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New error bounds for asymptotic approximations

of Jacobi polynomials and their zeros

L. GATTESCHI

Dedicated to Aldo Ghizzetti with deep gratitude and great admiration
for his work on Numerical Analysis

Riassunto: Viene stabilita una maggiorazione del termine complementare di una

rappresentazione asintotica, per n → ∞, del polinomio di Jacobi P
(α,β)
n (cos ϑ). Il

procedimento usato si basa su una disuguaglianza del tipo di Bernstein, stabilita re-
centemente, per i polinomi di Jacobi. Le prove numeriche, fatte sulle applicazioni al
calcolo degli zeri degli stessi polinomi, mostrano la bontà delle approssimazioni che si
ottengono.

Abstract: Bounds for the error term of an asymptotic representation of the Ja-

cobi polynomial P
(α,β)
n (cos ϑ), as n → ∞, are given. The procedure for deriving these

bounds is based on a new inequality of Bernstein-type satisfied by P
(α,β)
n (cos ϑ). Appli-

cation to the zeros of Jacobi polynomials is considered. Numerical examples are given
to illustrate the sharpness of the new results.

1 – Introduction

Some years ago, Baratella and Gatteschi [2] have obtained re-

alistic bounds for the error term of an asymptotic approximation, and
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of the zeros, of the Jacobi polynomial P (α,β)
n (x). More precisely, these

bounds are for the approximation, and for the zeros, of the function

(1.1)

u(α,β)
n (ϑ) =

(
sin

ϑ

2

)α+1/2(
cos

ϑ

2

)β+1/2

P (α,β)
n (cos ϑ) ,

− 1

2
≤ α, β ≤ 1

2
, 0 ≤ ϑ ≤ π ,

which satisfies the differential equation

(1.2)
d2u

dϑ2
+

(
N 2 +

1/4 − α2

4 sin2 ϑ/2
+

1/4 − β2

4 cos2 ϑ/2

)
u = 0 ,

where

(1.3) N = n +
α + β + 1

2
.

The approximation, considered in [2] for the function u(α,β)
n (ϑ), is

in fact obtained by grouping the first three terms of a general uniform

asymptotic expansion given by Frenzen and Wong [6].

In the derivation of the bounds for the error terms an important rôle

was played by the following inequality, due to Baratella [1],

(1.4)

(
sin

ϑ

2

)α+1/2(
cos

ϑ

2

)β+1/2∣∣P (α,β)
n (cos ϑ)

∣∣ ≤

≤ 2.821

(
n + α

n

)
N−α−1/2 ,

where 0 ≤ ϑ ≤ π/2 and −1/2 ≤ α, β ≤ 1/2. This inequality has been

recently sharpened by Chow, Gatteschi and Wong [3]. Indeed, they

have shown that

(1.5)

(
sin

ϑ

2

)α+1/2(
cos

ϑ

2

)β+1/2∣∣P (α,β)
n (cos ϑ)

∣∣ ≤

≤ Γ(q + 1)

Γ(1/2)

(
n + q

n

)
N−q−1/2 ,
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for 0 ≤ ϑ ≤ π and −1/2 ≤ α, β ≤ 1/2, where q = max(α, β).

In this paper, by using (1.5) other arguments and some accurate

computations, we shall improve considerably the results established in [2].

2 – Preliminary results

We first notice that in view of the reflection formula P (α,β)
n (−x) =

(−1)nP (β,α)
n (x), the function u(α,β)

n (ϑ) defined by (1.1) satisfies

(2.1) u(α,β)
n (π − ϑ) = (−1)nu(β,α)

n (ϑ) .

Thus, it is not restrictive to assume 0 ≤ ϑ ≤ π/2. Furthermore, since

we are dealing with asymptotic representation, we shall assume n ≥ 5

throughout this paper.

Let f(ϑ) be the monotonically increasing function

(2.2) f(ϑ) = Nϑ +
1

16N

[
A

(
2

ϑ
− cot

ϑ

2

)
+ B tan

ϑ

2

]
,

where

(2.3) A = 1 − 4α2 , B = 1 − 4β2 ,

and N is given as in (1.3). The function u(α,β)
n (ϑ) satisfies the integral

equation

(2.4)

[
f(ϑ)

f ′(ϑ)

]−1/2

u(α,β)
n (ϑ) = c1Jα

[
f(ϑ)

]
+

− π

2

ϑ∫

0

[
f(t)

f ′(t)

]1/2

∆(t, ϑ)F (t)u(α,β)
n (t)dt ,

where

c1 =
Γ(α + 1)

21/2

(
n + α

n

)
N−α

[
1 +

1

32N 2

(
A

3
+ B

)]−α

,(2.5)

∆(t, ϑ) = Jα

[
f(ϑ)

]
Yα

[
f(t)

] − Jα

[
f(t)

]
Yα

[
f(ϑ)

]
,(2.6)
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and F (t) is a non-negative function bounded in 0 ≤ ϑ ≤ π−ε, with ε > 0.

More precisely it can be shown that

0 ≤ F (ϑ) ≤ 1

16N 2
(δ1A + δ2B + η1A

2 + η2AB + η3B
2) ,

where

δ1 = 0.0144657036, δ2 = 1, η1 = 0.005383039, η2 = 0.0973499184,

η3 = 0.0625 ,

for 0 ≤ ϑ ≤ π/2 and n ≥ 5. It is now easy to see that

δ1A + δ2B + η1A
2 + η2AB + η3B

2 ≤ µ1A + µ2B ,

for 0 ≤ A, B ≤ 1, where

(2.7) µ1 = 0.0685237018 , µ2 = 1.111174959 .

Therefore, we get

(2.8) 0 ≤ F (ϑ) ≤ 1

16N 2
(µ1A + µ2B) , 0 ≤ ϑ ≤ π/2 , n ≥ 5 .

Note that this inequality is different from the one obtained in [2].

We shall consider the two intervals 0 ≤ ϑ ≤ ϑ∗ and ϑ∗ ≤ ϑ ≤ π/2,

where ϑ∗ is the root of the transcendental equation f(ϑ) = π/2. Such a

root exists, is unique and satisfies, if n ≥ 5, the inequality

(2.9) 0.9979776744
π

2N
≤ ϑ∗ ≤ π

2N
.

Using the integral equation (2.4), we have proved in [2, Theorem 4.1]

that the following asymptotic representation holds

(2.10)

[
f(ϑ)

f ′(ϑ)

]−1/2(
sin

ϑ

2

)α+1/2(
cos

ϑ

2

)β+1/2

P (α,β)
n (cos ϑ) =

=
Γ(α + 1)

21/2

(
n + α

n

)
N−α

[
1 +

1

32N 2

(
A

3
+ B

)]−α

Jα

[
f(ϑ)

]
+ I ,
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where

(2.11) |I| ≤ ϑαN−4

(
n + α

n

)
(0.00812A + 0.08282B) , 0 < ϑ ≤ ϑ∗ ,

and

(2.12) |I| ≤ ϑ1/2N−α−1/2

(
n + α

n

)
(0.0526A+0.535B) , ϑ∗ ≤ ϑ ≤ π/2 .

For the zeros ϑn,k(α, β), k = 1, 2, . . . , of P (α,β)
n (cos ϑ) we can derive

([2], Theorem 5.2) the representation

(2.13)

ϑn,k(α, β) = tn,k − 1

16N 2

[
A

(
2

tn,k

− cot
tn,k

2

)
+ B tan

tn,k

2

]
+

+ εk(α, β)N−5 ,

where, provided that ϑn,k(α, β) ≤ π/2,

(2.14) 0 ≤ εk(α, β) ≤ jα,k(0.240A + 2.43B) ,

and tn,k = jα,k/N , jα,k being the k-th positive zero of the Bessel function

Jα(x).

The following lemma will be useful in rewriting the inequality (1.5)

in a different form.

Lemma 2.1. Let

M(q) =
Γ(q + 1)

Γ(1/2)

(
n + q

n

)
N−q−1/2 ,

with N defined as in (1.3). Then, if α < β,

(2.15) M(β) <
M(α)

1 − N−2
√

3/108
,

for −1/2 ≤ α, β ≤ 1/2.
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For the proof we use a particular case of a result, due to Frenzen

[5], on the remainder term in Field’s [4] asymptotic expansion of the

ratio of two gamma functions. Indeed, Frenzen has shown that

(2.16)
Γ(z + a)

Γ(z + b)
= wa−b

[
1 − η

ρ(2 − 2ρ)(1 − 2ρ)

12N 2

]
,

where

2w = 2z + a + b − 1 , 2ρ = a − b + 1

and 0 < η < 1, if z, a, b are real and such that (i) z + a > 0, (ii) w → ∞
and (iii) 0 < 2ρ < 1.

By putting z = n, a = α + 1 and b = β + 1, then w = N . The

conditions required for the validity of (2.16) with 0 < η < 1 are verified.

Thus we obtain

(2.17)

M(α)

M(β)
=

Γ(n + α + 1)

Γ(n + β + 1)
Nβ−α =

= 1 − η
(1 − δ2)δ

24N 2
, δ = β − α, 0 < η < 1 .

Since max
{
(1 − δ2)δ

}
= 2

√
3/9 for 0 < δ < 1, the lemma is proved.

As a consequence of Lemma 2.1 inequality (1.5) can be expressed in

the form

(2.18)

(
sin

ϑ

2

)α+1/2(
cos

ϑ

2

)β+1/2∣∣P (α,β)
n (cos ϑ)

∣∣ ≤

≤ Γ(α + 1)

Γ(1/2)

(
n + α

n

)
N−α−1/2K(n) ,

where

(2.19) K(n) =

{
1 , if α ≥ β ,

1/(1 − N−2
√

3/108) , if α < β .
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3 – Error term in the approximation of P (α,β)
n (cos ϑ)

In this section we shall give estimates for the integral

(3.1)

I = −π

2

ϑ∫

0

[
f(t)

f ′(t)

]−1/2

∆(t, ϑ)F (t)

(
sin

t

2

)α+1/2(
cos

t

2

)β+1/2

P (α,β)
n (cos t)dt

given in (2.4), where f(t) and ∆(t, ϑ) are defined by (2.2) and (2.6),

respectively.

The function F (t) has been already considered in Section 2, and it

satisfies the inequality (2.8).

a) The case 0 < ϑ < ϑ∗.

The study of this case is similar to the one made in [2] of the same

case. We denote by M an upper bound for the absolute value of

F (t)

[
sin t/2

f(t)

]α+1/2

P (α,β)
n (cos t)

[
1

f ′(t)

]3/2

.

Therefore, from (3.1) we obtain

(3.2) |I| ≤ M
π

2

∣∣∣∣∣∣

ϑ∫

0

fα+1(t)f ′(t)∆(t, ϑ)dt

∣∣∣∣∣∣
.

Observe that f(t) ≥ Nt and f ′(t) ≥ N . Taking into account that

(Szegö [10], p. 168)

∣∣P (α,β)
n (cos t)

∣∣ ≤ P (α,β)
n (1) =

(
n + α

n

)
,

we get

M ≤ F (t)

(
n + α

n

)
1

2α+1/2

1

Nα+2
.

Therefore, (2.8) gives

(3.3) M ≤ 1

2α+1/2

Aµ1 + Bµ2

16Nα+4

(
n + α

n

)
,
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which is slightly different from the corresponding result in [2, (4.7)].

The integral in (3.2) may be explicitly evaluated and, as in [2], we

have

(3.4)

∣∣∣∣∣∣

ϑ∫

0

fα+1(t)∆(t, ϑ)df(t)

∣∣∣∣∣∣
≤ π

8(1 + α)
Nαϑα(1.001577737)1/2 ,

for ϑ ≤ ϑ∗ and n ≥ 5.

By substitution of (3.3) and (3.4) into (3.2) we obtain the following

estimate for |I|

|I| ≤ ϑα

N 4

(
n + α

n

)
(Aµ1 + Bµ2)0.0771709493 ,

which, on account of (2.7) becomes

|I| ≤ ϑα

N 4

(
n + α

n

)
[0.0052880384A + 0.0857504153B] .

This inequality can be improved. Indeed, it can be shown that

(3.5) 0 ≤ I ≤ ϑα

N 4

(
n + α

n

)
[0.0052880384A + 0.0857504153B] ,

for 0 < ϑ < ϑ∗ and n ≥ 5. Here we shall give only an outline of a very

simple proof based on the following well-known Sturm-type comparison

theorem (see Szegö [10], p. 20).

Theorem 3.1. Let q(x) and Q(x) be functions continuous in x0 <

x < X0 with q(x) ≤ Q(x). Let the functions y(x) and Y (x), both not

identically zero, satisfy the differential equations

y′′ + q(x)y = 0 , Y ′′ + Q(x)Y = 0 ,

respectively. Let x′ and x′′, x′ < x′′, be two consecutive zeros of y(x). We

denote by ξ the first zero of Y (x) to the right of x′, x′ < ξ < x′′.
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Assuming that y(x) > 0, Y (x) > 0 in x′ < x < ξ, and

lim
x→x′+0

y(x)

Y (x)
≥ 1 ,

we have y(x) > Y (x) in x′ < x < ξ.

The statement also holds for x′ = x0

[
y(x0 +0) = 0

]
if the additional

condition

lim
x→x0+0

[
y′(x)Y (x) − y(x)Y ′(x)

]
= 0

is satisfied.

Taking into account of some results obtained in [8], and applying

the above theorem to the differential equations satisfied by u(α,β)
n (ϑ) and[

f(ϑ)/f ′(ϑ)
]−1/2

Jα

[
f(ϑ)

]
, we find that for 0 < ϑ < ϑ∗,

[
f(ϑ)

f ′(ϑ)

]−1/2

u(α,β)
n (ϑ) ≥ Γ(α + 1)

21/2

(
n + α

n

)
N−α

[
1+

+
1

32N 2

(
A

3
+ B

)]−α

Jα

[
f(ϑ)

]
+ I ,

which, by virtue of (2.10), completes the proof of the inequality (3.5).

b) The case ϑ∗ ≤ ϑ ≤ π/2.

In this case we divide the integration interval into the two subintervals

[0, ϑ∗] and [ϑ∗, ϑ], and denote by I1 and I2 the two corresponding integrals.

For I1, analogously to (3.2), we have

(3.6) |I1| ≤ M
π

2

∣∣∣∣∣∣

ϑ∗∫

0

fα+1(t)f ′(t)∆(t, ϑ)dt

∣∣∣∣∣∣
,

and we shall use the inequality (see [2], p. 213)

∣∣∣∣∣∣

ϑ∗∫

0

∆(t, ϑ)fα+1(t)df(t)

∣∣∣∣∣∣
≤

[
2

πf(ϑ)

]1/2
{(

π

2

)α+1

21/2
(
J2

α+1(π/2)+

+ Y 2
α+1(π/2)

)1/2
+

2α+1Γ(α + 1)

π

}
.
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Since f(ϑ) ≥ Nϑ and (Watson [11], p. 449)

J2
α+1(x) + Y 2

α+1(x) ≤ 2

πx

[
1 +

4(α + 1)2 − 1

8x2

]
,

we obtain

∣∣∣∣∣∣

ϑ∗∫

0

∆(t, ϑ)fα+1(t)df(t)

∣∣∣∣∣∣
≤

[
2

πNϑ

]1/2 2

π

{(
π

2

)α+1(
2+

+
4(α + 1)2 − 1

π2

)1/2

+ 2αΓ(α + 1)

}
;

that is

∣∣∣∣∣∣

ϑ∗∫

0

∆(t, ϑ)fα+1(t)df(t)

∣∣∣∣∣∣
≤ Γ(α + 1)

π3/2
2α+3/2(Nϑ)−1/2g(α) ,

where

(3.7) g(α) = πα+12−2α−1

(
2 +

4(α + 1)2 − 1

π2

)1/2 1

Γ(α + 1)
+ 1 .

Making use of (3.3) (which is still valid in this case), (3.6) becomes

(3.8) |I1| ≤ Γ(α + 1)

π1/2

(
n + α

n

)
1

Nϑ
ϑ1/2 Aµ1 + Bµ2

16Nα+7/2
g(α) .

Since ϑ ≥ ϑ∗, according to (2.9),

1

Nϑ
≤ 1

Nϑ∗ ≤ 2

π
(0.9979776744)−1 = 0.6379098338 = h .

Consequently, (3.8) gives

(3.9) |I1| ≤ Γ(α + 1)

π1/2

(
n + α

n

)
N−α−7/2ϑ1/2 h

16
(Aµ1 + Bµ2)g(α) .
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The continuous function g(α), defined on −1/2 ≤ α ≤ 1/2 by (3.7),

reaches its maximum at the point α∗ = 0.43212019 . . . , and

g(α∗) = 3.638979419 . . . .

Thus (3.9) gives

(3.10) |I1| ≤ Γ(α + 1)

π1/2

(
n + α

n

)
N−α−7/2ϑ1/2(Ah11 + Bh12) ,

where

h11 =
h

16
µ1g(α∗) , h12 =

h

16
µ2g(α∗) .

For the integral I2 we have, as in [2, (4.12)],

|I2| ≤ 2

[
1

f(ϑ)

]1/2 Aµ1 + Bµ2

16N 2

ϑ∫

ϑ∗

[
1

f(t)

]1/2[ f(t)

f ′(t)

]1/2

∣∣∣∣∣

(
sin

t

2

)α+1/2(
cos

t

2

)β+1/2

P (α,β)
n (cos t)

∣∣∣∣∣dt .

Therefore, using inequality (2.18) and taking into account that f(t) >

Nt and f(t)/f ′(t) < t for 0 < t ≤ π/2, we get

|I2| ≤ Γ(α + 1)

π1/2

(
n + α

n

)[
1

f(ϑ)

]1/2Aµ1 + Bµ2

8N 2
N−α−1/2K(n)

ϑ∫

ϑ∗

t1/2

(Nt)1/2
dt ,

where K(n) is defined by (2.19), and

(3.11) |I2| ≤ Γ(α + 1)

π1/2

(
n + α

n

)
N−α−7/2ϑ1/2(Ah21 + Bh22) ,

with

h21 =
µ1

8
K(n) , h22 =

µ2

8
K(n) .
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Now we observe that for n ≥ 5,

0.0185071416 < h11 + h21 < 0.0185126399 ,

0.3001103524 < h12 + h22 < 0.3001995120 .

Summing up (3.10) and (3.11), it follows

(3.12)
|I| ≤ ϑ1/2 Γ(α + 1)

π1/2

(
n + α

n

)
N−α−7/2(0.01852A+

+ 0.30020B) , ϑ∗ ≤ ϑ ≤ π/2 .

The main result of this section is stated in the following theorem.

Theorem 3.2. Let −1/2 ≤ α, β ≤ 1/2 and let ϑ∗ be the root of

the transcendental equation f(ϑ) = π/2. Then the following asymptotic

representation holds

(3.13)

[
f(ϑ)

f ′(ϑ)

]−1/2(
sin

ϑ

2

)α+1/2(
cos

ϑ

2

)β+1/2

P (α,β)
n (cos ϑ) =

=
Γ(α + 1)

21/2

(
n + α

n

)
N−α

[
1+

1

32N 2

(
A

3
+ B

)]−α

Jα

[
f(ϑ)

]
+I ,

where for n ≥ 5

0 ≤ I ≤ ϑα

(
n + α

n

)
N−4(0.00529A + 0.08576B) , 0 ≤ ϑ ≤ ϑ∗ ,

|I|≤ϑ1/2Γ(α + 1)

π1/2

(
n + α

n

)
N−α−7/2(0.01852A+0.30020B) , ϑ∗ ≤ϑ≤π/2,

A = 1 − 4α2 , B = 1 − 4β2 .
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In the ultraspherical case, α = β, we have the following corollary:

Corollary 3.1. Let −1/2 ≤ α ≤ 1/2 and let ϑ∗ be the root of

the transcendental equation f(ϑ) = π/2. Then the following asymptotic

representation holds:

(3.14)

[
f(ϑ)

f ′(ϑ)

]−1/2

(sinϑ)α+1/2P (α,α)
n (cos ϑ) =

= 2αΓ(α + 1)

(
n + α

n

)
N−α

[
1 +

1 − 4α2

24N 2

]−α

Jα

[
f(ϑ)

]
+ I∗ ,

where N = n + α + 1/2 and, if n ≥ 5,

0 ≤ I∗ ≤ 2α+1/2ϑα

(
n + α

n

)
N−4(1 − 4α2)0.09104 , 0 ≤ ϑ ≤ ϑ∗ ,

|I∗|≤2α+1/2Γ(α + 1)

π1/2

(
n + α

n

)
N−α−7/2(1 − 4α2)0.31872 , ϑ∗ ≤ϑ≤π/2.

Here f(ϑ) can be written in the form

f(ϑ) = Nϑ +
1 − 4α2

8N

(
1

ϑ
− cot ϑ

)
.

The bounds for the error terms given in Theorem 3.2 and Corol-

lary 3.1 are better than the ones obtained in [2]. Further, notice that

there is a mistake in the bounds previously given for the ultraspherical

case ([2], Corollary 4.1); indeed such bounds must be multiplied by the

factor 2α+1/2.

4 – The representation of the zeros

In this section new bounds are derived for the error term in the

representation of the zeros of P (α,β)
n (cos ϑ). Here, we shall give only a
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sketch of the procedure used for obtaining such bounds; further details

may be found in [2].

Let ϑn,k ≡ϑn,k(α, β), k=1, 2, . . . , n, denote the zeros of P (α,β)
n (cos ϑ),

in increasing order. Further, let jα,k, k = 1, 2, . . . , be the positive zeros

of Jα(x). Throughout this section we shall continue to assume −1/2 ≤
α, β ≤ 1/2.

We first recall (see Gatteschi [9], p. 1553) that if τn,k ≡ τn,k(α, β)

is the root of the equation f(ϑ) = jα,k, f(ϑ) being defined by (2.2), that

is, of the equation

(4.1) Nϑ +
1

16N

[
A

(
2

ϑ
− cot

ϑ

2

)
+ B tan

ϑ

2

]
= jα,k ,

then

ϑn,k ≥ τn,k , k = 1, 2, . . . , n .

Since f(ϑ) is a monotonically increasing function of ϑ and

jα,k ≥ jα,l ≥ j−1/2,l =
π

2
, α ≥ −1

2
,

it follows

ϑn,k ≥ τn,l ≥ ϑ∗ , k = 1, 2, . . . , n ,

where ϑ∗ is the root of the equation f(ϑ) = π/2 and satisfies the inequality

(2.9).

Having proved that all the zeros of P (α,β)
n (cos ϑ) are greather than ϑ∗,

according to Theorem 3.2, the zeros ϑn,k lying in the interval 0 < ϑ ≤ π/2

coincide with the zeros of the function

(4.2) U (α,β)
n (ϑ) = Jα

[
f(ϑ)

]
+ En(α, β)ϑ1/2N−7/2 ,

where

(4.3)
∣∣En(α, β)

∣∣ ≤
(

2

π

)1/2
[
1+

1

32N 2

(
A

3
+B

)]α

(0.01852A+0.30020B) .

We now recall some other results concerning the zeros ϑn,k.
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By using the inequality (Gatteschi [7])

(4.4)

jα,k

[
N 2 +

1

4
− α2 + β2

2
− 1 − 4α2

π2

]−1/2

< ϑn,k ≤

≤ jα,k

[
N 2 +

1 − α2 − 3β2

12

]−1/2

,

we readily derive ([2], Lemma 5.1)

(4.5)
jα,k

N

(
1 − 1

8N 2

)
< ϑn,k ≤ jα,k

N
,

where the equality sign holds when α2 = β2 = 1/4.

The upper bound for ϑn,k in (4.4) is very sharp. Indeed, the more

general asymptotic representation holds (Gatteschi [8])

(4.6)

ϑn,k =
jα,k

ν

{
1 − 4 − α2 − 15β2

720ν4

(
j2
α,k

2
+ α2 − 1

)}
+

+ j5
α,kO(n−7) , n → ∞ ,

where

ν =

[
N 2 +

1 − α2 − 3β2

12

]1/2

, k = 1, 2, . . . , [pn] ,

p being a positive number in (0, 1). Unfortunately, we have only a quali-

tative bound for the remainder term in (4.6).

Another interesting result which provides a lower bound for ϑn,k is

given by the following theorem.

Theorem 4.1 (Gatteschi [9]). Let tn,k ≡ tn,k(α, β) = jα,k/N ,

A = 1 − 4α2 and B = 1 − 4β2. Then

(4.7) ϑn,k ≥ tn,k − 1

16N 2

[
A

(
2

tn,k

− cot
tn,k

2

)
+ B tan

tn,k

2

]
,

for k = 1, 2, . . . , n. The equality sign in (4.1) holds if and only if α2 =

β2 = 1/4.
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In what follows we shall improve the result in (4.7) by constructing

an upper bound for ϑn,k. To this end, we need to recall another property

of the zeros jα,k and ϑn,k.

Lemma 4.1 ([2], Lemma 5.2). Let τn,k ≡ τn,k(α, β) be the root of

equation (4.1) in the interval (0, π/2). Then

jα,k

N

(
1 − 1

8N 2

)
< τn,k ≤ ϑn,k ;

that is, from (4.5), τn,k and ϑn,k belong the same interval

jα,k

N

(
1 − 1

8N 2

)
< ϑ ≤ jα,k

N
.

Let us know set ϑn,k = τn,k + ε, and put ϑ = ϑn,k in (4.2). Then we

have

(4.8)

εJ ′
α

[
f(ξ)

]
{

N +
1

16N

[
A

(
1

2 sin2 ξ/2
− 2

ξ2

)
+

B

2 cos2 ξ/2

]}
+

+ En(α, β)ϑ
1/2
n,kN−7/2 = 0

with τn,k < ξ < ϑn,k. It follows from Lemma 4.1 that 0 < ε < jα,k/(8N)3.

Since f(ϑ) and f ′(ϑ) are monotonically increasing functions in [0, π/2],

we have

jα,k = f(τn,k) < f(ξ) < f

(
τn,k +

jα,k

8N 3

)
≤ f(τn,k) +

jα,k

8N 3
f ′

(
π

2

)
≤

≤ jα,k +
jα,k

8N 2
+

jα,k

64N 4

(
1 − 4

π2

)
;

that is, if n ≥ 5

(4.9)

jα,k < f(ξ) < jα,k

(
1 +

γ1

8N 2

)
,

γ1 = 1 +
1

200

(
1 − 4

π2

)
= 1.002973576 .
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By using this inequality it can be proved that

(4.10)

∣∣∣J ′
α

[
f(ξ)

]∣∣∣ >

[
2

πf(ξ)

]1/2
[

sin

(
π

4
− γ1

80
π

)
−

− 4α2 + 3

8f(ξ)
cos

(
π

4
− γ1

80
π

)]
,

when τn,k < ξ < ϑn,k and n ≥ 5. The proof given in [2] is based on

the asymptotic representation of J ′
α(x) as x → ∞ and the well-known

inequalities (Watson [11], p. 490)

(4.11)
kπ − π

4
+

1

2
απ ≤ jα,k ≤ kπ − π

8
+

1

4
απ ,

k = 1, 2, . . . , −1/2 ≤ α ≤ 1/2 .

From (4.9) and (4.11) we have

[
f(ξ)

]−1/2
> j

−1/2
α,k

[
1 +

γ1

8N 2

]−1/2

≥ j
−1/2
α,k

[
1 +

γ1

200

]−1/2

,

4α2 + 3

8f(ξ)
<

4α2 + 3

8jα,k

≤ 1

π
,

respectively. Therefore, (4.10) gives

(4.12)
∣∣∣J ′

α

[
f(ξ)

]∣∣∣ >

(
2

πjα,k

)1/2

γ2 ,

where, for n ≥ 5 and −1/2 ≤ α ≤ 1/2,

(4.13)
γ2 =

[
sin

(
π

4
− γ1

80
π

)
− 1

π
cos

(
π

4
− γ1

80
π

)](
1 +

γ1

200

)−1/2

=

= 0.4438361509 .
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Since, according to Lemma 4.1, ϑn,k ≥ τn,k, from (4.8) and (4.12) we

get

0 ≤ ϑn,k − τn,k ≤
∣∣En(α, β)

∣∣ϑ1/2N−9/2

(
πjα,k

2

)1/2 1

γ2

≤

≤
∣∣En(α, β)

∣∣jα,kN
−5

(
π

2

)1/2 1

γ2

.

Observing that

[
1 +

1

32N 2

(
A

3
+ B

)]α

≤
[
1 +

1

24N 2

]−1/2

≤ γ3 ,

for n ≥ 5, where

γ3 =

[
1 +

1

600

]1/2

= 1.000832986 ,

and using (4.3) we obtain the preliminary result

(4.14) 0 ≤ ϑn,k − τn,k ≤ ε∗
k(α, β)N−5 ,

where

(4.15) 0 ≤ ε∗
k(α, β) ≤ γ3

γ2

jα,k(0.01852A + 0.30020B) .

To represent ϑn,k in terms of jα,k instead of τn,k, we write the equation

(4.1) in the form ϑ = h(ϑ), where

h(ϑ) =
jα,k

N
− 1

16N 2

[
A

(
2

ϑ
− cot

ϑ

2

)
+ B tan

ϑ

2

]
.

Then, for some ϑ̄ between τn,k and tn,k = jα,k/N ,

τn,k − h(tn,k)h(τn,k) − h(tn,k) = (τn,k − tn,k)h
′(ϑ̄) =

= (tn,k − τn,k)
1

16N 2

[
A

2

(
1

sin2 ϑ̄/2
− 4

ϑ̄2

)
+

B

2 cos2 ϑ̄/2

]
.
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Replacing ϑ̄ by π/2 and observing that from Lemma 4.1

0 < tn,k − τn,k ≤ jα,k

8N 3
,

we obtain

0 < τn,k − h(tn,k) ≤ jα,k

128N 5

[
A

(
1 − 8

π2

)
+ B

]
.

This, together with (4.14) gives

ϑn,k − h(tn,k) ≤ jα,k

128N 5

[
A

(
1 − 8

π2

)
+ B

]
+ ε∗

k(α, β)N−5 .

We can now state the main result of this section.

Theorem 4.2. Let −1/2 ≤ α, β ≤ 1/2 and

tn,k ≡ tn,k(α, β) =
jα,k

N
, k = 1, 2, . . . .

Then, for the zeros ϑn,k(α, β) of P (α,β)
n (cos ϑ) lying in 0 ≤ ϑ ≤ π/2,

we have

(4.16)
ϑn,k(α, β) = tn,k − 1

16N 2

[
A

(
2

tn,k

− cot
tn,k

2

)
+ B tan

tn,k

2

]
+

+ εk(α, β)N−5 ,

where, if n ≥ 5,

(4.17) 0 ≤ εk(α, β) ≤ jα,k(0.04325A + 0.68476B) .

The equality sign in (4.17) holds if and only if α2 = β2 = 1/4.

The new upper bound for εk(α, β) in (4.17) gives very sharp numerical

results, not only for the early zeros of P (α,β)
n (cos ϑ) but also for the zeros

which are close to π/2. For such zeros, jn,k = O(n) so that the order of

the error term in (4.16) reduces to O(N−4).
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In Table 1 the exact values of the zeros ϑ16,k(−0.3, 0.4), k=1, 2, .., 16,

are compared with the upper and lower bounds given by (4.16). Here

use has also been made of (4.16) and the relationship ϑn,k(α, β) = π −
ϑn,n−k+1(β, α), k = 1, . . . , n, for k = 1, 2, . . . , 8 and for k = 9, 10, . . . , 16,

respectively.

Table 1 - Zeros of P
(−3,4)
16 (cos ϑ).

k Lower bound Exact value Upper bound

1 0.11617 69267 0.11617 69304 0.11617 73512

2 0.30464 01213 0.30464 01313 0.30464 12346

3 0.49409 72063 0.49409 72230 0.49409 90119

4 0.68374 70451 0.68374 70697 0.68374 95437

5 0.87346 55846 0.87346 56186 0.87346 87765

6 1.06321 57903 1.06321 58363 1.06321 96756

7 1.25298 25976 1.25298 26596 1.25298 71764

8 1.44275 84925 1.44275 85770 1.44276 37648

9 1.63253 01351 1.63253 91044 1.63253 92644

10 1.82231 30753 1.82232 09419 1.82232 10565

11 2.01209 41687 2.01210 09182 2.01210 10017

12 2.20186 93091 2.20187 49329 2.20187 49940

13 2.39163 15263 2.39163 60190 2.39163 60632

14 2.58136 56569 2.58136 90154 2.58136 90460

15 2.77102 76755 2.77102 98980 2.77102 99172

16 2.96040 79612 2.96040 90481 2.96040 90573

In the ultraspherical case α = β, Theorem 4.2 gives:

Corollary 4.1. Let −1/2 ≤ α ≤ 1/2 and let ϑn,k(α) be the k-th

zero of the ultraspherical polynomial P (α,α)
n (cos ϑ). We have

(4.18)
ϑn,k(α) =

jα,k

N
− 1 − 4α2

8N 2

(
N

jα,k

− cot
jα,k

N

)
+ εk(α)N−5 ,

k = 1, 2, . . . , [n/2] , N = n + α + 1/2 ,



[21] New error bounds for asymptotic approximations etc. 197

with

0 ≤ εk(α) ≤ (1 − 4α2)jα,k0.72801 , n ≥ 5 .

Here the equality sign holds if and only if α = ±1/2.

The upper bound for ϑn,k in (4.16), or in (4.18), is better than the one

in (4.4) when k and n increase simultaneously. This is shown in Table 2

where the two upper bounds are compared. The asterisks indicate the

cases where the upper bound in (4.4) is better than the one in (4.18).

Table 2 - Zeros of P
(25,25)
20 (cos ϑ).

k Lower bound Exact value Upper bound (4.18) Upper bound (4.4)

1 0.13400 89468 0.13400 89507 0.13400 93415 0.13400 89595∗

2 0.28461 26121 0.28461 26205 0.28461 34504 0.28461 27268∗

3 0.43574 54896 0.43574 55029 0.43574 67731 0.43574 59009∗

4 0.58700 89836 0.58700 90022 0.58701 07127 0.58701 00005∗

5 0.73832 36227 0.73832 36474 0.73832 57974 0.73832 56834∗

6 0.88966 31702 0.88966 32021 0.88966 57907 0.88966 68643

7 1.04101 63911 1.04101 64317 1.04101 94574 1.04102 24916

8 1.19237 75791 1.19237 76307 1.19238 10913 1.19238 70890

9 1.34374 34164 1.34374 34822 1.34374 73744 1.34375 76359

10 1.49511 17040 1.49511 17890 1.49511 61079 1.49513 23302

It may be useful to notice that if tn,k = jα,k/N and k is fixed, then

as n → ∞

2

tn,k

− cot
tn,k

2
=

jα,k

6N
+ O(n−3) , tan

tn,k

2
=

jα,k

2N
+ O(n−3) .

Hence (4.16) becomes

ϑn,k(α, β) =
jα,k

N
− jα,k

24N 3
(1 − α2 − 3β2) + O(n−5) ,

which can be written

(4.19) ϑn,k(α, β) = jα,k

(
N 2 +

1 − α2 − 3β2

12

)−1/2

+ O(n−5) .
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It follows that (4.16) and the upper bound in (4.4), used as an ap-

proximation formula, are in fact asymptotically equivalent if k remains

fixed as n → ∞.
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