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Special solutions in a generalized theory of nematics
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Riassunto: Usando un modello di cristallo liquido nematico che generalizza quello
di Ericksen e permette stati biassiali, trattiamo due semplici problemi per una cella ne-
matica tra due piani paralleli in condizioni di ancoraggio forte alla frontiera. Facciamo
vedere che, mentre i modelli di Frank ed Ericksen conducono a prevedere una transi-
zione del primo ordine tra due tipi di soluzione quando l’angolo di ancoraggio varia, la
transizione è del secondo ordine nel nuovo modello, ancorché la soluzione di transizione
sia ora del tipo a scaglione.

Abstract: Using a model of a nematic liquid crystal which extends Ericksen’s
and allows for biaxiality, we solve two simple problems for a slab of a nematic with
strong anchoring conditions on the boundary planes. We show that, as the anchoring
angle changes, a first-order transition between two solution types would be predicted
on the basis of the Frank’s and Ericksen’s models, whereas, when biaxiality is allowed,
the transition predicted is second-order, but with a non-smooth transition mode of the
chevron type.
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1 – Introduction

In three recent papers [1 – 3] we have considered a model of a ne-

matic liquid crystal, which allows for optic biaxiality. Briefly, the model

arises as follows: the single molecule of the nematic is imagined as a thin

stick with the direction of a unit vector n: a ‘material element’ (in the

macroscopic understanding of the term) is supposed to contain very many

molecules. The macroscopic model should deal with fields (of directions

in the present instance) with a value at point x which is in some sense

the mesoscopic average, over the ‘element around x’, of the microscopic

values on the molecules.

When, as in the present instance, the order parameter takes values

on a manifold which is not a linear space, the most elementary way to

secure averages is to seek first an embedding of the manifold (here of

dimension 2) in a linear space of higher dimension (here of dimension

5). The existence of such an embedding is assured in general by Withney

theorem; notice, however, that the embedding need not to be unique, and

so may even appear to be an artificial, if convenient, tool. Nevertheless,

in our case the following embedding seems very natural.

The direction of n is in one-to-one correspondence with the tensor

n⊗n, or with the tensor N := n⊗n− 1

3
I (I, identity tensor) belonging to

the algebraic manifold N of symmetric tensors with principal invariants

having respectively the values 0, −1

3
, and

2

27
. The latter tensor can be

accepted as the value at each molecule in lieu of n and, as N is a subset

of the linear space Sym0 with dimension 5 of the symmetric traceless

tensors, averages can be taken in that space for each element x without

hindrance and each average Q(x) will also belong to Sym0 although, of

course, not necessarily to N . Precisely, these values will belong to the

convex hull Q of the set N ; second and third invariant of Q (or those

of M := Q +
1

3
I) give additional useful information on the distribution

of n within the element and in particular on the possible emergence of

optic biaxiality, though, as we have shown in [3], optic biaxiality does

not correspond exactly to lack of rotational symmetry of the ellipsoid

generated by the tensor M. Thus, strictly, the adjectives uniaxial or

triaxial are meant below with reference to properties of that ellipsoid,

even when degenerate.
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Because of the importance in our developments of the tensor M and

also to fall in line with earlier notation, we refer often below to the man-

ifold M

(1.1) M :=

{
M

∣∣∣∣ M = Q +
1

3
I, Q ∈ Q

}
.

In papers [1] and [2] we have considered situations which might be

reproduced in careful experiments with nematic cells, so as to test the ap-

propriateness of the model. But knowledge of other simple mathematical

consequences might also contribute to its assessment. Some immediate

corollaries, valid for homogeneous fields, were already drawn in [3]. Here

we continue the exploration and imagine converse cases, where the effects

of direction gradients prevail (i.e. the characteristic length associated to

the internal potential is very large); we show that, within a significant

class of problems, bend, splay, and twist in the field of principal directions

inevitably entail triaxiality of M.

2 – General remarks

We have introduced already elsewhere two parameters, convenient in

the process of singling out a member M of M: the degree of prolation s,

and of triaxiality β:

(2.1)

s :=
1

2

[
3∏

i=1

(
3λi − 1

)
]1/3

,

β :=

[
6
√

3
3∏

i=1

∣∣λi − λi+1

∣∣
]1/3

,

where λi (i=1,2,3) are the eigenvalues of M and indices are modulo 3.

Note that s and β are symmetric functions of the eigenvalues of M, so

that any internal potential for the nematic can be written in terms of

them.

Any member of M is completely identified when s and β are assigned

together with at most two orthogonal directions. When M is such that

β > 0 (and thus the three eigenvalues are distinct), the directions need be
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exactly two: for instance, those of the eigenvectors associated respectively

with the largest and the smallest eigenvalue of M. When β = 0, but s += 0,

the direction that needs be assigned is only one: when s > 0 (s < 0) it

could be that of the eigenvector associated with the largest (smallest)

eigenvalue. No preferred direction exists when β and s vanish together.

Thus M is the union of three disjoint manifolds M(i) (i = 1, 2, 3),

the last one a singleton; their topological properties are of the essence to

decide on the possible existence of defects, where the liquid crystal may

‘melt’ partially or totally.

We recall that, in general, whereas s may take any value in [−1

2
, 1]

and β any value in [0, 1], not all the couples (s, β) in the rectangle

[−1

2
, 1] × [0, 1] are accesible, but only those which satisfy the inequality

(2.2) β6 ≤ 16

27

(
s3 − 1

)2 (
8s3 + 1

)
.

For elements of M(1), the value of β is greater than zero; for elements of

M(2), β = 0 but s += 0; for the singleton M(3) both s and β vanish.

We leave a general study of M for a later paper but, to appreciate

at least some relevant aspects of the matter, we consider in this paper

the submanifold Cc of tensors M for which one of the principal directions

is assigned (as the direction of a unit vector c). To describe a member

of the class Cc, knowledge of the parameters s and β is insufficient, of

course: Cc itself is not orthogonally invariant.

In an orthogonal reference with the third axis parallel to c, any mem-

ber M of Cc takes the form

(2.3) M =




α1 α2 0

α2 1 − α1 − λc 0

0 0 λc


 ,

where λc is the eigenvalue which corresponds to the eigenvector c, whereas

α1, α2 are related with the other two eigenvalues λ+, λ− by

(2.4) λ± =
1

2

(
1 − λc ± ζ

)
,

where

(2.5) ζ :=
(
4α2

2 +
(
λc − 1 + 2α1)

2
)1/2

,
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and to the parameters β and s by

(2.6)
β =

[
3
√

3

2
ζ

∣∣(3λc − 1)2 − ζ2
∣∣
]1/3

,

s =
1

2

[(
3λc − 1

) (
(3λc − 1)2 − 9ζ2

)]1/3
.

The angle ψ between the first reference axis and the eigenvector which

corresponds to λ+ satisfies the relations

(2.7) sin 2ψ =
2α2

ζ
, cos 2ψ =

2α1 − 1 + λc

ζ
,

provided that ζ += 0. 2ψ is thus determined mod 2π and ψ is determined

mod π; this is exactly what is required from a physical point of view,

because the orientation is irrelevant. When ζ = 0, the eigenvalues λ+ and

λ− coincide; the second principal direction is arbitrary among directions

orthogonal to c.

Each tensor M can be represented by a point in lR3, using α1, α2,

and λc as coordinates; then the image of Cc is a full cone (see [1]). The

vertex has coordinates (0,0,1); the base belongs to the plane λc = 0 and

is a disk of radius
1

2
and centre at the point (

1

2
, 0, 0). For values of α1,

α2, λc which are coordinates of points in the boundary of the cone, the

ellipsoid connected with M reduces to an ellipse or, in the extreme, to

a segment at the vertex. Uniaxial states belong to the lateral surface S
of a double cone (with vertex in (

1

3
, 0,

1

3
)), embellished with the axis of

the cone. Another double cone, again with vertex in (
1

3
, 0,

1

3
) but smaller

aperture, plus the disk at λc =
1

3
, separate points which represent prolate

and oblate ellipsoids.

Frank’s model considers only cases of perfect local ordering, when

β = 0 and s = 1; then M either coincides trivially with c ⊗ c (the vertex

of our cone) or with d ⊗ d, where d is any unit vector orthogonal to c

(and the corresponding states fall on the base circle of the cone).
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3 – Fields with values within the class Cc

For the density σ of the elastic energy of orientation, the simplest

expression K‖∆M‖2 (K, a positive constant) will be accepted, although,

within Frank’s model, also the fuller expression with three constants will

be considered:

(3.1) σ = K1

(
div d

)2
+ K2

(
d · rot d

)2
+ K3

(
d × rot d

)2
.

As announced in the introduction, terms not involving derivatives of M

(σ in the notation of [3]) will be disregarded. We will be concerned with

static fields of M with values in Cc and depending on one space variable

z only. The ‘nematic cell’ considered is a slab within which z takes values

in the interval [0, δ] (δ > 0).

As can be checked easily, the density of elastic energy reduces to

(3.2) σ =
K

2

(
3λ′2

c + ζ ′2 + 4ζ2ψ′2) ,

where a prime denotes derivation with respect to the space variable.

For the uniaxial model, when d is in the plane orthogonal to c, there

is a further simplification

(3.3) σuni = 2K

(
1

3
ζ ′2 + ζ2ψ′2

)

and ζ coincides with Ericksen’s degree of orientation.

For Frank’s model, ζ2 = 1 and

(3.4) σ
F

= 2Kψ′2

or, more completely, with three constants, in Problem 1 (see below: bend

and splay of the orientation field)

(3.5) σ
F1

= 2
(
K1 cos2 ψ + K3 sin2 ψ

)
ψ′2

and, in Problem 2 (twist),

(3.6) σ
F2

= 2K2ψ
′2.
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In all cases the solution is sought as the field that satisfies certain

boundary conditions and minimizes the functional

(3.7) F :=

∫ δ

0

σ dz,

which measures the energy stored in a cell of unit cross-section within

the slab.

Strong anchoring conditions are presumed to prevail at the boundary.

Also, to allow direct comparison of results obtained within different mod-

els (Frank’s, uniaxial and fully biaxial), the anchoring will be assumed

perfect, i.e.

(3.8) β(0) = β(δ) = 0; s(0) = s(δ) = 1.

In the whole slab, ψ is measured from the direction of an axis of ref-

erence in the plates, say the x-axes, and is counted positive anticlockwise.

On each plate, its absolute value is equal to ψ. Thus, ψ = ψ (and, for

convenience, 0 ≤ ψ ≤ π

2
) at z = 0 and ψ = −ψ (mod π) at z = δ.

More precisely, in Problem 1 the imposed direction at each plate is

supposed to lie in the plane (x, z), while in Problem 2 the direction is

supposed to be in the plane of the plate.

4 – Problem 1: splay and bend

We accept without direct proof that the boundary conditions imply

the property that the minimizer of F belongs to the class Cey . From the

anchoring conditions follows also that λc vanishes and ζ = 1 for z = 0,

z = δ; finally, ψ = ψ for z = 0, whereas ψ must differ from −ψ by a

multiple of π for z = δ: we will consider as relevant only the two choices

ψ = −ψ or ψ = π − ψ (and recall that ψ falls in the interval [0,
π

2
]).

Problem 1a: Frank’s model

λc and ζ are constant in the whole cell. From the expression (3.5) of

the energy density the following Euler equation ensues

(4.1)
(
K1 cos2 ψ + K3 sin2 ψ

)
ψ′′ = (K3 − K1) sinψ cos ψ ψ′2.
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This equation has two distinct solutions, depending on the condition that

we impose on the upper plate (either ψ = −ψ, or ψ = π − ψ); they are:

(4.2)

ψs(z) = E
(

E
(
ψ, ξ

) (
1 − 2z

δ

)
, ξ

)
,

ψb(z) = E
(

2z

δ
E(ξ) + E

(
ψ, ξ

) (
1 − 2z

δ

)
, ξ

)
.

Here

(4.3) ξ :=
K3 − K1

K1

,

whereas

(4.4) E(ϑ, ξ) :=

∫ ϑ

0

√
1 + ξ sin2 ϕ dϕ

is the elliptic integral of the second kind; E(ξ) := E(
π

2
, ξ) is the complete

elliptic integral of the second kind, and E(ϕ, ξ) is the inverse function of

E(ϑ, ξ) with respect to its first argument.

The values of the energy relative to the two solutions are respectively

(4.5)
F [ψs] =

8K1

δ
E(ψ, ξ)2, and

F [ψb] =
8K1

δ

(
E(ξ) − E(ψ, ξ)

)2

.

Notice that both solutions exist for every value of ψ ∈ (0,
π

2
), but the

first one is the absolute minimizer if

(4.6) ψ ≤ ψcr(ξ) := E
(

E(ξ)

2
, ξ

)
,

whereas the second one is the minimizer for ψ above ψcr(ξ). If ψ = ψcr(ξ)

the two solutions are distinct but lead to the same energy. Thus, when

ψ increases from 0 to
π

2
a first order transtion is encountered from a

splay-type to a bend-type solution.
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Figure 1

Figure 1 shows the dependence of ψcr(ξ) on ξ: the values are always

between
π

6
and

π

3
; ψcr becomes equal to

π

4
when K1 = K3 = K.

Figures 2 and 3 show one field line of ψs and ψb respectively for each

different choice of ψ when K1 = K3: the bold line represents the critical

solution obtained for ψ =
π

4
.

To allow an easy comparison of the results just obtained we note

that, when K1 = K3, the energy associated with the solutions becomes

simply

(4.7)

F [ψs] =
8K1

δ
ψ

2
, and

F [ψb] =
8K1

δ

(
π

2
− ψ

)2

.
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Figure 2

Figure 3
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Problem 1b: Ericksen’s model

In the uniaxial case, the situation becomes slightly different: the

Euler equations following from the choice (3.3) of the energy density can

be integrated once and put in the form

(4.8)





ζ2ψ′ = const.

ζ ′2

3
+ ζ2 ψ′2 = const.

There are still two solutions of these equations, but they do not both

exist for every value of ψ:

(4.9)





ψs(z) =
1√
3

arctg

[
tg

(√
3 ψ

) (
1 − 2z

δ

)]
,

ζs(z) =

√
cos2

(√
3 ψ

)
+ sin2

(√
3 ψ

) (
1 − 2z

δ

)2

,

if ψ ∈
[
0,

π

2
√

3

)
, and

(4.10)





ψs(z) =

{
ψ if 0 ≤ z < δ/2,

−ψ if δ/2 < z ≤ δ,

ζs(z) =

∣∣∣∣1 − 2z

δ

∣∣∣∣ ,

in the singular case ψ =
π

2
√

3
, are the splay-type solutions;

(4.11)





ψb(z) =
π

2
− 1√

3
arctg

[
tg

(√
3

(
π

2
− ψ

)) (
1 − 2z

δ

)]
,

ζb(z) =

√

cos2

(√
3

(
π

2
− ψ

))
+sin2

(√
3

(
π

2
− ψ

))(
1 − 2z

δ

)2

,

if ψ ∈
(

π

2

√
3 − 1√

3
,
π

2

]
, and

(4.12)





ψb(z) =

{
ψ if 0 ≤ z < δ/2,

π − ψ if δ/2 < z ≤ δ,

ζb(z) =

∣∣∣∣1 − 2z

δ

∣∣∣∣ ,



302 G. CAPRIZ – P. BISCARI [12]

in the singular case ψ =
π

2

√
3 − 1√

3
, are the bend-type solutions.

The values of the energy are, respectively,

(4.13) F [ψs, ζs] =
8K

3δ
sin2

(√
3 ψ

)
,

and

(4.14) F [ψb, ζb] =
8K

3δ
sin2

(√
3

(
π

2
− ψ

))
:

both values are lower than the energies corresponding to Frank’s solutions

in the appropriate ranges.

The first solution is the absolute minimizer of ψ ∈ [0,
π

4
]; it is a rel-

ative minimum if ψ ∈ (
π

4
,

π

2
√

3
), becomes singular when ψ =

π

2
√

3
and

does not exist for ψ >
π

2
√

3
. Figure 4 illustrates some of the splay so-

lutions obtained with different values of ψ; the bold lines correspond to

the critical value ψ =
π

4
. The direction of the lines is determined by

ψ(z), while their lenght is proportional to ζ(z). Sets of lines at the left of

the bold set correspond to absolute minimizers, while those at the right

(obtained with greater vaules of ψ) correspond to extremals.

The second solution is the absolute minimizer of ψ ∈ [
π

4
,
π

2
], a rel-

ative minimum if ψ ∈ (
π

2

√
3 − 1√

3
,
π

4
); it is singular when ψ =

π

2

√
3 − 1√

3

and does not exist for ψ <
π

2

√
3 − 1√

3
. Figure 5 shows some of the bend

solutions obtained with different values of ψ; the meaning of the set of

bold lines, as well as the direction and the length of the lines are the same

as in figure 4. Absolute minimizers are now at the right of the critical

solution.

Note that, although singular relative minimizers exist, the absolute

minimizer is always smooth. Furthermore, a first order transition from

splay-type to bend-type minimizers occurs again.
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Figure 4

Figure 5
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Problem 1c: Biaxial model

The Euler equations ensuing from the choice (3.2) of the energy den-

sity can be written:

(4.15)





λ′
c = const.

3λ′2
c + ζ ′2 + 4ζ2ψ′2 = const.

ζ2ψ′ = const.

They can be integrated and admit only one solution for each choice of ψ:

(4.16)





ψ(z) =
1

2
arctg

[
tg 2ψ

(
1 − 2z

δ

)]
,

ζ(z) =

√

cos2 2ψ + sin2 2ψ

(
1 − 2z

δ

)2

,

λc(z) = 0,

if ψ ∈
[
0,

π

4

)
;

(4.17)





ψ(z) =

{
ψ if 0 ≤ z < δ/2,

−ψ if δ/2 < z ≤ δ,

ζ(z) =

∣∣∣∣1 − 2z

δ

∣∣∣∣ ,

λc = 0,

if ψ =
π

4
; and

(4.18)





ψ(z) =
π

2
− 1

2
arctg

[
tg

(
π − 2ψ

) (
1 − 2z

δ

)]
,

ζ(z) =

√

cos2
(
π − 2ψ

)
+ sin2 (

π − 2ψ
) (

1 − 2z

δ

)2

,

λc(z) = 0,

if ψ ∈
(

π

4
,
π

2

]
.



[15] Special solutions in a generalized theory of nematics 305

The transition from one type of solution to the other is now contin-

uous, and the absolute minimizer becomes singular when ψ =
π

4
. Figure

6 shows the behaviour of the biaxial minimizers: when ψ =
π

4
a sudden

jump in ψ happens at z = δ/2, where ζ is zero.

Figure 6

The values of the energy at these solutions are even lower:

(4.19) F [ψ, ζ, λc] =





2K

δ
sin2 2ψ, if ψ ∈

[
0,

π

4

]
,

2K

δ
sin2 (

π − 2ψ
)
, if ψ ∈

[
π

4
,
π

2

]
.

Thus, if biaxiality is allowed, it will prevail within the slab, except at

the boundary (where uniaxiality is arbitrarily imposed), and at z = δ/2

in the singular case ψ =
π

4
, when the nematic ‘melts’ with an uniaxial

defect in a biaxial field.
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5 – Problem 2: twist

The preceding analytical results can be very easily reinterpreted to

describe the biaxiality arising in a case of pure twist. It is only necessary

to think of the class Cez and of ψ as an angle in the (x, y)-plane. No other

change is necessary and we leave to the reader to adapt the statements

so that they apply to the new situation. Notice in particular that the

transitions lead now from an anticlockwise to a clockwise twist.

6 – Conclusions

Within the Frank’s or the uniaxial models two extremals exist; the

one which is the absolute minimizer is always smooth; a first order tran-

sition occurs at a critical value of the angle imposed at the boundary.

Within the model that allows biaxiality the solution of the Euler

equation is unique, gives F the minimum value and is smooth with one

exception corresponding to the value
π

4
of the angle ψ (when the solution

is of chevron type and the jump in orientation from one plate to the other

is exactly
π

2
), where a second order transition between the two solutions

occurs.

These results are partially at variance with some obtained by Am-

brosio and Virga in [5]. They have studied the functional

(6.1) Fk :=

∫ δ

0

(
k ζ ′2 + ζ2 ψ′2) , k > 0,

which reduces to the one examined here in the uniaxial case if k =
1

3
.

They have sought minimizers ψ(z), as uniquely determined mod 2π

(rather than mod π, as we have done here). This choice explains the

differences in results, in particular as to the existence (excluded here) of

singular minimizers.
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