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Sturm-Liouville boundary value problems

and Lagrange interpolation series

W.N. EVERITT - G. SCHÖTTLER - P.L. BUTZER

Dedicated to the memory of Professor Aldo Ghizzetti

Riassunto: Il lavoro è dedicato alle connessioni tra il teorema di campionamento
di Kramer ed una particolare forma della serie interpolatoria di Lagrange. Questa con-
nessione si rivela particolarmente utile quando il nucleo del tipo di Kramer gode di
specifiche proprietà analitiche, poiché ciò determina una corrispondente proprietà di
analiticità per i singoli termini della serie di Lagrange.

Recenti risultati hanno mostrato che un caso significativo ed importante di tale
connessione è da rilevarsi nella costruzione di nuclei del tipo di Kramer a partire da
problemi ai limiti per operatori simmetrici di tipo autoaggiunto sull’asse reale.

Nel lavoro ci si limita a considerare i classici problemi di Sturm-Liouville per
operatori differenziali del secondo ordine, richiedendo tuttavia condizioni minimali sui
coefficienti (appartenenza alla classe L1

loc). Vengono peraltro considerati diversi casi di
punti limite, seguendo la classificazione di Naimark (punti regolari ovvero cicli-limite).

Questo modo di procedere segue quello di precedenti lavori di Weiss, Kramer,
Campbell e recenti risultati di Butzer, Zayed e Schöttler. I nuovi metodi qui utilizzati
potrebbero essere estesi ad altre classificazioni dei punti limite e ad operatori differen-
ziali simmetrici di ordine arbitrario.

Abstract: This paper is concerned with the connection between the Kramer sam-
pling theorem and one form of the Lagrange interpolation formula. One particular
interest of this connection is when the Kramer-type kernel has certain analytic proper-
ties since this leads to corresponding analyticity for the individual terms in the Lagrange
interpolation series. Recent results have shown that one important and significant case
of this connection is to be found in the generation of these Kramer-type kernels from
self-adjoint boundary value problems, determined by symmetric ordinary linear differ-
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ential expressions defined on intervals of the real line. In these cases the analyticity
properties result from the presence of the spectral parameter of the corresponding self-
adjoint differential operator. Results in this paper are restricted to consideration of
the classic Sturm-Liouville differential expression of the second-order, but under the
minimal (locally Lebesgue integrable) conditions on the coefficients; furthermore the ex-
pression is taken to be in the regular and/or limit-circle end-point classification.

This approach follows earlier work of Weiss, Kramer, Campbell and others, and
recent results of Butzer, Zayed and Schöttler. The new methods adopted here should
extend to other end-point classifications and to symmetric differential expressions of
arbitrary order.

1 – Introduction, preliminary results, statement of main theo-

rem

1.1 – The problem

The Lagrange interpolation results of this paper are best seen in the

light of the survey article by Butzer, Splettstösser and Stens [5],

see Section 6 and the extensive list of references, and especially the work

of Kramer [16] and Campbell [6]. The connection with the classical

theory of Sturm-Liouville differential equations and special functions can

be seen in the work of Higgins [15] and the three recent papers of Zayed,

Hinsen and Butzer [21], Zayed [22] and Butzer and Schöttler [4].

Our main concern in this paper is with extending this connection

between Lagrange interpolation and Sturm-Liouville theory which follows

from the abstract theory of differential operators defined in Lebesgue

integrable-square Hilbert functions spaces. The operator theory required

is to be found in Akhiezer and Glazman [2, Appendix 2], and Naimark

[17, Chapters V and VI]; the connection between this operator theory and

the classical theory of Sturm-Liouville differential equations is developed

by Titchmarsh [20], Coddington and Levinson [7, Chapter 7] and

Everitt [12]. All these results will be deployed in order to obtain a

Lagrange interpolation result under minimal conditions on the coefficients

of the associated Sturm-Liouville differential equations.

There is an informative introduction to the form of the Lagrange

interpolation result which is the concern of this paper, in the first Sections

of the two papers [21, (1.10)] and [22, (1.10)]. If {λn : n ∈ ZZ} is a fixed
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sequence of distinct real numbers and if F : C → C is an entire (integral)

function on C, of a type to be specified, then we seek an entire function G,

with simple zeros only at the points {λn}, so that F can be represented

in the form

(1.1) F (λ) =
∑

n∈ZZ

F (λn)
G(λ)

G′(λn)(λ − λn)
(λ ∈ C) .

There is a corollary to this result which states that if {cn : n ∈ ZZ} is a

given sequence of complex numbers, satisfying a certain growth condition

as n → ±∞, then we can construct a unique entire function F , from the

class to be specified, such that

(1.2) F (λn) = cn (n ∈ ZZ) .

Thus from the given information (1.2) the function F is defined on the

whole complex plane C, and uniquely so within the class specified. Since

the statement of our results requires a detailed preliminary introduction

it is well that at this stage we draw the attention of the reader to the

consequences of Theorem 1.1 and Corollary 1.2 at the end of this Section;

in particular to the results (1.36) and (1.38).

The analytic methods used in this paper are essentially different from

the methods employed in the papers [4], [21], and the methods of Zayed

in [22]. We make a comparison between results and methods, as used

here and in [22], in Section 7 below.

1.2 – Notations

Some notations are: ZZ represents the set of integers {. . .−2,−1, 0, 1, 2,

. . . }; IN0 = {0, 1, 2, . . . }; IN−
0 = {. . . ,−2,−1, 0}; IR and C denote the real

and complex number fields; for any open set V of C the symbol H(V )

denotes the class of functions F : V → C such that F is (Cauchy) holo-

morphic on V ; L and AC denote Lebesgue integrable and absolutely con-

tinuous classes of functions; “loc” denotes a property holding on compact

subsets of an open set in IR or C.

If I is an interval of IR, w : I → IR is Lebesgue measurable and

w(x) > 0 (almost all x ∈ I), then L2(I; w) denotes the Hilbert function
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space of equivalence classes taken from



f : I → C : f is Lebesgue measurable and

∫

I

∣∣f(x)
∣∣2w(x)dx < ∞





with norm and inner-product, see e.g. Rudin [18, Chapter 11],

‖f‖2
w =

∫

I

∣∣f(x)
∣∣2w(x)dx , (f, g)w =

∫

I

f(x)g(x)w(x)dx .

The Sturm-Liouville differential equation is

(1.3) −(
p(x)y′(x)

)′
+ q(x)y(x) = λw(x)y(x)

(
x ∈ (a, b)

)

where

(1.4)

(i) the spectral parameter λ ∈ C ;

(ii) (a, b) is an open interval of IR with − ∞ ≤ a < b ≤ ∞ ;

(iii) the coefficients p, q, w : (a, b) → IR ;

(iv) p−1(≡ 1/p), q, w ∈ L1
loc(a, b) ;

(v) w(x) > 0 for almost all x ∈ (a, b) .

Remarks. 1. The condition (iv) on p implies that p(x) )= 0 for

almost all x ∈ (a, b),

2. Note that there is no sign restriction on the coefficients p; it may

take positive and negative values in sets of positive (Lebesgue) measure

contained in (a, b), or satisfy p ≥ 0 or p ≤ 0 on (a, b); we illustrate these

possibilities in the examples given in Section 11.

3. The condition w > 0 on (a, b) can be reduced to w ≥ 0 on

(a, b), w(x) > 0
(
x ∈ E ⊂ (a, b)

)
, w(x) = 0

(
x ∈ (a, b) \ E

)
where

the (Lebesgue) measures λ(E) > 0 and λ((a, b) \ E) > 0; however this

relaxation introduces additional technicalities which we omit from this

paper although the form and results of Theorem 1.1 and Corollary 1.2,

given below, remain valid.

4. Solutions of the linear differential equation (1.3) are defined on

(a, b) × C; the required properties of these solutions are discussed in

Section 3 below.
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5. The condition (iv) above is minimal, within the framework of the

Lebesgue integral, for the existence of solutions of (1.3) in the sense of

Carathéodory; it is shown in Everitt and Race [13] that condition (iv)

is both necessary and sufficient for the existence of such solutions.

1.3 – Boundary value problems and structural conditions

We now introduce the boundary value problems and differential op-

erators associated with the differential equation (1.3) which in turn will

yield the Lagrange interpolation results. In this paper we require two

structural conditions on these boundary value problems; the first condi-

tion concerns the classification of the end-points a and b of the differential

equation (1.3); the second condition concerns the form of the bound-

ary conditions to be applied at these end-points. Since these conditions

are required to define the self-adjoint differential operators in the space

L2
(
(a, b);w

)
which represent the boundary value problem, we quote the

relevant results from the now classic text by Naimark [17].

These two conditions are:

(1.5)

1. The end-point a of the differential equation is to be regular ,

or limit-circle in L2
(
(a, b);w

)
; independently end-point b is

to be regular or limit-circle in L2
(
(a, b);w

)
.

Remarks. 1. For regular see [17, Section 15.1] and for limit-circle

see [17, Section 17.5] and [20, Chapter II].

2. The condition (1.5) implies that the minimal operator in L2
(
(a, b);

w
)

associated with equation (1.3), has deficiency index (2,2), see [17,

Section 17.4], and so two linearly independent symmetric boundary con-

ditions, applied at end-points a and b, are necessary and sufficient to

determine all self-adjoint extensions of the minimal operator.

3. Condition (1.5) implies that all solutions
{
y(x, λ) : x ∈ (a, b), λ ∈

C
}

of the differential equation (1.3) belong to L2
(
(a, b);w

)
, i.e.

(1.6) y(·, λ) ∈ L2
(
(a, b);w

)
(λ ∈ C) ;

this is clear when both end-points a and b are regular but property (1.6)

is a consequence of the limit-circle condition when one or both of the

end-points are singular (i.e. nor regular) but limit-circle.
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4. Condition (1.5) excludes both a and b from the singular limit-

point classification, see [17, Section 17.5]; this classification is allowed by

Zayed [22, Section 3].

5. The limit-point case of these problems will be considered by the

methods of this paper in a subsequent communication.

The second structural condition is:

(1.7)

2. The two linearly independent symmetric boundary conditions

are separated, with one condition at the end-point a and one

condition at end-point b.

Remarks. 1. The condition (1.7) excludes the possibility of coupled

boundary conditions, i.e. those conditions which relate the solution values

at end-point a to those at b; these conditions are also excluded in [22].

2. Condition (1.7) implies that the self-adjoint operator in L2
(
(a, b);

w
)

has a simple spectrum, i.e. a spectrum of multiplicity one, see [17,

Section 20.3]; the introduction of coupled boundary conditions allows

for self-adjoint operators of spectral multiplicity two, the maximum for

differential operators generated by second-order differential equations of

order two, such as (1.3).

3. The case of coupled boundary conditions will be considered by the

methods of this paper in a subsequent communication.

1.4 – Glazman-Krein-Naimark boundary conditions

We now introduce the boundary conditions required to determine the

boundary value problem and the associated self-adjoint differential oper-

ator in L2
(
(a, b);w

)
, as influenced by the conditions (1.5) and (1.7). The

boundary conditions are written in the Glazman-Krein-Naimark form as

given in Naimark [17, Section 18.1].

The differential expression (quasi-differential expression in the sense

of [17, Chapter V]) M [·] is defined by

(1.8) M [f ] := −(pf ′) + qf on (a, b)

on functions which satisfy

(1.9) f : (a, b) → C and f, pf ′ ∈ ACloc(a, b) .
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With the coefficient conditions given in (1.13), (iii) and (iv) of (1.4),

M [·] is a Lagrange symmetric (formally self-adjoint) quasi-differential ex-

pression in the sense of Naimark [17, Section 15].

The Green’s formula for M [·], given f, g satisfying (1.9) and any

compact interval [α, β] ⊂ (a, b), is

(1.10)

β∫

α

{
ḡ(x)M [f ](x) − f(x)M [g](x)

}
dx = [f, g](x)

∣∣β
α

where the skew-symmetric bilinear form [f, g](·) is given by

(1.11) [f, g](x) := (f · pḡ′ − pf̄ ′ · ḡ)(x)
(
x ∈ (a, b)

)
.

The maximal domain ∆, a linear manifold of the space L2
(
(a, b);w

)
,

as determined by the coefficients p, q and w, is defined by

(1.12)
∆ :=

{
(a, b) → C : f, pf ′ ∈ ACloc(a, b);

f, w−1M [f ] ∈ L2
(
(a, b);w

)}
.

In general the form [f, g](·) is defined on the open interval (a, b) for

all f, g satisfying (1.9). However if we restrict f, g to belong to ∆ then

from the Green’s formula (1.10) we can define the form at the end-points

a and b including the cases when a = −∞ and b = ∞, by

(1.13) [f, g](a) := lim
x→a

[f, g](x), [f, g](b) := lim
x→b

[f, g](x) .

These limits exist and are finite for all f, g ∈ ∆ from (1.10) and

(1.12).

We can now define and specify our separated, symmetric, indepen-

dent Naimark type boundary conditions at the end-points a and b.

Firstly consider the end-point b. Let {κ+, χ+} be a pair satisfying

(1.14)
(i) κ+, χ+ ∈ ∆, (ii) κ+, χ+ : (a, b) → IR

(iii) [κ+, χ+](b) = 1 .

Such pairs exist. From (1.6), following upon (1.5), all solutions of the

differential equation (1.3) belong to ∆, and this for all λ ∈ C. If µ ∈ IR
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and we put λ = µ in (1.3) and choose real-valued, linearly independent

solutions y1 and y2 then [y1, y2](b) )= 0, and if κ+, χ+ are defined by

suitable linear forms on {y1, y2} the conditions (1.14) can be satisfied. It is

not necessary to choose {κ+, χ+} from real-valued independent solutions

solutions of (1.3) and this is one of the significant strengths of the Naimark

form of the boundary conditions; we illustrate such possibilities in the

examples considered in Section 11 below.

The boundary condition at b then takes the form, respectively for a

solution y of (1.3) (recall y ∈ ∆) or a function f ∈ ∆,

(1.15) [y, κ+](b) = 0 or [f, κ+](b) = 0 .

We note that such a boundary condition is linear, homogeneous and,

in view of (iii) of (1.14), is non-trivial since κ+ is not identically zero

in neighbourhood of b. We note also from (1.11) and (ii) of (1.14) that

[κ+, κ+] = 0, i.e. κ+ satisfies its own boundary condition.

The boundary condition (1.15) is a definite restriction on y or f ; for

example if f(x) = χ+(x)
(
x ∈ (a, b)

)
then [f, κ+](b) )= 0. Thus there are

elements of ∆ which do satisfy (1.15), and elements which do not satisfy

this condition.

The boundary condition (1.15) is called symmetric since if f, g ∈ ∆

and both satisfy this condition then, to be proven in Section 4,

(1.16) [f, g](b) = 0 .

Secondly consider the end-point a. Let the pair {κ−, χ−} satisfy the

conditions

(1.17)
(i) κ−, χ− ∈ ∆, (ii) κ−, χ− : (a, b) → IR ,

(iii) [κ−, χ−](a) = 1 .

All remarks for the boundary condition at a then hold; in particular

the boundary condition takes the form

(1.18) [y, κ−](a) = 0 or [f, κ−](a) = 0 ,

and if f, g ∈ ∆ both satisfy (1.18) then

(1.19) [f, g](a) = 0 .
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Note that the conditions (1.15) and (1.18) are separated; if f satisfies

(1.15) then it may or may not satisfy (1.18).

In the singular limit-case the boundary conditions (1.15) and (1.18)

have to remain, in general, in the limit form given by applying the result

(1.13).

In the regular case, as in Naimark [17, Section 18.2], the limit form

(1.13) can be relaxed to write the boundary conditions in the classical,

linear, homogeneous form. For a solution y of the equation (1.3) these

forms are

(1.20)
[y, κ−](a) ≡ (pκ′

−)(a) · y(a) − κ−(a) · (py′)(a) = 0 ,

[y, κ+](b) ≡ (pκ′
+)(b) · y(b) − κ+(b) · (py′)(b) = 0 .

1.5 – Self-adjoint differential operators and properties

We can now define the self-adjoint differential operators generated

by the symmetric boundary value problem determined by

(1.21)
M [y] ≡ −(py′)′ + qy = λwy on (a, b)

[y, κ−](a) = 0, [y, κ+](b) = 0 .

A solution to this problem is a pair {λ, ψ} where λ ∈ C is the eigen-

value and ψ is a solution to (1.21) which also satisfies the non-triviality

conditions

(1.22) [ψ, χ−](a) )= 0 , [ψ, χ+](b) )= 0 .

The solution ψ is called an eigenfunction or, if considered as an ele-

ment of L2
(
(a, b);w

)
, an eigenvector.

To define the operator T select any boundary condition pairs {κ+, χ+}
and {κ−, χ−} satisfying (1.14) and (1.17) respectively and then

T : D(T ) ⊂ ∆ ⊂ L2
(
(a, b);w

) → L2
(
(a, b);w

)

with

D(T ) :=
{
f ∈ ∆ : [f, κ−](a) = 0, [f, κ+](b) = 0

}(1.23a)

Tf := w−1M [f ]
(
f ∈ D(T )

)
.
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The general theory of differential operators as given in Naimark [17,

Section 18] then gives the following results:

(1.23b)

(i) T is self-adjoint and unbounded in L2
(
(a, b);w

)
;

(ii) the spectrum σ(T ) of T is real, and discrete with

limit-points at +∞ or −∞ or both;

(iii) the spectrun of T is simple, i.e. each eigenvalue

is of multiplicity one;

(iv) the eigenvalues and eigenvectors satisfy the boundary

value problem (1.21) and the condition (1.22).

The possibilities for the spectrum σ(T ) of T are covered by the fol-

lowing three cases: σ(T ) = {λn} where

(1.24) (i) λn ∈ IR (n ∈ ZZ); λn < λn+1 (n ∈ ZZ); lim
n→±∞

λn = ±∞ ;

(1.25) (ii) λn ∈ IR (n ∈ IN0); λn < λn+1 (n ∈ IN0); lim
n→∞

λn = ∞ ;

(1.26) (iii) λn ∈ IR (n ∈ IN−
0 ); λn−1 < λn (n ∈ IN−

0 ); lim
n→−∞

λn = −∞ .

Any one of these cases can occur; this depends on the form of the

three coefficients p, q and w. The cases (ii) and (iii) can be regarded as

equivalent; the one case can be converted to the other on changing the

sign of the parameter λ.

We shall state and prove our results for case (i) where the spectrum

{λn : n ∈ ZZ} satisfies (1.24). We leave to the reader the adjustments

which are necessary when case (ii) or (iii) holds.

Since the case (1.24) is unusual in the existing literature we consider

two examples of such spectral properties in Section 11 below.

If the coefficients p essentially (Lebesgue measure) changes sign on

the interval (a, b) then case (i) above holds; however case (i) may hold

even if p is of one sign on (a, b). We do not enter into the technicalities of

these spectral results but further information is given in the recent paper

[3] of Bailey, Everitt and Zettl, see in particular the examples in [3,

Section 6].

There are two more properties of the operator T required and which

follow from the von Neumann-Stone spectral theorem, as given in [17,

Section 20.2 and 3], of self-adjoint operators:
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(a) the set of eigenvectors (eigenfunctions) {ψn : n ∈ ZZ} is orthogonal

and complete in L2
(
(a, b);w

)
; without loss of generality the {ψn} are

normalized to

(1.27) ‖ψn‖2
w = (ψn, ψn)w = 1 (n ∈ ZZ) ;

(b) the Parseval relationship holds, i.e. if f ∈ L2
(
(a, b);w

)
and cn :=

(f, ψn)w (n ∈ ZZ) then

(1.28)

b∫

a

∣∣f(x)
∣∣2w(x)dx =

∑

n∈ZZ

|cn|2 .

Let c ∈ (a, b) be any point of this open interval (a particular choice

is often made in the consideration of an example), and let the pair of

basis solutions {ϕ1, ϕ2} of the differential equation (1.3) satisfy the initial

conditions, for all λ ∈ C, namely

(1.29) ϕ1(c, λ) = 1, (pϕ′
1)(c, λ) = 0, ϕ2(c, λ) = 0, (pϕ′

2)(c, λ) = 1 ;

then {ϕ1, ϕ2} satisfy the properties (see Section 3 below)

(1.30)

(i) ϕr(·, λ), (pϕ′
r)(·, λ) ∈ ACloc(a, b) (r = 1, 2; λ ∈ C) ;

(ii) ϕr(x, ·), (pϕ′
r)(x, ·) ∈ H(C)

(
r = 1, 2; x ∈ (a, b)

)
;

(iii) the generalized Wronskian of {ϕ1, ϕ2} satisfies

W (ϕ1, ϕ2)(x, λ) := (ϕ1 · pϕ′
2 − pϕ′

1 · ϕ2)(x, λ) = 1
(
x ∈ (a, b);λ ∈ C

)
.

Additionally from the structural condition (1.5) we have

(1.31) (iv) ϕr(·, λ) ∈ ∆ (r = 1, 2;λ ∈ C) .

Now define the analytic functions Hr,± : C → C (r = 1, 2) by

(1.32)
Hr,+(λ) :=

[
ϕr(·, λ), κ+

]
(b), (λ ∈ C; r = 1, 2) ;

Hr,−(λ) :=
[
ϕr(·, λ), κ−

]
(a), (λ ∈ C; r = 1, 2) ;
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then for r = 1, 2 the following results hold

(1.33)

(i) Hr,+ ∈ H(C), Hr,− ∈ H(C) ;

(ii) Hr,+(λ) )= 0, Hr,−(λ) )= 0 (λ ∈ C \ IR) ;

(iii) Hr,+ and Hr,− all have a countable infinity of real zeros;

(iv) all the zeros of Hr,+ and Hr,− are simple;

(v) the zeros of H1,+ (resp. H1,−) and H2,+ (resp. H2,−)

interlace on IR.

For these results see Section 6 below and Everitt [12].

1.6 – Statement of main theorem

Formally here is the solution of the problem we described in Sec-

tion 1.1:

If {λ : n ∈ ZZ} is a sequence of eigenvalues of a given eigenvalue problem

of the type prescribed above, and if F : C → C is determined by

F (λ) =

b∫

a

K(x, λ)f(x)w(x)dx ,

where f ∈ L2
(
(a, b);w

)
and K(x, λ) a kernel to be specified, then F has

the representation (1.1), i.e.

F (λ) =
∑

n∈ZZ

F (λn)
G(λ)

G′(λ)(λ − λn)
(λ ∈ C) .

The exact conditions for, and properties of the eigenvalue problem,

kernel K(x, λ) and interpolation function G are specified in

Theorem 1.1. Let (a, b) be an open interval of the real line IR; let

the coefficients p, q and w satisfy the basic conditions (1.4); let the Sturm-

Liouville quasi-differential equation (1.3) satisfy the end-point classifica-

tion (1.5); let the boundary condition functions {κ+, χ+} and {κ−, χ−}
satisfy the conditions (1.14) and (1.17) respectively; let the self-adjoint
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differential operator T be determined by the separated, symmetric bound-

ary conditions of (1.23a); let the simple, discrete spectrum {λn : n ∈ ZZ}
of T follow the case (1.24); let the eigenvectors {ψn : n ∈ ZZ} of T be nor-

malized as in (1.27); let the basis solutions {ϕ1, ϕ2} of (1.3) be determined

by the initial conditions (1.29).

Define the Kramer-type kernel K− : (a, b) × C → C by

(1.34a)
K−(x, λ) :=

[
ϕ1(·, λ), κ−

]
(a)ϕ2(x, λ)

− [
ϕ2(·, λ), κ−

]
(a)ϕ1(x, λ)

(
x ∈ (a, b), λ ∈ C

)
;

then K− has the following properties:

(i) K−(·, λ) is a solution of (1.3) for all λ ∈ C,

and K(·, λ) ∈ IR (λ ∈ IR);

(ii) K−(·, λ) ∈ ∆ ⊂ L2
(
(a, b);w

)
(λ ∈ C) ;

(iii)
[
K−(·, λ), κ−

]
(a) = 0 (λ ∈ C) ;

(iv)
[
K−(·, λ), κ+

]
(b) = 0 if and only if λ ∈ {λn : n ∈ ZZ} ;

(v) K−(x, ·) ∈ H(C)
(
x ∈ (a, b)

)
;

(vi) K−(·, λn) = knψn (n ∈ ZZ) where kn ∈ IR \ {0} (n ∈ ZZ) ;

(vii) K− as defined by (1.34a) is unique up to multiplication

by a factor e(·) where e(·) ∈ H(C), e(λ) )= 0 (λ ∈ C)

and e(λ) ∈ IR (λ ∈ IR) .

Define the interpolation function G : C → C by

(1.34b) G(λ) :=
[
K−(·, λ), κ+

]
(b) (λ ∈ C) ;

then G has the following properties:

(i) G ∈ H(C), G(λ) ∈ IR (λ ∈ IR) ;

(ii) G(λ) = 0 if and only if λ ∈ {λn : n ∈ ZZ} ;

(iii) G′(λn) )= 0 (n ∈ ZZ) .

Define the analytic family {K−} by F ∈ {K−} if for some f ∈
L2

(
(a, b);w

)

(1.35) F (λ) =

b∫

a

K−(x, λ)f(x)w(x)dx (λ ∈ C) .
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Then for all F ∈ {K−}: (i) F ∈ H(C);

(1.36) (ii) F (λ) =
∑

n∈ZZ

F (λn)
G(λ)

(λ − λn)G′(λn)
(λ ∈ C) ,

where the infinite series for F is absolutely convergent for each λ ∈ C,

and is uniformly convergent on any compact subset of C.

Proof. See Section 8, 9, 10 below.

Remarks. 1. The notation K− is chosen for technical reasons; there

is a kernel K+, with similar properties, but with a and κ− interchanged

with b and κ+.

2. The interpolation formula (1.36) is the formula (1.1) given at the

beginning of this Section.

3. The kernel K− (also K+) fullfils all the requirements of the original

ideas in Kramer [16].

As indicated earlier there is a Corollary to Theorem 1.1.

Corollary 1.2. Let all the notations and conditions of Theorem

1.1 hold; let {cn : n ∈ ZZ} be a sequence of complex numbers which satisfies

the condition

(1.37)
∑

n∈ZZ

|cn|2
∥∥K−(·, λn)

∥∥2

w

< ∞ .

Then there exists a unique element F ∈ {K−} such that

(1.38) F (λn) = cn (n ∈ ZZ) .

Proof. See Section 10 below.
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1.7 – Contents of the paper

Section 2 reviews previous results and examples in this area of La-

grange interpolation. Sections 3, 4, 5 and 6 concern properties of the

differential equation (1.3), and the associated boundary value problems

and differential operators which will be needed for the proof of Theorem

1.1. Section 7 returns to the results of [21] and [22] in order to make

clear the essential difference between the conditions and theorems in [22],

and in this paper. The proofs required for Theorem 1.1 and Corollary

1.2 are given in Sections 8, 9 and 10. Examples are discussed in Section

11; examples considered previously are reworked, but basic new examples

are introduced to illustrate the generality of the methods in this paper.

2 – Review of previous results

We comment briefly on earlier results and examples. These remarks

apply in particular to references [16], [6], [21] and [22] and to the results

in the previous Section.

The Kramer result in [16] is concerned with an interval I ⊆ IR and

a kernel K : I × IR → C with the properties

(i) K(·, t) ∈ L2(I) (t ∈ IR) ;

(ii) there exists a sequence {tn : n ∈ ZZ} of real number such that

the sequence
{
K(·, tn) : n ∈ ZZ

}
is a complete orthogonal set in

L2(I); see [2, Section 10] and [17, Section 10.1].

Then if for some g ∈ L2(I) the function F : IR → C is defined by

(2.1) F (t) =

∫

I

K(x, t)g(x)dx (t ∈ IR)

then we obtain the Lagrange interpolation result

(2.2) F (t) =
∑

n∈ZZ

F (tn)Sn(t) (t ∈ IR)



102 W.N. EVERITT - G. SCHÖTTLER - P.L. BUTZER [16]

where, for n ∈ ZZ and t ∈ IR,

Sn(t) =
∥∥K(·, tn)

∥∥−2
∫

I

K(x, t)K(x, tn)dx

and the series (2.2) is absolutely convergent for each t ∈ IR.

Although not given in [16] there is a corollary to this result which

states that if {cn : n ∈ ZZ
}

is a sequence of complex numbers such that

the following growth condition holds

∑

n∈ZZ

∥∥K(·, tn)
∥∥−2|cn|2 < ∞ ,

then there exists a unique g ∈ L2(I) such that if F is defined by (2.1)

then F (tn) = cn (n ∈ ZZ).

Thus the Kramer-type interpolation is prescribed by the class of func-

tions determined by (2.1) and the properties (i) and (ii) of the kernel K.

Surprisingly these conditions make little demand on K; condition (i)

requires that K(·, t) is Lebesgue measurable for each t ∈ IR, but as a

function K(x, ·) on IR, for each x ∈ I, requires no continuity or analytic

properties. If the functions K(x, ·) on IR satisfies additional properties

then this will in turn reflect on the class of functions defined by (2.1).

If the Kramer conditions are extended to the case when K : I×C → C

with K(x, ·) ∈ H(C) for each x ∈ I, then it may happen that F defined

by (2.1) satisfies F ∈ H(C); in this case the interpolation then takes place

over the set of integral (entire) functions on C.

The common ground in the references [16], [6], [21] and [22] is to gen-

erate Kramer-type kernels K from self-adjoint boundary value problems

derived from symmetric (formerly self-adjoint) differential expressions of

finite order. If the spectrum of the associated self-adjoint differential

operator is both discrete and simple (multiplicity one) then a kernel{
K(x, λ) : x ∈ I,λ ∈ C

}
is generated which, in certain cases, can be

proved to satisfy the Kramer conditions and to yield interpolation with

integral functions on C. Here the variable λ is the spectral parameter for

the associated self-adjoint differential operator.

These results are best seen in the later papers of Butzer, Hinsen

and Zayed [21] and [22]. Here the analytic form of the kernel K allows
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for the introduction into (2.2) of the entire function G which in turns

yields the form of the Lagrange interpolation formula given in (1.1).

In these papers the construction of G depends on the exponent of conver-

gence of the sequence {λn : n ∈ ZZ} of eigenvalues of the associated self-

adjoint differential operator, primary factors and the theorem of Weier-

strass; for these ideas and results see Copson [8, Sections 7,43 and 7.2]

or Titchmarsh [19, Chapter VIII]. The Hadamard factorization theo-

rem, [8, Section 7.6] shows that G so constructed need not be regarded

as unique. (In passing it should be noted that in [22, Theorem 3.1] the

author assumes that the exponent of convergence of the spectrum {λn}
is finite and this assumption influences the form of the canonical product

in the construction of G. However, although we omit the details here, it

is possible to construct a potential q : [0,∞) → IR, q ∈ C[0,∞), such

that the spectrum {λn} of the boundary value problem (here α, β ∈ IR

with α2 + β2 = 1 are part of the construction)

−y′′(x) + q(x)y(x) = λy(x)
(
x ∈ [0,∞)

)
, αy(0) + βy′(0) = 0

has an exponent of convergence which is +∞. This construction requires

the use of the inverse spectral theorem of Gelfand and Levitan [14];

details of this theorem are also given in Naimark [17, Chapter, VIII]).

The main examples considered in the references [16], [6], [21] and

[22] lead to Lagrange interpolation results derived from Sturm-Liouville

differential equations such as:

Fourier − y′′(x) = λy(x)
(
x ∈ (−∞, ∞)

)

Bessel − y′′(x) +

(
ν2 − 1

4

)
x−2y(x) = λy(x)

(
x ∈ (0,∞)

)

Legendre − (
(1 − x2)y′(x)

)′
+

1

4
y(x) = λy(x)

(
x ∈ (−1, 1)

)
.

In addition consideration is given to the equations named after Ja-

cobi, Laguerre and Hermite. For certain boundary conditions these exam-

ples yield the classical orthogonal polynomials as the associated complete

orthogonal sets for the application of the Kramer interpolation theorem.

In Section 7 below we comment further on the comparison between

Theorem 1.1 above and the results of [22]; also on some of the examples

mentioned above.
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In Section 11 we consider the Fourier and Legendre examples in the

terms of Theorem 1.1. Further we consider an example in which the

leading coefficients p changes sign on the interval (a, b); also an example

in which p is of one sign and yet the spectrum (discrete) extends to both

+∞ and −∞.

3 – The differential equation

In this Section we record the essential properties of the differential

equation

(3.1) −(
p(x)y′(x)

)′
+ q(x)y(x) = λw(x)y(x)

(
x ∈ (a, b)

)

under the basic conditions (1.4) on the coefficients p, q and w.

The basic existence theorem, see [17, Section 16.1 and 2], for quasi-

differential equations shows that for any point c ∈ (a, b) and for any pair

ξ, η ∈ C there exists a unique map ϕ : (a, b)× C → C with the properties

(3.2)

(i) ϕ(c, λ) = ξ, (pϕ′)(c, λ) = η (λ ∈ C) ;

(ii) ϕ(·, λ), (pϕ′)(·, λ) ∈ ACloc(a, b) (λ ∈ C) ;

(iii) ϕ(x, ·), (pϕ′)(x, ·) ∈ H(C)
(
x ∈ (a, b)

)
;

(iv) ϕ satisfies (3.1) almost everywhere on (a, b) .

If in addition ξ, η ∈ IR then for all x ∈ (a, b)

(3.3) ϕ̄(x, λ) = ϕ(x, λ̄), (pϕ′)(x, λ) = (pϕ′)(x, λ̄) (λ ∈ C) .

We note here that in the quasi-derivative pϕ′, which is ACloc(a, b), the

terms p and ϕ′ do not in general satisfy this continuity property; whilst p

is Lebesgue measurable, it is not in general continuous or differentiable.

The basic solutions {ϕ1, ϕ2} defined in Section 1.5 with initial condi-

tions (1.29) satisfy all the properties given in (3.2) and (3.3) above. Note

in particular that (3.3) implies that, for r = 1, 2,

(3.4) ϕr(x, λ) ∈ IR
(
x ∈ (a, b), λ ∈ IR

)
.
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From the classification condition (1.5) the differential equation (3.1)

is in the regular or limit-circle case at both end-points a and b. Thus we

have, see [10, Chapter 11] or [7, Chapter 7], recall (1.6),

(3.5) ϕr(·, λ) ∈ L2
(
(a, b);w

)
(r = 1, 2, λ ∈ C) .

Furthermore with this end-point classification we have the properties:

given any compact set C of the complex plane C

(3.6)

(i) the integrals

b∫

a

∣∣ϕr(x, λ)
∣∣2w(x)dx (r = 1, 2) are

uniformly convergent on C at both end-points a and b.

(ii) there exists a positive number L ≡ L(C), which depends

on C, such that for r = 1, 2

b∫

a

∣∣ϕr(x, λ)
∣∣2w(x)dx ≤ L(C) (λ ∈ C) .

For these last results see [10, Lemma 3.1] and [7, Chapter 9, Theo-

rem 2.1].

4 – Boundary conditions

We introduced the Naimark type boundary conditions, for the dif-

ferential equation (1.3), in Section 1.4 above. This requires the choice of

the boundary functions pairs {κ−, χ−} and {κ+, χ+} satisfying (1.17) and

(1.14) respectively. The boundary conditions then take the form (1.15)

and (1.18).

To make a strict comparison with the conditions required for an ap-

plication of the general result, for second-order differential equations, in

[17, Section 18.1, Theorem 4], we should re-define κ− and κ+ as follows.

Choose α, β, γ, δ ∈ (a, b) so that a < α < γ < δ < β < b; then on using

the fundamental result in [17, Section 17.3, Lemma 2] we can change κ−
and κ+ to κ̃− and κ̃+ so that

κ̃−(x) =

{
κ−(x), x ∈ (a, α]

0, x ∈ [γ, b) ,
κ̃+(x) =

{
0, x ∈ (a, δ]

κ+(x), x ∈ [β, b)



106 W.N. EVERITT - G. SCHÖTTLER - P.L. BUTZER [20]

with κ̃− defined on [α, γ] and κ̃+ defined on [δ,β] so that κ̃− and κ̃+

continue to satisfy (1.17) and (1.14) respectively.

We note that κ̃− and κ̃+ are unaltered from κ− and κ+ in the neigh-

bourhoods of a and b respectively which in turn leaves the boundary

conditions (1.15) and (1.18) unchanged. However we note that κ̃− is

identically zero in the neighbourhood of b, and vice versa for κ̃+.

For the application, and in the notation, of [17, Section 18.1, Theorem

4] we now define w1 = κ̃− and w2 = κ̃+ on (a, b) to give

(i) wr ∈ ∆ (r = 1, 2) ;

(ii) {w1, w2} are linearly independent in the sense required

by [17, Section 18.1, Theorem 4];

(iii) the required symmetry conditions are satisfied, i.e.

[wr, ws](b) − [wr, ws](a) = 0 (r, s = 1, 2) .

The definition of the self-adjoint operator T in (1.23) now falls under

[17, Section 18.1, Theorem 4] and the properties of T stated after (1.23)

now follow from the results in [17, Chapter V and VI].

With these modifications made we now return to the notation κ−
and κ+ for the boundary condition functions.

To prove the symmetry properties (1.16) and (1.19) of the boundary

conditions (1.15) and (1.18) we introduce an identity which may possibly

be due to the German mathematician Julius Plücker (1801-1868); for this

reason we use the name Plücker identity. For a proof of the identity see

Everitt [10]; see also the remarks in Everitt [12, Section 2].

Let {fr, gr : r = 1, 2, 3} be any six functions each of which satisfies

the condition (1.9); then the Plücker identity states that the 3×3-matrix[
[fr, gs](x)

]
is singular for all x ∈ (a, b), i.e.

(4.1) det
[
[fr, gs](x)

]
= 0

(
x ∈ (a, b)

)
.

To prove (1.16) we use (4.1), taking the limit as x → b, as follows

(we give details here which we omit on later applications):

f1, f2, f3 → f, κ+, χ+ g1, g2, g3 → g, κ+, χ+
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[
[fr, gs](b)

]
=




[f, g](b) [f, κ+](b) [f, χ+](b)

[κ+, g](b) [κ+, κ+](b) [κ+, χ+](b)

[χ+, g](b) [χ+, κ+](b) [χ+, χ+](b)


 =

=




[f, g](b) 0 [f, χ+](b)

0 0 1

[χ+, g](b) −1 0


 .

From (4.1) the determinant of this matrix is zero and this implies

that [f, g](b) = 0. There is a similar proof for (1.19).

5 – Differential operators

The fundamental self-adjoint differential operator T determined by

the symmetric boundary value problem (1.21), is defined in (1.23). The

properties of T are subsequently considered in Section 1.5.

In this section we define four additional operators {Tr,− :r=1, 2} and

{Tr,+ : r = 1, 2}, respectively in the spaces L2
(
(a, c];w

)
and L2

(
[c, b);w

)
.

We recall that c ∈ (a, b) is the point at which the basis solutions {ϕ1, ϕ2}
take real, initial values for all λ ∈ C; see (1.29) above. Define these

operators as follows: let µ ∈ IR and recall that this implies, for r = 1, 2

(5.1) ϕr(·, µ) ∈ ∆ and ϕr(x, µ) ∈ IR
(
x ∈ (a, b)

)
;

now put, with κ± taken from (1.14) and (1.17),

(5.2)
D(Tr,−) :=

{
f ∈ ∆

∣∣[f, ϕr(·, µ)
]
(c) = 0, [f, κ−](a) = 0

}

Tr,−f := w−1M [f ]
(
f ∈ D(Tr,−)

)
;

(5.3)
D(Tr,+) :=

{
f ∈ ∆

∣∣[f, ϕr(·, µ)
]
(c) = 0, [f, κ+](b) = 0

}

Tr,+f := w−1M [f ]
(
f ∈ D(Tr,+)

)
.

These operators {Tr,± : r = 1, 2} are again determined by separated

symmetric boundary conditions on their respective intervals (a, c] and

[c, b). Note that these operators are independent of the choice of param-

eter µ in (5.1) since the initial values of the basis pair {ϕ1, ϕ2} at c are

independent of λ.
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The four operators {Tr,± : r = 1, 2} all satisfy the same properties

as T ; see (1.23 to 28), with appropriate changes for the Hilbert spaces

involved.

The boundary conditions at c in (5.2) and (5.3) take the form, see

the initial values (1.29),

(5.4)

[
f, ϕ1(·, µ)

]
(c) = 0 if and only if f(c) = 0 ,

[
f, ϕ2(·, µ)

]
(c) = 0 if and only if (pf ′)(c) = 0 .

These are called, respectively, the Dirichlet and Neumann boundary

conditions at the point c.

6 – Analytic properties

The results from the previous section enable us to state certain prop-

erties of analytic functions arising from the boundary value problems

associated with the Sturm-Liouville differential equation (1.3) under the

classification condition (1.5).

Lemma 6.1. Let all the conditions of Theorem 1.1 hold, and let the

notations of the previous sections stand; let f ∈ L2
(
(a, b);w

)
and define

Fr : C → C, for r = 1, 2, by

(6.1) Fr(λ) :=

b∫

a

ϕr(x, λ)f(x)w(x)dx (λ ∈ C) .

Then, for r = 1, 2,

(i) Fr ∈ H(C) ;

(ii) if f : (a, b) → IR then Fr(λ) ∈ IR (λ ∈ IR) .
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Proof. The proof of (i) follows by standard function-analytic argu-

ments from the general properties (3.2) for the solutions {ϕ1, ϕ2} and the

special properties (3.6) which hold when the classification condition (1.5)

is satisfied. For details see [12, Lemma 3.1] and [7, Chapter 9, Theorem

2.1].

The proof of (ii) follows from (6.1) and (3.3 and 3.4).

Remark. The result of Lemma 6.1 is fundamental to considering the

analytic properties of solutions of equation (1.3) when (1.5) is satisfied.

Lemma 6.2. Let the conditions of Lemma 6.1 hold; let κ ∈ ∆ and

define Hr : C → C, for r = 1, 2, by

(6.2) Hr(λ) :=
[
ϕr(·, λ), κ

]
(b) (λ ∈ C) .

Then for r = 1, 2

(i) Hr ∈ H(C) ;

(ii) if κ : (a, b) → IR then Hr(λ) ∈ IR (λ ∈ IR) .

There is a similar result in in (6.2) the end-point b is replaced by a.

Proof. Apply the Green’s formula to the right-hand side of (6.2)

and the results follow on application of (i) and (ii) of Lemma 6.1.

Lemma 6.3. Let the conditions of Lemma 6.1 hold; let Hr,+ and

Hr,− for r = 1, 2 be defined by (1.32); then Hr,+ and Hr,− satisfy proper-

ties (i) to (v) of (1.33).

Proof. The proof of (i) and (ii) of (1.33) follows from Lemma 6.2.

The proof of properties (iii) to (v) of (1.33) follows from the prop-

erties of the differential operators {Tr,− : r = 1, 2} and {Tr,+ : r = 1, 2}
introduced and defined in Section 5 above. For details see Everitt [12,

Section 5 and 6].

Remark. The reason for stating the results of Lemma 6.3 at the early

stage of (1.32 and 1.33) is that the properties (1.33) reflect significantly

on the stated properties of the kernel K− and the function G in Theorem

1.1.
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7 – Return to comparison with previous results

In [22] Zayed gives general results only for the special equation

(7.1) −y′′(x) + q(x)y(x) = λy(x) (x ∈ I)

but calls the more general equation (1.3), but with w ≡ 1, into use for

the examples. In general it is not possible to transform (1.3) into the

form (7.1), see Everitt [11].

To construct the Kramer type kernel K and the interpolation func-

tion G in [22] Zayed uses the Weierstrass/Hadamard theory of entire

functions and, in the singular case, the Titchmarsh-Weyl m-coefficient.

However no attempt is made to relate the choice of m-coefficient to the

boundary condition at a singular limit-circle end-point, nor to the asso-

ciated differential operator.

However the Zayed method is effective in singular limit-point end-

points, provided that the spectrum of the boundary value problem is

discrete.

In the singular limit-circle case both the methods of [22] and of this

present paper, can be applied. In the limit-circle non-oscillatory cases

(for example the Legendre equation considered in Example 3, Section

11 below and in [22, Section 5.3, Example 3]) both theories may well

yield the same result. In the limit-circle oscillatory case (see Example 4,

Section 11 below) the outcome may be different.

Sections 8, 9, 10 are devoted to the Proof of Theorem 1.1.

8 – Definition and properties of kernel K−(·, λ)

In this section we give the definition of K−(·, λ) and establish the

properties (i) to (iv) of the kernel of Theorem 1.1.

Let κ+, χ+, κ−, χ− ∈ ∆ be real-valued such that [κ+, χ+](b) = 1 and

[κ−, χ−](a) = 1 as in (1.14) and (1.17). There exists a fundamental set of

solutions ϕ1, ϕ2 ∈ ∆ of M [y] = λwy on (a, b) × C having the properties

(1.29) for some c ∈ (a, b) and arbitrary λ ∈ C, i.e.
[
ϕ1(·, λ), ϕ2(·, λ)

]
(x) =

1 for all x ∈ (a, b), λ ∈ C.

So there holds for all solutions y of (1.3) and for λ ∈ C (recall then
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y ∈ ∆)

[y, κ+](b) = α
[
ϕ1(·, λ), κ+

]
(b) + β

[
ϕ2(·, λ), κ+

]
(b) ,

[y, κ−](a) = α
[
ϕ1(·, λ), κ−

]
(a) + β

[
ϕ2(·, λ), κ−

]
(a) ,

since y(x, λ) = αϕ1(x, λ) + βϕ2(x, λ) for some α, β depending on λ. Now

define the kernel K−(x, λ) by (1.34a)

K−(x, λ) :=
[
ϕ1(·, λ), κ−

]
(a)ϕ2(x, λ) − [

ϕ2(·, λ), κ−
]
(a)ϕ1(x, λ)

(
x ∈ (a, b), λ ∈ C

)
.

Now
[
ϕi(·, λ), κ−

]
(a), i = 1, 2, are entire functions on C by (1.32)

and (1.33), each with a countable number of real and simple zeros only.

Further ϕ1, ϕ2 ∈ ∆ are non-trivial solutions of the differential equation

for all λ ∈ C and entire functions in λ on C as mentioned in (1.30). Thus

K−(x, λ) is also a non-trivial solution of the differential equation for all

λ ∈ C and entire with respect to λ for each x ∈ (a, b).

In view of (3.3) ϕr(x, λ), r = 1, 2, are real whenever λ is real and the

same holds for the functions
[
ϕr(·, λ), κ+

]
(b),

[
ϕr(·, λ), κ−

]
(a), r = 1, 2,

which follows from (ii) of Lemma 6.2. Thus K−(x, λ) is real for λ ∈ IR

and fixed x and we achieve properties (i) and (v) of the kernel. K−(·, λ)

is in ∆ since ϕr(·, λ) ∈ ∆ (r = 1, 2); thus (ii) holds. Concerning property

(iii),

[
K−(·, λ), κ−

]
(a) =

[
ϕ1(·, λ), κ−

]
(a) · [

ϕ2(·, λ), κ−
]
(a)

(8.1)

− [
ϕ2(·, λ), κ−

]
(a) · [

ϕ1(·, λ), κ−
]
(a) = 0 ,

[
K−(·, λ), κ+

]
(b) =

[
ϕ1(·, λ), κ−

]
(a) · [

ϕ2(·, λ), κ+

]
(b)

(8.2)

− [
ϕ2(·, λ), κ−

]
(a) · [

ϕ1(·, λ), κ+

]
(b) (λ ∈ C) .

Since K−(·, λ) ∈ ∆ fulfills the first boundary condition, and is a non-

trivial solution of the differential equation, the second boundary condition[
K−(·, λ), κ+

]
(b) = 0 is fulfilled if and only if λ is an eigenvalue. Thus

the eigenvalues are determined as the zeros of (8.2), which are all real
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and simple. The spectrum is either {λn : n ∈ IN0} with lim
n→∞

λn = ±∞ or

{λn : n ∈ ZZ} with lim
n→±∞

λn = ±∞. We assume the second case. The cor-

responding real eigenfunctions {ψn} form a complete normal orthogonal

set in L2
(
(a, b);w

)
, and in view of (8.2) it follows that K−(·, λ) = kn ·ψn,

kn ∈ IR, kn )= 0, n ∈ ZZ.

Since K−(·, λ) is real whenever λ is real, the coefficients kn are also

real.

Thus properties (i) to (vi) of the kernel K−(x, λ) of Theorem 1.1

hold, and K−(x, λ) is a suitable kernel for Kramer’s theorem.

The property (vii) is proved by representing K−(x, λ) in the form

K−(x, λ) = a(λ)ϕ1(x, λ) + b(λ)ϕ2(x, λ)
(
x ∈ (a, b);λ ∈ C

)
, where a(·)

and b(·) ∈ H(C), and using properties (ii) to (vi).

9 – Definition and properties of interpolation function G

Let us know define the function, for all λ ∈ C,

(9.1) G(λ) :=
[
K−(·, λ), κ+

]
(b) .

Since κ+ is real-valued and K−(·, λ) ∈ IR for λ ∈ IR the same holds

for G(λ). Thus G(λ) is holomorphic on C in view of formula (8.2), since[
ϕr(·, λ), κ+

]
(b),

[
ϕr(·, λ), κ−

]
(a) are in H(C) for r = 1, 2. Using the

definition of G(λ) and property (iv) of K−(·, λ) it follows that G(λ) = 0

if and only if λ ∈ {λn : n ∈ ZZ}, and thus we obtain properties (i) and (ii)

of the function G. Now to property (iii):

Let us apply Green’s formula (1.10) to the functions f := K−(x, λ)

and g := K−(x, λn) for x ∈ (a, b), λ ∈ C. This yields, as K−(x, λn) is

real-valued on (a, b),

b∫

a

{
ḡM [f ] − fM [g]

}
dx = (λ − λn)

b∫

a

K−(x, λ)K−(x, λn)w(x)dx =

=
[
K−(·, λ), K−(·, λn)

]b

a
.

Using the Plücker identity and setting f1(x) = K−(x, λ), f2(x) =

κ+(x), f3(x) = χ+(x); g1(x) = K−(x, λn), g2(x) = κ+(x), g3(x) = χ+(x),
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and x = b in (4.1), then for all λ ∈ C
∣∣∣∣∣∣

[
K−(·, λ), K−(·, λn)

]
(b)

[
K−(·, λ), κ+

]
(b)

[
K−(·, λ), χ+

]
(b)

0 0 1[
χ+, K−(·, λn)

]
(b) −1 0

∣∣∣∣∣∣
= 0 ,

which yields

[
K−(·, λ), K−(·, λn)

]
(b) +

[
χ+, K−(·, λn)

]
(b) · [

K−(·, λ), κ+

]
(b) = 0 .

Since
[
χ+, K−(·, λn)

]
(b) = −[

K−(·, λn), χ+

]
(b) = −kn[ψn, χ+](b) )= 0

(see (vi) of the properties of K−(x, λ) in Theorem 1.1 and (1.22)), we

obtain, with rn )= 0 (n ∈ ZZ):

[
K−(·, λ), K−(·, λn)

]
(b) = rn

[
K−(·, λ), κ+

]
(b) (λ ∈ C) .

Now define the analytic functions {Gn;n ∈ ZZ} by

(9.2)
Gn(λ) : = (λ − λn)

b∫

a

K−(x, λ)K−(x, λn)w(x)dx =

=
[
K−(·, λ), K−(·, λn)

]
(b)

for all λ ∈ C. Thus Gn(λ) = rn G(λ), and so Gn(λ) has the same zeros

as G(λ), i.e. the eigenvalues λn, and differs from this function only in a

real number rn )= 0, which is independent of λ.

Thus it is sufficient to examine G′
n(λn). Now from (9.2), Gn ∈ H(C)

(n ∈ ZZ), and

(9.3)

G′
n(λ) =

b∫

a

K−(x, λ)K−(x, λn)w(x)dx+

+ (λ − λn)
d

dλ

b∫

a

K−(x, λ)K−x, λn)w(x)dx .

Since both integrals on the right side of (9.3) are locally uniformly

convergent on C (and also entire functions on C) we let λ → λ in (9.3) to

deduce G′
n(λn) =

∫ b

a

∣∣K−(x, λn)
∣∣2w(x)dx > 0. This yields property (iii)

of the G of Theorem 1.1.



114 W.N. EVERITT - G. SCHÖTTLER - P.L. BUTZER [28]

10 – Proof of interpolation results

Finally to the proof of (1.36) and Corollary 1.2. Let

F (λ) :=

∫ b

a

K−(x, λ)f(x)w(x)dx

for some f ∈ L2
(
(a, b);w

)
and all λ ∈ C; thus F ∈ H(C) since by Lemma

6.1
∫ b

a ϕr(x, λ)f(x)w(x)dx are analytic functions for f ∈ L2
(
(a, b);w

)
, r =

1, 2; also noting the definition of K−(x, λ). Then by Kramer’s theorem,

F (λ) =
∑
n

F (λn)Sn(λ), where λn, n ∈ ZZ, are the eigenvalues, and

Sn(λ) :=

∫ b

a K−(x, λ)K−(x, λn)w(x)dx
∫ b

a

∣∣K−(x, λn)
∣∣2w(x)dx

=
Gn(λ)

(λ − λn)G′
n(λn)

for all λ ∈ C by definition (9.2) of Gn(λ). Thus for all λ ∈ C we have

F (λ) =
∑

n∈ZZ

F (λn)
Gn(λ)

(λ − λn)G′
n(λn)

.

The series is absolutely convergent for each λ ∈ C by Schwarz’s

inequality. For

{∑

n∈ZZ

∣∣∣∣∣
F (λn)∥∥K−(·, λn)

∥∥
w

·
∥∥K−(·, λn)

∥∥
w
Gn(λ)

(λ − λn)G′(λn)

∣∣∣∣∣

}2

≤

≤
∑

n∈ZZ

∣∣F (λn)
∣∣2

∥∥K−(·, λn)
∥∥2

w

·
∑

n∈ZZ

∥∥K−(·, λn)
∥∥2

w

∣∣Gn(λ)
∣∣2

|λ − λn|2
∣∣G′

n(λn)
∣∣2 .

Also the two series on the right side are convergent by Bessel’s in-

equality, since the Fourier coefficients of f ∈ L2
(
(a, b);w

)
with respect to

the system
{
K−(·, λ)

}
are given by F (λn) ·

[ ∫ b

a

∣∣K−(x, λn)
∣∣2w(x)dx

]1/2

,

and the coefficients of K−(·, λ) with respect to the same system are

Gn(λ) ·



b∫

a

∣∣K−(x, λn)
∣∣2w(x)dx




−1/2

· [
(λ − λn)G′

n(λn)
]−1

.
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The series is also locally uniformly convergent since (consider n ∈ IN0;

case n ∈ ZZ similarly)

(10.1)

∣∣∣∣∣F (λ) −
N−1∑

n=0

F (λn)Gn(λ)

(λ − λn)G′
n(λn)

∣∣∣∣∣ ≤

≤
{ ∞∑

n=N

∣∣F (λn)
∣∣2

∥∥K−(·, λn)
∥∥2

w

}1/2 { ∞∑

n=N

∥∥K−(·, λn)
∥∥2

w

∣∣Gn(λ)
∣∣2

|λ − λn|2
∣∣G′

n(λn)
∣∣2

}1/2

.

The first term on the right side is independent of λ and tends to zero

if N tends to infinity in view of Bessel’s inequality. For the second term

there holds - using again Bessel’s inequality,

{ ∞∑

n=N

∥∥K−(·, λn)
∥∥2

w

∣∣Gn(λ)
∣∣2

|λ − λn|2
∣∣G′

n(λn)
∣∣2

}1/2

≤




b∫

a

∣∣K−(x, λ)
∣∣2w(x)dx





1/2

.

In view of (3.6) there exists an L > 0 such that
∫ b

a

∣∣K−(x, λ)
∣∣2w(x)dx ≤ L

on any compact subset of C. Hence from (10.1) there follows that

∣∣∣∣∣F (λ) −
N−1∑

n=0

F (λn)
Gn(λ)

(λ − λn)G′
n(λn)

∣∣∣∣∣ → 0

for N → ∞ uniformly in λ on any compact subset of C. Since Gn(λ) =

rn · G(λ) for all n ∈ ZZ, where the rn )= 0 are independent of λ, we obtain

F (λ) =
∑

n∈ZZ

F (λn)
G(λ)

(λ − λn)G′(λn)
,

where G(λ), having exactly the eigenvalues as zeros, is an analytic func-

tion, real-valued when λ is real. This completes the proof of the theorem.

Now to the Proof of Corollary 1.2 :

Let {cn : n ∈ ZZ} be such that (1.37) holds. Define dn :=
cn∥∥K−(·, λn)

∥∥
w

,

i.e.
∞∑

n=−∞
|dn|2 < ∞. Thus, from the completeness property (1.28), there

exists a unique function f ∈ L2
(
(a, b);w

)
such that

dn =
∥∥K−(·, λn)

∥∥−1

w

b∫

a

K−(x, λn)f(x)dx .
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We obtain cn =
∫ b

a K−(x, λn)f(x)dx, and define for this special f ∈
L2

(
(a, b);w

)
the function F ∈ {K−} by F (λ) =

∫ b

a K−(x, λ)f(x)dx.

This proves Corollary 1.2.

11 – Examples

Let us now give some examples for Theorem 1.1. For all of them it is

necessary to define the function s(z) =
√

z : C → C for 0 ≤ arg(z) < 2π

as follows; if z = r · eiθ, r ≥ 0, 0 ≤ θ < 2π then
√

z = r1/2eiθ/2 where

0 ≤ arg(
√

z) < π, and the definition of the square-root function is thus

unique.

Example 1. Given the eigenvalue problem −y′′ = λy on [0, π], y′(0) =

y′(π) = 0. Both endpoints are regular. The general solution on [0, π] is

given by y(x) = A sinx
√

λ + B cos x
√

λ, A, B ∈ C; a basis at c = π/2 is

ϕ1(x, λ) = cos
√

λ
(π

2
− x

)
, ϕ2(x, λ) = (1/

√
λ) sin

√
λ
(π

2
− x

)
. Choose as

boundary conditions κ+(x) = κ−(x) = −1 (cf. (1.13) to (1.17)) to give

[y, κ+](π) = y′(π) and [y, κ−](0) = y′(0). Then

[
ϕ1(·, λ), κ

]
(0) =

√
λ sin

π

2

√
λ,

[
ϕ1(·, λ), κ+

]
(π) = −

√
λ sin

π

2

√
λ ,

[
ϕ2(·, λ), κ−

]
(0) = − cos

π

2

√
λ =

[
ϕ2(·, λ), κ+

]
(π) ,

and the eigenvalues are determined by
√

λ · sin π
√

λ = 0. Thus λ is an

eigenvalue iff λ = k2, k ∈ IN0. The kernel is given by K−(x, λ) = cos x
√

λ

and the interpolation function is G(λ) =
√

λ · sin
√

λ. Altogether we

obtain

Lemma 11.1. If F ∈ {K−}, i.e.

F (λ) =

π∫

0

f(x) cos x
√

λdx
(
f ∈ L2(0, π), λ ∈ C

)
,

then F can be represented as

F (λ) =
sin π

√
λ

π
√

λ
F (0) + 2

∞∑

k=1

F (k2)

√
λ sin(

√
λ − k)π

(λ − k2)π
(λ ∈ C) .
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This sampling theorem is the same one that Zayed achieved in [22].

Observe that G(λ) differs form the canonical product of the sampling

points, which Zayed constructed to obtain in the result above, only by

a factor 1/π:

λ
∞∏

n=1

(
1 − λ

n2

)
=

1

π

√
λ sin π

√
λ .

Remark. When dealing with the Dirichlet boundary conditions

y(0) = y(π) = 0 instead of the Neumann boundary conditions y′(0) =

y′(π) = 0 we choose κ+(x) = x − π and κ−(x) = x to obtain [y, κ+](π) =

y(π), [y, κ−](0) = y(0).

Example 2. Given the eigenvalue problem −(py′)′ = λy on [−1, 1],

y(−1) = y(1) = 0, where

p(x) =





−1, x ∈ [−1, 0)

0, x = 0

1, x ∈ (0, 1] .

Both endpoints are regular. The function p changes sing at x = 0.

The general solution on [−1, 1] is given by

y(x) =

{
A1 cosh x

√
λ + A2 sinhx

√
λ, x ∈ [−1, 0)

B1 cos x
√

λ + B2 sin x
√

λ, x ∈ (0, 1] ,

with Ai, Bi ∈ C, i = 1, 2. A basis at c = 0 is

ϕ1(x, λ) =

{
cosh x

√
λ, x ∈ [−1, 0]

cos x
√

λ, x ∈ [0, 1] ;

ϕ2(x, λ) =

{
(−1/

√
λ) sinhx

√
λ, x ∈ [−1, 0]

(1/
√

λ) sinx
√

λ, x ∈ [0, 1] .

Choose as boundary condition functions κ+(x) = x − 1 and κ−(x) =

x + 1 to give [y, κ+](1) = y(1) and [y, κ−](−1) = y(−1). Hence

[
ϕ1(·, λ), κ−

]
(−1) = − cosh

√
λ,

[
ϕ2(·, λ), κ−

]
(−1) = (−1/

√
λ) sinh

√
λ ,

[
ϕ1(·, λ), κ+

]
(1) = cos

√
λ,

[
ϕ2(·, λ), κ+

]
(1) = (1/

√
λ) sin

√
λ ,
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and the eigenvalues are determined by the zeros of

6(λ) := (1/
√

λ)[sinh
√

λ · cos
√

λ − cosh
√

λ · sin
√

λ] .

These zeros are real and simple, and 0 is one of them. Since, on

inspection, 6(−λ) = −6(λ), the eigenvalues are symmetric about 0 so

that λ−n = −λn, n ∈ IN, and λ0 = 0.

Since cosh t/ sinh t → 1 as t → ∞ the eigenvalues for large n are near

to the roots of cos t = sin t, t ∈ IR, i.e. λn ∼
(
n +

1

4

)2

π2 as n → ∞.

For λ0 = 0 it can be shown that the corresponding eigenfunction is

given by ψ0(x) = 1 − |x|, x ∈ [−1, 1]. Note that ψ′
0(0) does not exist, but

(pψ′
0)(x) = −1, x ∈ [−1, 1].

The kernel is given by

K−(x, λ) = (1/
√

λ) sinh
√

λ · ϕ1(x, λ) − cosh
√

λ · ϕ2(x, λ) ,

and the interpolation function is given by G(λ) = 6(λ). We obtain

Lemma 11.2. If F ∈ {K−}, i.e.

F (λ) =

1∫

−1

f(x)K−(x, λ)dx
(
f ∈ L2(0, π), λ ∈ C

)
,

where

K−(x, λ) :=





(1/
√

λ)(sinh
√

λ · cosh x
√

λ+

+ cosh
√

λ · sinhx
√

λ), x ∈ [−1, 0]

(1/
√

λ)(sinh
√

λ · cos x
√

λ+

− cosh
√

λ · sin x
√

λ), x ∈ [0, 1] ,

then F can be represented as

F (λ) =
−36(λ)

2λ
F (0)+

∞∑

k=−∞
k )=0

F (λk)·
−6(λ) · λk

sinh
√

λk · sin
√

λk(λ − λk)
(λ ∈ C) ,

where λ−k = −λk, k ∈ ZZ and λk, k ∈ IN, is the kth positive root of

6(λ) = 0 with

6(λ) = (1/
√

λ)[sinh
√

λ · cos
√

λ − cosh
√

λ · sin
√

λ] .
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Observe that this example cannot be handled by Zayed’s methods

since p changes sign and thus cannot be transformed into the Liouville

form. This is an example of a regular eigenvalue problem where the

eigenvalues expand over the whole real line.

Example 3. a) Given the eigenvalue problem −(
(1 − x2)y′)′

= λy on

(−1, 1), [y, 1](1) = [y, 1](−1) = 0. Both endpoints are limit circle and

non oscillatory. Boundary condition functions are chosen to be κ+(x) =

κ−(x) = 1 to give the conditions above. A fundamental system of the

differential equation on (−1, 1) is given by

{
2F1

(
−

√
λ+

1

2
,
√

λ+
1

2
; 1;

1 − x

2

)
; 2F1

(
−

√
λ+

1

2
,
√

λ+
1

2
; 1;

1 + x

2

)}

for all λ ∈ C except λ =
(
n +

1

2

)2

, n ∈ IN0, which are the eigenvalues of

the problem. Working with this system of functions we obtain

ϕ1(x, λ) =
1

26(λ)

{
2F1

(
−

√
λ +

1

2
,
√

λ +
1

2
; 1;

1 − x

2

)
+

+ 2F1

(
−

√
λ +

1

2
,
√

λ +
1

2
; 1;

1 + x

2

)}
,

ϕ2(x, λ) =
1

2σ(λ)

{
2F1

(
−

√
λ +

1

2
,
√

λ +
1

2
; 1;

1 − x

2

)
+

+ 2F1

(
−

√
λ +

1

2
,
√

λ +
1

2
; 1;

1 + x

2

)}
,

where

6(λ) = 2F1

(
−

√
λ +

1

2
,
√

λ +
1

2
; 1;

1

2

)
=

=
√

π/

(
Γ

(
3

4
−

√
λ

2

)
Γ

(
3

4
+

√
λ

2

))
,

σ(λ) =
1

2

(
λ − 1

4

)
2F1

(
3

2
−

√
λ,

3

2
+

√
λ; 2;

1

2

)
=

= 2
√

π/

(
Γ

(
1

4
−

√
λ

2

)
Γ

(
1

4
+

√
λ

2

))
;
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see e.g. [1, p. 556]. Although 6(λ), σ(λ) have zeros the functions ϕ1, ϕ2

can be defines at these points by taking limits. In case λ =
(
2j + 1 +

1

2

)2

, j ∈ IN0, ϕ2(x, λ) tends to K1(j) · P2j+1(x), j ∈ IN0, where K1(j)

is a constant depending on j, and P2j+1 are the Legendre polynomials.

ϕ1(x, λ) tends to K2(j) · Q2j+1(x), where K2(j) is a constant depending

on j, and Q2j+1(x) are the associated Legendre functions.

In case λ =
(
2j+

1

2

)2

, j ∈ IN0, ϕ1(x, λ) tends to K3(j)·P2j(x), j ∈ IN0,

and ϕ2(x, λ) tends to K4(j) ·Q2j(x). Thus the system
{
ϕ1(x, λ), ϕ2(x, λ)

}

is a linearly independent set for each λ ∈ C. Now there holds:

[
ϕ1(·, λ), κ−

]
(−1) =

(
1

4
− λ

) Γ
(3

4
−

√
λ

2

)
Γ

(3

4
+

√
λ

2

)

√
πΓ

(3

2
+

√
λ
)
Γ

(3

2
−

√
λ
) =

= −[
ϕ1(·, λ), κ+

]
(1) ,

[
ϕ2(·, λ), κ−

]
(−1) = −2

Γ
(5

4
−

√
λ

2

)
Γ

(5

4
+

√
λ

2

)

√
πΓ

(3

2
+

√
λ
)
Γ

(3

2
−

√
λ
) =

=
[
ϕ2(·, λ), κ+

]
(1) .

For the calculations which are necessary to achieve these results one

needs formulae to be found in [1, Chapters 6 and 15], [9, Chapter 2.8].

The eigenvalues are determined by

G(λ) = −2/
(
Γ

(1

2
+

√
λ
)
Γ

(1

2
−

√
λ
))

=
2

π
sin π

(√
λ − 1

2

)
= 0 ;

these values are λn =
(
n +

1

2

)2

, n ∈ IN0.

The kernel is given as

K−(x, λ) = 2F1

(
−

√
λ +

1

2
,
√

λ +
1

2
; 1;

1 − x

2

)
= P√

λ−1/2(x)

which is the so-called Legendre function. We deduce
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Lemma 11.3. If F ∈ {K−}, i.e.

F (λ) =

1∫

−1

f(x)P√
λ−1/2(x)dx

(
f ∈ L2(−1, 1), λ ∈ C

)
,

then F can be represented as, for all λ ∈ C,

(11.1) F (λ) =
∞∑

k=0

F

((
k +

1

2

)2
)

(2k + 1) · sin π
(√

λ − 1

2
− k

)

π
(
λ −

(
k +

1

2

)2)

Remark. This formula coincides with the one Zayed - Hinsen -

Butzer [21] achieved earlier; see also Campbell [6] (where however

F
(
k +

1

2

)
should read as in (11.1).). The boundary conditions they used

are equivalent to the conditions above.

Example 3. b) Given the eigenvalue problem −(
(1 − x2)2y′)′

= λy

on (−1, 1) with boundary conditions [y, κ+](1) = [y, κ−](−1) = 0 where

κ+(x) = ln
(
1/(1 − x)

)
, κ−(x) = ln

(
1/(1 + x)

)
.

Working with the fundamental system of solutions {ϕ1, ϕ2} of ex-

ample 3a) and using the following asymptotic formulae, both valid for

x → 1−,

(11.2)
2F1(a, b; a + b; x) =

Γ(a + b)

Γ(a)Γ(b)

{
log

1

1 − x
+ k0

}
+

+ 0

(
(1 − x) log

1

1 − x

)
;

(11.3)
2F

′
1(a, b; a + b; x) =

Γ(a + b)

Γ(a)Γ(b)
· 1

1 − x
+

+ 0

(
log

1

1 − x

)
for x → 1−

with k0 = 2ψ(1)−ψ(a)−ψ(b), where ψ(x) is the logarithmic derivative of

the Γ-function (see e.g. [8, p. 267] to derive the formulae and [9, Chapter
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1.7] for properties of ψ), we obtain

[
ϕ1(·, λ), κ+

]
(1) =

k0(λ) + ln 2 + Γ
(1

2
−

√
λ
)
Γ

(1

2
+

√
λ
)

6(λ)Γ
(1

2
−

√
λ
)
Γ

(1

2
+

√
λ
) =

= −[
ϕ1(·, λ), κ−

]
(−1) ,

[
ϕ2(·, λ), κ+

]
(1) =

Γ
(1

2

√
λ
)
Γ

(1

2
+

√
λ
)

− k0(λ) − ln 2

σ(λ)Γ
(1

2
−

√
λ
)
Γ

(1

2
+

√
λ
) =

= −[
ϕ2(·, λ), κ−

]
(−1) ,

where k0(λ) = 2ψ(1) − ψ
(1

2
−

√
λ
)

− ψ
(1

2
+

√
λ
)
. Thus after some

calculations we have

(11.4) G(λ) = − 2

π
cos π

√
λ

{
π2

cos2 π
√

λ
− (

k0(λ) + ln 2
)2

}
;

the zeros of this function determine the eigenvalues. The kernel is given

by

(11.5)

K−(x, λ) =
(
k0(λ) + ln 2

) · 2F1

(
−

√
λ +

1

2
,
√

λ +
1

2
; 1;

1 − x

2

)
+

+ Γ

(
1

2
−

√
λ

)
Γ

(
1

2
+

√
λ

)
2F1

(
−

√
λ +

1

2
,
√

λ +
1

2
; 1;

1 − x

2

)

x ∈ (−1, 1) .

Observe that all the functions above are entire in λ which is clear

by Theorem 1.1 but not obvious. (A more detailed examination of this

example will follows in a subsequent communication).

We obtain

Lemma 11.4. If F ∈ {K−}, i.e.

F (λ) =

1∫

−1

f(x)K−(x, λ)dx
(
f ∈ L2(−1, 1), λ ∈ C

)
,
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where K−(x, λ) is given by (11.5), then F can be represented as

F (λ) =
∞∑

k=0

F (λk)
G(λ)

(λ − λk)G′(λk)

with G(λ) given as in (11.4) and, λk being the kth zero of G(λ),

G′(λk) = − 2

π
cos π

√
λk

{
π3 sin π

√
λk√

λk cos3 π
√

λk

− 2
(
k0(λk) + ln 2

)·

·
(

π2

2
√

λk cos2 π
√

λk

− 1√
λk

ψ′
(

1

2
+

√
λk

))}
.

Remark. It could be difficult to handle this example by Zayed’s

methods, since there is no easy way to construct the m-coefficients for

this problem.

Example 4. Consider the differential equation −(
xy′(x)

)′ − xy(x) =
λ

x
y(x) on [1,∞). Choose as boundary conditions [y, κ−](1)= [y, κ+](∞)=

0 with κ−(x) = x − 1, κ+(x) = x−1/2(cos x + sinx) to get [y, κ−](1) =

y(1) = 0. The endpoint 1 is regular and the endpoint ∞ is limit circle

oscillatory in L2
(
(1,∞);x−1

)
.

A fundamental system of the differential equation is given by

ϕ1(x, λ) =
π

2 sin(isπ)

{
J ′

is(1)J−is(x) − J ′
−is(1)Jis(x)

}
,

ϕ2(x, λ) =
π

2 sin(isπ)

{
J−is(1)Jis(x) − Jis(1)J−is(x)

}
,

where Jν(x) is the Bessel function of order ν, and s =
√

λ. We deduce

[
ϕ1(·, λ), κ−

]
(1) = ϕ1(1, λ) = 1,

[
ϕ2(·, λ), κ−

]
(1) = ϕ2(1, λ) = 0 ,

and thus K−(x, λ) = ϕ2(x, λ) and, with s =
√

λ,

(11.6) G(λ) =
[
K−(·, λ), κ+

]
(∞) = −

√
λ

J−is(1) + Jis(1)

2 cos
(1

2
isπ

) .
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Observe that all the functions above are entire in λ. G(λ) has in-

finitely many real and simple zeros clustering at −∞ and +∞. We achieve

Lemma 11.5. If F ∈ {K−}, i.e.

F (λ) =

∞∫

1

f(x)
π

2 sin(isπ)

{
J−is(1)Jis(x) − Jis(1)J−is(x)

}1

x
dx ,

with f ∈ L2
(
(1,∞);x−1

)
, s =

√
λ, λ ∈ C, then F can be represented as

F (λ) =
∞∑

k=−∞
F (λk)

G(λ)

G′(λk)(λ − λk)
(λ ∈ C) ,

with G given by (11.6).

Remark. We have not been able to find a simple closed formula for

G′(λk) in terms of Jis(1) and J−is(1).

The denominator cos
(1

2
i
√

λπ
)

in (11.6) prevents the values λ =

−(2k + 1)2, k ∈ ZZ, from being eigenvalues (see also Example 3 b));

compare with Bailey, Everitt, Zettl [3, Section 6].
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[9] A. Erdélyi et al: Higher Transcendental Functions, Vol. I, McGraw-Hill, New
York, 1953.

[10] W.N. Everitt: A note on the self-adjoint domains of second-order differential
equations, Quart. J. Math. (Oxford), (2) 13 (1963), 41-45.

[11] W.N. Everitt: On the transformation theory of ordinary second-order linear
symmetric differential expressions, Czechoslovak Math. J., 32 (1982), 275-306.

[12] W.N. Everitt: Some remarks on the Titchmarsh-Weyl m-coefficients and asso-
ciated differential operators, to appear in Differential Equations and Geometric
Dynamics; Control Science and Dynamical Systems; Marcel Dekker, Inc., New
York.

[13] W.N. Everitt – D. Race: On necessary and sufficient conditions for the ex-
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