laguerre and

Hermite weights. While the natural setting for analyzing convergence of

Lagrange interpolation at the zeros of orthogonal polynomials is the L2–
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norm [13], Hermite–Fejér interpolation can conveniently be studied in

the L1–norm, as recent results confirm. Actually, Nevai and Vértesi in

[7] posed the problem of the convergence of Hermite–Fejér interpolation

in a finite interval [a, b], considering as interpolatory points the zeros of

the polynomial pn(w) orthogonal with respect to a non–negative weight

w; they proved the convergence of Hermite–Fejér interpolation for any

polynomial; in addition, if [a, b] = [−1, 1] and w is a generalized Jacobi

weight, then the convergence is assured also for each f ∈ C[−1, 1].

The case of Hermite–Fejér interpolation at the zeros of polynomials

orthogonal with respect to weights associated to the real line and several

features of these weights have been treated in [3–6,10,12]; in particular,

in [4] Freud and Erdös weights are dealt with simultaneously, and conver-

gence theorems are given not only for Hermite–Fejér interpolation, but

also for Hermite osculatory interpolating polynomials; furthermore, the

results are applied to convergence of product integration rules.

In the present paper we shall deal with Hermite–Fejér interpolation

based on the abscissas of generalized Laguerre weights, giving some re-

sults on the convergence in the weighted L1–norm. The same is done

for the Hermite weight and abscissas. Once these results have been ob-

tained, the convergence of associated product quadrature rules can also

be considered.

In fact, the numerical evaluation of integrals of the form

∫

IR

f(x)p(x) dx

can be performed by means of product quadratures

(1.1) Qn(p, f) :=
n∑

j=1

wjn(p)f(xjn)

where the weights wjn(p), 1 ≤ j ≤ n, are usually determined by integrat-

ing a suitable approximation to f ; next the convergence of the sequence

{Qn(p, f)} can be analyzed.

If, in particular, f is approximated by Hn(w, f, x) :=
n∑

j=1
hjn(w, x)f(xjn),
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then

(1.2) wjn(p) =

∫

IR

hjn(w, x)p(x) dx ,

in this case we shall denote the quadrature sum (1.1) by Qn(p, f, w).

The convergence of the sequences {Qn(p, f, w)}, for suitable weights

w, can be assured for functions having a convenient growth at infinity.

Results concerning quadrature on infinite intervals are contained in

[3,10], while product integration rules based on Hermite–Fejér interpola-

tion is treated in [4,8,9].

After introducing notations and preliminaries in Section 2, we state

and discuss the main results for generalized Laguerre weights in Section

3. Analogous result for Hermite weight is developed in Section 4; in

Section 5, we prove L1-norm convergence of Hermite-Lagrange interpo-

lation. Finally, in Section 6, convergence of product quadrature rules is

examined.

2 – Notations

IR, IR+, IN and IN+ denote the sets of real numbers, real non–negative

numbers, integers and non–negative integers, respectively.

The set of polynomials of degree at most n is denoted by IPn.

A function f : IR → IR is said to be ∈ BI(IR) if f is bounded and

Riemann integrable on every finite interval A ⊂ IR.

If p ∈ IR+, p )= 0, then f ∈ Lp(A) on some interval A if ‖f‖p < ∞,

where

‖f‖p :=

[ ∫

A

|f(x)|p dx

]1/p

, 0 < p < ∞ ,

and

‖f‖∞ := sup
x∈A

|f(x)| ;

if v ≥ 0 and 0 < p < ∞, then f ∈ Lp,v if ‖f‖p,v < ∞, where

‖f‖p,v :=

[ ∫

IR

|f(x)|pv(x) dx

]1/p

.
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‖ · ‖p is a norm if p ≥ 1. If w is an admissible weight function, i.e. w ≥ 0

on IR, such that wek ∈ L1(IR) (where ek := xk, k ∈ IN) and ‖w‖1 > 0,

then pn(x) := pn(w, x), {xjn}n
j=1, n ∈ IN+, denote the corresponding

orthonormal polynomial ∈ IPn

(2.1) pn(x) = γnxn + . . . ,

and its zeros, respectively.

By ljn(x) := ljn(w, x) ∈ IPn−1 we indicate the j–th fundamental

polynomial of Lagrange interpolation for {xjn}n
j=1; it fulfils the conditions

ljn(xkn) = δjk , 1 ≤ j , k ≤ n ,

and the Cotes numbers, defined by

(2.2) λjn :=λjn(w)=

∫

IR

l2jn(x)w(x) dx=

∫

IR

ljn(x)w(x) dx , 1 ≤ j ≤ n ,

are the weights of the Gaussian quadrature rule

(2.3)

∫

IR

P (x)w(x) dx =
n∑

j=1

λjnP (xjn) , ∀P ∈ IP2n−1 .

It is also known [1, p. 48] that

(2.4) ljn(x) =
γn−1

γn

λjnpn−1(xjn)
pn(x)

x − xjn

, 1 ≤ j ≤ n ,

which implies

1 =
γn−1

γn

λjnpn−1(xjn)p′
n(xjn) , 1 ≤ j ≤ n ,

and

(2.5) λjnp2
n−1(xjn) =

γn

γn−1

pn−1(xjn)

p′
n(xjn)

, 1 ≤ j ≤ n .
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The polynomials hjn(x), kjn(x) ∈ IP2n−1 below

(2.6) hjn(x) :=

{
1 − p′′

n(xjn)

p′
n(xjn)

(x − xjn)

}
l2jn(x) ; 1 ≤ j ≤ n ,

kjn(x) := (x − xjn)l2jn(x) , 1 ≤ j ≤ n ,

are the fundamental polynomials of Hermite interpolation. Hence the

Hermite–Fejér interpolating polynomial Hn(w, f, x) ∈ IP2n−1, which sat-

isfies the conditions

{
Hn(w, f, xjn) = f(xjn)

H ′
n(w, f, xjn) = 0

can conveniently be written in the form

Hn(w, f, x) :=
n∑

j=1

f(xjn)hjn(x) .

In addition, we introduce the operator Kn:

Kn(w, f, x) :=
n∑

j=1

f(xjn)kjn(x) ;

thus, the Hermite–Lagrange or osculatory interpolation polynomial is

given by

Fn(w, f, x) = Hn(w, f, x) + Kn(w, f ′, x) ;

the Hermite–Lagrange interpolation formula reads as

(2.7) P (x) = Fn(w,P, x) =
n∑

j=1

P (xjn)hjn(x) +
n∑

j=1

P ′(xjn) · knj(x)

where P ∈ IP2n−1 [13, p. 331].

Denoting the generalized Laguerre weights by W , i.e.

(2.8) W (x) =

{
e−xxα , x ≥ 0 , α > −1

0 x < 0 ,
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the corresponding generalized Laguerre polynomials L(α)
n fulfil the condi-

tion

(2.9) ‖L(α)
n ‖1,W = 1 ,

when γn, in (2.1), is given by [2, (3.6.8)]

(2.10) γn = (−1)n/[n!Γ(α + n + 1)]1/2 .

In the following, generalized Laguerre weights and polynomials will be

referred to as Laguerre weights and polynomials.

For the polynomials L(α)
n , the relations below follow from well known

formulas [2, (3.6.13), (3.6.10)]

(2.11) L(α)′
n (xjn) = −(n + α)L

(α)
n−1(xjn)/xjn , 1 ≤ j ≤ n ,

(2.12) L(α)′′
n (xjn)/L(α)′

n (xjn) = (xjn − α − 1)/xjn , 1 ≤ j ≤ n .

We shall also set

(2.13) ρn := γn−1/γn ,

thus (2.10) yields, for Laguerre weights,

(2.14) ρn = −
√

n(α + n) .

We shall denote by V (x)

(2.15) V (x) := e−x2

the Hermite weight on IR and by {Hn(x)} the corresponding system of or-

thonormal polynomials, for which the following relations hold [2, (3.7.11)]

γn =
√

2n/(n!
√

π)

(2.16) H′
n(xkn) = Hn−1(xkn) · 2n , 1 ≤ k ≤ n
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(2.17) H′′(xkn)/H′
n(xkn) = 2xkn , 1 ≤ k ≤ n

(2.18) ρn =
√

n/2 .

3 – Convergence results

A first convergence result concerns the case of Laguerre weights, and

is valid for polynomials

Theorem 1. Let W be a Laguerre weight, then

(3.1) lim
n→∞

‖P − Hn(W, P )‖1,W = 0

for every polynomial P .

Proof. Let P be any polynomial ∈ IP2n−1, then from (2.7), with

w = W , and using also (2.4), (2.6) we get

P (x) − Hn(W, P, x) =
n∑

j=1

P ′(xjn)(x − xjn)l2jn(x) =

= ρnL(α)
n (x)

n∑

j=1

P ′(xjn)L
(α)
n−1(xjn)λjnljn(x) =

= ρnL(α)
n (x)Ln(x) ,

where Ln ∈ IPn−1, is the Lagrange interpolation polynomial satisfying

Ln(xjn) = P ′(xjn)L
(α)
n−1(xjn)λjn , 1 ≤ j ≤ n ,

and λjn are the weights (2.2) of the Gaussian integration rule (2.3) relative

to W .



166 P. RABINOWITZ - L.GORI [8]

Applying the Cauchy-Schwarz inequality, the Gauss-Laguerre quadra-

ture rule, and recalling (2.9), one has

‖P − Hn(W,P )‖1,W = |ρn|
∫

IR+

|L(α)
n (x)Ln(x)|W (x) dx ≤

≤ |ρn|
{ ∫

IR+

[Ln(x)]2W (x) dx

}1/2

=

= |ρn| ·
{ n∑

j=1

λjn[P ′(xjn)L
(α)
n−1(xjn)λjn]2

}1/2

.

Furthermore, (2.5) gives

(3.2) λjn[L
(α)
n−1(xjn)]2 =

1

ρn

L
(α)
n−1(xjn)

L
(α)′
n (xjn)

and hence (2.11), (2.14), (3.2) yield, for n ≥ degree P ,

‖P − Hn(W, P )‖1,W ≤
( |ρn|

n + α

)1/2

max
1≤j≤n

λ
1/2
jn ‖[P ′(x)]2x‖1,W .

About the Laguerre weights (2.8), it is known [13, p. 355], that assum-

ing the zeros {xjn}n
j=1 ordered increasingly, the sequence {λjn}n

j=1 of the

coefficients in (2.2) is increasing for xν < α + 1/2 and decreasing for

xν > α + 1/2; this behaviour, together with the relation [13, (15.3.18)]

λjn ∼ x
α+1/2
jn n−1/2 , 0 < xjn ≤ ω , for some ω ,

gives

max
1≤j≤n

λjn = o (1) .

Thus, taking into account (2.14), we get (3.1).

Now, let us denote by S(IR+) the following class of functions f . A

function f : IR+ → IR is said to be ∈ S(IR+) if f ∈ BI(IR+), and

(3.3) f(x)x−1/2 ∈ L1,W (IR+)
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(3.4) |f(x)x1/2W (x)| < const x−1−ρ , x large, ρ > 0 .

In order to prove our main result, the following theorem turns out to be

useful.

Theorem 2. Let g ∈ S(IR+), then

(3.5) lim
n→∞

sup ‖Hn(W, g)‖1,W ≤ const‖g‖1,W .

Proof. First, we remark that, by (2.2) one has

∫

IR+

|
n∑

j=1

l2jn(x)g(xjn)|W (x) dx≤
n∑

j=1

|g(xjn)|
∫

IR+

l2jn(x)W (x) dx =(3.6)

=
n∑

j=1

λjn|g(xjn)| ,

moreover, by a theorem on quadrature convergence [14], the condition

(3.4) implies that

(3.7) lim
n→∞

n∑

j=1

λjn|g(xjn)| = ‖g‖1,W .

Next, from (2.6) and (3.6) one gets

∫

IR+

|Hn(W, g, x)|W (x) dx ≤
n∑

j=1

λjn|g(xjn)| + I1 ,

where

I1 :=

∫

IR+

|
n∑

j=1

g(xjn)
L(α)′′

n (xjn)

L
(α)′
n (xjn)

(x − xjn)l2jn(x)|dx .

Using (2.4), (2.9), (2.12), (2.13) and the Cauchy–Schwarz inequality, we
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obtain

I1 =

∫

IR+

|ρnL(α)
n (x)

n∑

j=1

ljn(x)λjng(xjn)L
(α)
n−1(xjn)(xjn−α−1)/xjn|W (x) dx≤

≤ |ρn|
{ ∫

IR+

[ n∑

j=1

ljn(x)λjng(xjn)L
(α)
n−1(xjn)(xjn−α−1)/xjn

]2

W (x) dx

}1/2

:=

:= |ρn|
{ ∫

IR+

[ n∑

j=1

ljn(x)F (xjn)

]2

W (x) dx

}1/2

.

If we let G(x) =
n∑

k=1

lkn(x)F (xkn) ∈ IPn−1, then we have G(xjn) = F (xjn),

moreover (2.3) and (2.5), (2.11) allow us to write

I1 ≤ |ρn|
{ n∑

j=1

λjn[G(xjn)]2
}1/2

=

=

( |ρn|
n + α

)1/2 { n∑

j=n

λ2
jn[g(xjn)]2(xjn − α − 1)2/xjn

}1/2

≤

≤
( |ρn|

n + α

)1/2 n∑

j=1

λjn|g(xjn)| |xjn − α − 1|x−1/2
jn .

The assumption on g assures that [14]

lim
n→∞

n∑

j=1

λjn|g(xjn)| |xjn − α − 1|x−1/2
jn =

=

∫

IR+

|g(x)| |x − α − 1|x−1/2W (x) dx := I2 .

Furthermore

(3.8)

∫

IR+

|g(x)| |x − α − 1|x−1/2W (x) dx ≤ const ‖g‖1,W ;

in fact, since g ∈ S(IR+),

∀ ε > 0 ∃δ > 0 7
δ∫

0

|g(x)| |x − α − 1|x−1/2W (x) dx < ε ,
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∀ ε > 0 ∃τ > 0 7
+∞∫

τ

|g(x)| |x − α − 1|x−1/2W (x) dx < ε ,

hence

I2 < 2ε + τδ−1/2

∫

IR+

|g(x)|W (x) dx .

Thus (3.6), (3.7), (3.8) give (3.5).

Theorem 3. Let f ∈ S(IR+), then

lim
n→∞

‖f − Hn(W, f)‖1,W = 0 .

Proof. For any polynomial P one has

‖f −Hn(W, f)‖1,W ≤‖Hn(W, f−P )‖1,W +‖P −Hn(W, P )‖1,W +(3.9)

+ ‖f − P‖1,W ≤ const ‖f − P‖1,W + o(1) + ‖f − P‖1,W .

By Theorem 5.7.2 in [13] the right–hand side of (3.9) can be made arbi-

trarily small, then the claim follows.

4 – Hermite–Fejér interpolation based on Hermite abscissas

Following the same line of reasoning as in the previous section ,we

may deal with the Hermite–Fejér interpolation associated with the Her-

mite weight (2.15) and abscissas. Even though this is a special case of the

general theorem in [4], nevertheless we give it here since the derivation is

so much simpler than there. Furthermore the conditions for convergence

are slightly weaker than in [4].

Lemma 1. Let V be the Hermite weight, then

(4.1) lim
n→∞

‖P − Hn(V, P )‖1,V = 0

for every polynomial P .
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The proof of this lemma is easily obtained using the same line of

demonstration as in Theorem 1; thus one gets, recalling (2.16), (2.18),

‖P − Hn(V, P )‖1,V ≤
(

ρn

2n

)1/2

‖P ′(x) · x‖1,V =

= o(1)‖P ′(x) · x‖1,V

from which the claim follows.

We introduce here the class of functions denoted by T (IR). A function

f : IR → IR is said to be ∈ T (IR) if f ∈ BI(IR) and

(4.2) |f(x)xV (x)| < const |x|−1−ρ , x large, ρ > 0 .

Theorem 4. Let g ∈ T (IR), then

(4.3) lim
n→∞

sup ‖Hn(V, g)‖1,V ≤ const ‖g‖1,V .

Proof. One has

‖Hn(g, V )‖1,V ≤
∫

IR

|
n∑

j=1

l2jn(x)g(xjn)|V (x) dx+

+

∫

IR

|
n∑

j=1

g(xjn)
H′′

n(xjn)

H′
n(xjn)

· (x − xjn)l2jn(x)|V (x) dx := I3 + I4 .

Next

I3 ≤
n∑

j=1

λjn|g(xjn)|

and, by the assumption on g, one may write

lim
n→∞

I3 = ‖g‖1,V .

Turning to I4, one has by (2.16), the Cauchy–Schwarz inequality and the

Gauss–Hermite quadrature rule

I4 ≤ 2|ρn|
{ ∫

R

( n∑

j=1

ljn(x)λjnHn−1(xjn)g(xjn)xjn

)2

V (x)dx

}1/2

=

= 2|ρn|
{ n∑

j=1

λjnλ2
jnH2

n−1(xjn)g2(xjn)x2
jn

}1/2
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from which using (2.5) and (2.16) we derive

I4 ≤
(

2ρn

n

)1/2 n∑

j=1

λjn|xjng(xjn)| = o(1)
n∑

j=1

λjn|xjng(xjn)| ,

the hypothesis on g enables us to write

lim
n→∞

n∑

j=1

λjn|xjng(xjn)| =

∫

IR

|xg(x)|V (x) dx ,

moreover, by argument analogous to those in the proof of Theorem 2,

∫

IR

|xg(x)|V (x) dx ≤ const ‖g‖1,V

and the claim follows.

Theorem 5. Let f ∈ T (IR), then

lim
n→∞

‖f − Hn(V, f)‖1,V = 0 .

The proof is similar to that of Theorem 3, since [13, Theorem 5.7.2] also

holds in this case.

5 – Convergence of Hermite–Lagrange polynomials

In Section 2, we introduced the Hermite-Lagrange or Hermite oscu-

latory operator Fn (cf (2.7)); now, we turn to analyze the convergence

of Hermite–Lagrange interpolation at the zeros of generalized Laguerre

polynomials, or at those of Hermite polynomials.

We first consider the operator Kn given by

Kn(w, g) =
n∑

j=1

g(xjn)(x − xjn)l2jn(x) ,

where w is an admissible weight, and prove the following Lemma.
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Lemma 2. Let W be a Laguerre weight, let g : IR −→ IR+ satisfy the

condition (3.4), then

(5.1) ‖Kn(W, g)‖1,W ≤ const ‖g‖1,W ;

furthermore, for every polynomial P , there results

(5.2) ‖Kn(W,P )‖1,W = o(1) .

Proof. By (2.4) one has

‖Kn(W, g)‖1,W =

∫

IR+

∣∣∣
n∑

j=1

g(xjn)(x − xjn)l2jn(x)
∣∣∣W (x)dx =

= |ρn| ·
∫

R+

∣∣∣L(α)
n (x)

n∑

j=1

λjng(xjn)L
(α)
n−1(x)ljn(x)

∣∣∣W (x)dx ;

applying the Cauchy-Schwarz inequality, the Gauss–Laguerre quadrature

rule yields

(5.3) ‖Kn(W, g)‖1,W ≤ |ρn|
{ n∑

j=1

λjnL2
n−1(xjn)λ2

jng2(xjn)

}1/2

which, by (2.5), (2.11) reduces to

(5.4) ‖Kn(W, g)‖1,W ≤
( |ρn|

n + α

)1/2 n∑

j=1

λjn|g(xjn)|x1/2
jn .

Now, the convergence of the Gauss–Laguerre quadrature sums in the

right-hand member of (5.4) is assured under the assumption on g, so one

has

‖Kn(W, g)‖1,W = 0(1)

∫

IR+

|g(x)|x1/2W (x)dx

and the relation (5.1) follows by arguments analogous to those leading to

(3.8).
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If g reduces to a polynomial P , we can infer from (5.3)

‖Kn(W,P )‖1,W ≤
( |ρn|

n + α

)1/2

max
1≤j≤n

λ
1/2
jn

{ n∑

j=1

λjnP 2(xjn)xjn

}1/2

.

Since the function h(x) = xP 2(x) satisfies the condition

|h(x)W (x)| < const · x−1−ρ , x large , ρ > 0

one gets, by the results of [14],

∥∥Kn(W,P )
∥∥

1,W
≤ 0(1) · max

1≤j≤n
λ

1/2
jn

∥∥xP 2(x)
∥∥

1,W
,

and then (5.2) is a consequence of the behaviour of max λjn already

discussed in Section 3.

Theorem 3 and Lemma 2 allow us to state the next theorem.

Theorem 6. Let f ∈ S(IR+), assume that f ′ exists in IR+ and

satisfies condition (3.4), then

(5.5) lim
n→∞

∥∥f − Fn(W, f)
∥∥

1,W
= 0

Proof. Using (2.7), (5.1), (5.2), we can write

∥∥f − Fn(W, f)
∥∥

1,W
≤

∥∥f − Hn(W, f)
∥∥

1,W
+

∥∥Kn(W,P )
∥∥

1,W
+

+
∥∥Kn(W, f ′ − P )

∥∥
1,W

= o(1) + o(1) + 0(1) ·
∥∥f ′ − P

∥∥
1,W

,

since ‖f ′ −P‖1,W can be made arbitrarily small [13, Theorem 5.7.2], (5.5)

is proved.

As for the case of Hermite–Lagrange interpolation at the zeros of

Hermite polynomials, results on the convergence can be derived similarly

as in the previous case, and the theorems below can be easily proved.

Lemma 3. Let V be the Hermite weight and let g be ∈ T (IR) (cf

Section 4), then ∥∥Kn(V, g)
∥∥

1,V
≤ const ‖g‖1,V ,
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and ∥∥Kn(V, P )
∥∥

1,V
= 0(1)

for every polynomial P .

The proof is obtained following the same line of reasoning as in

Lemma 2.

Theorem 7. Let V be the Hermite weight, let f ∈ T (IR), f ′ exist

in IR, with f ′ ∈ T (IR), then

lim
n→∞

∥∥f − Fn(V, f)
∥∥

1,V
= 0 .

The proof is a consequence of Lemma 3 and Theorem 5.

It is to be noted that, although the last result is a particular case

of a convergence theorem given in [4] for more general weights, here the

convergence is proved under an assumption which is weaker than the

condition required in [4].

6 – Convergence of product integration rules

Consider now the product integration rules (1.1), (1.2) based on La-

guerre or Hermite abscissas; as a consequence of the results of the previous

sections, the following Corollaries are readily proved.

Corollary 1. Let f ∈ S(IR+) and p be a measurable function

satisfying the relation

sup
x∈IR+

|p(x)/W (x)| < ∞ ,

then

lim
n→∞

Qn(p, f, W ) =

∫

IR+

f(x)p(x) dx .

Corollary 2. Let f ∈ T (IR) and p a measurable function satisfying

the relation

sup
x∈IR

|p(x)/V (x)| < ∞ ,
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then

lim
n→∞

Qn(p, f, V ) =

∫

IR

f(x)p(x) dx .
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[7] P. Nevai – P. Vértesi: Mean Convergence of Hermite-Fejér Interpolation at
Zeros of Generalized Jacobi Polynomials, Acta Sc. Math. Szeged, 53 (1989),
77-98.

[8] P. Rabinowitz: Product Integration Based on Hermite-Fejér Interpolation, J.
Comp. Appl. Math., 28 (1989), 85-101.
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