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Behavior of Lagrange interpolants to the

absolute value function in equally spaced points

X. LI – E.B. SAFF

Dedicated to Aldo Ghizzetti

Riassunto: Viene trovato il limite “star” debole della successione delle misure
“counting” normalizzate degli zeri delle interpolanti di Lagrange, associate a nodi equi-
distanti in [−1, 1] e relativi alla funzione fs(x) = |x − s|, con s ∈ (−1, 1). Questo
risultato viene poi utilizzato per stabilire la regione esatta, in cui le interpolanti di
Lagrange convergono geometricamente.

Abstract: We find the weak star limit of the sequence of normalized counting
measures of the zeros of the Lagrange interpolants to fs(x) = |x − s|(−1 < s < 1)
associated with equidistant nodes on [−1, 1]. We use this to establish the exact region
in which the Lagrange interpolants converges geometrically.

1 – Introduction and statements of main results

For a function f defined on [−1, 1], let Ln(f ; ·) denote the Lagrange
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interpolating polynomial of degree at most n to f at the equidistant nodes

x
(n)
k := −1 + 2k/n, k = 0, 1, ..., n.

Bernstein proved that (cf. [8]) for f(x) = |x|, the sequence Ln(|t|;x)

diverges if 0 < |x| < 1. Recently, Byrne, Mills and Smith [9] consid-

ered the rate of this divergent sequence. They proved, if 0 < |x| < 1,

then

lim sup
n→∞

|Ln(|t|; x) − |x||1/n = (1 + x)(1+x)/2(1 − x)(1−x)/2.

Li and Mohapatra [6] further improved this result by showing that

(1) lim
n→∞

∣∣∣∣
Ln(|t|; x) − |x|

wn(x)

∣∣∣∣
1/n

= e,

for all x ∈ R (the set of real numbers), where wn(x) :=
∏n

k=0(x − x
(n)
k ).

In contrast to the above results, under the assumption that f is

bounded on [−1, 1] and analytic at x = 0, the authors proved in [7] that

the sequence Ln(f ;x) converges to f geometrically in a neighborhood (in

the complex plane) of x = 0. This leads to the question of finding the

exact region where Ln(f ; ·) converges to f . Although the answer in the

general situation is still unknown, we try in this note to gain some insight

by considering the special but interesting case when

f(x) = fs(x) := |x − s| (−1 < s < 1).

We determine the exact region in which Ln(fs; ·) converges to (an analytic

continuation of) fs geometrically. This is done by studying the zero

distribution of Ln(fs; ·), which is equivalent to the nth root asymptotics

of Ln(fs; z) in C. Furthermore, we will show that (1) has an extension

to all z in the complex plane C.

To state our results, we first introduce some notation. The potential

corresponding to the uniform distribution 1
2
dt on [−1, 1] is given by

U(z) :=
1

2

∫ 1

−1

log |z − t| dt.
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The level curves of U(z) are denoted by Γs := {z ∈ C : U(z) = U(s)},

s ∈ R. Let

Ωs := [−1,−s] ∪ Γs ∪ [s, 1] for |s| < 1.

Let νn(t) be the normalized counting measure of the zeros of Ln(fs; ·),
i.e., ∫

B

dνn(t) =
the number of the zeros of Ln(fs; z) in B

n
,

for every Borel set B ⊆ C. For a compact set S ⊆ C, we will use

Ext(S) and Int(S) to denote the unbounded and the (union of) bounded

components of C \ S, respectively, where C = C ∪ {∞}. We need one

more concept from potential theory. A measure bs supported on Ωs is

called a balayage of the uniform distribution 1
2
dt on [−1, 1] to Ωs if

∫

Ωs

log |z − t|dbs(t) = U(z) for all z ∈ Ext(Ωs).

On using the fact that Γs is regular with respect to the Dirichlet problem

for Int(Γs), one can show that at least one such balayage bs exists (cf.

[5, §4.2]), and since U(z) is continuous in C, such a measure bs must be

unique ([5, Theorem 4.6, Corollary 2]).

We now state our results. Their proofs are given in Section 3.

Theorem 1. The sequence of the normalized counting measures {νn}
of the zeros of Ln(fs; ·) converges, in the weak star topology, to the bal-

ayage bs of 1
2
dt on [−1, 1] to Ωs, as n → ∞ through a subsequence Λ of

positive integers.

Remark 1. Our proof shows that, in Theorem 1, Λ can be any

sequence for which

(2) lim
n→∞
n∈Λ

|an|1/n = e−U(s),

where an denotes the leading coefficient of Ln(fs; ·).
Remark 2. It can be shown (by using Khinchine’s theorem [10] in

Lemma 3 below) that for almost all s ∈ (−1, 1),

lim
n→∞

|an|1/n = e−U(s).
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So, by Remark 1, the whole sequence {νn}∞
n=1 converges to bs for almost

all s.

Theorem 2. For s ∈ (−1, 1), we have

(3) lim sup
n→∞

|Ln(fs; z)|1/n = eU(z)−U(s)

quasi-everywhere in Ext(Ωs) and

(4) lim
n→∞

Ln(fs; z) = (s − z) sgn(s)

geometrically for every z ∈ Int(Γs).

Here we use “quasi-everywhere” to mean that the property holds

except on a set having logarithmic capacity zero.

Remark 3. Note that U(z) > U(s) for z ∈ Ext(Ωs), so (3) implies

that for quasi-every z ∈ Ext(Ωs) a subsequence of Ln(fs; z) tends to ∞
geometrically. It is also possible to show that (3) holds for almost all

z ∈ Ext(Γs) \ {−1, 1} and s ∈ (−1, 1).

Remark 4. Using Remarks 1 and 2, it can be shown that for almost

all s, lim sup can be replaced by lim in (3).

Remark 5. The relation (4) also follows from the general theorem

proved in [7].

Theorem 3. For all z ∈ C, there holds

(5) lim
n→∞

∣∣∣∣
Ln(|t|; z) − |z|

wn(z)

∣∣∣∣
1/n

= e.

Readers familiar with the subject of asymptotic zero distributions of

best polynomial approximants (cf. [2], [3], [11]) will recognize that the

above results and their proofs have a flavor similar to those for the best

polynomial approximants. However, our proofs are a bit more involved

because in the present situation, unlike the case for best polynomial ap-

proximations, the limit measure bs is not the equilibrium measure on its

support.
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2 – Lemmas

Define

φs(x) :=

{
x − s, s ≤ x ≤ 1,

0, −1 ≤ x ≤ s.

Then, if x < s,
Ln(fs;x) − |x − s|

2
= Ln(φs;x).

By Newton’s formula (cf. [8, p.14]),

Ln(φs;x) =
n∑

k=0

∆k
nφs(−1)

k!

(
n

2

)k

(x + 1) · · · (x + 1 − 2(k − 1)

n
),

where

∆k
nφs(−1) =

k∑

r=0

(−1)k−r

(
k

r

)
φs(−1 +

2r

n
), k = 0, 1, ..., n.

Set k(s) := max{k : x
(n)
k ≤ s}. Then k(s) = [n(s + 1)/2] and x

(n)
k(s) is the

closest node to the left of s (or equal to s).

Lemma 1. (i) If 0 ≤ k ≤ k(s), then ∆k
nφs(−1) = 0.

(ii) If k(s) + 1 ≤ k ≤ n, then

∆k
nφs(−1) =

(−1)k−k(s)(k − 2)!

(k − k(s) − 1)!k(s)!

2

n

{
n(s + 1)

2
(k − 1) −

[
n(s + 1)

2

]
k

}
.

Proof. Assertion (i) is obvious. To prove (ii), we need the following

two formulae [4]:

(6)
m∑

k=0

(−1)k

(
n

k

)
= (−1)m

(
n − 1

m

)
(n ≥ 1)

and

(7)
m∑

k=0

(−1)k

(
n

k

)
k = (−1)mn

(
n − 2

m − 1

)
(n ≥ 2).
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Now

∆k
nφs(−1) =

k∑

r=k(s)+1

(−1)k−r

(
k

r

)
φs(−1 +

2r

n
) =

=
k∑

r=k(s)+1

(−1)k−r

(
k

r

)
(−s − 1 +

2r

n
) =

=
k−k(s)−1∑

l=0

(−1)l

(
k

l

)
(−s − 1 +

2(k − l)

n
) =

= (−s − 1 +
2k

n
)

k−k(s)−1∑

l=0

(−1)l

(
k

l

)
− 2

n

k−k(s)−1∑

l=0

(−1)l

(
k

l

)
l =

= (−s − 1 +
2k

n
)(−1)k−k(s)−1

(
k − 1

k − k(s) − 1

)
+

− 2

n
(−1)k−k(s)−1k

(
k − 2

k − k(s) − 2

)
=

=
(−1)k−k(s)−1(k−2)!

(k−k(s) −1)!k(s)!

{
(−s−1+

2k

n
)(k−1)− 2

n
k(k−k(s)−1)

}
=

=
(−1)k−k(s)(k − 2)!

(k − k(s) − 1)!k(s)!

2

n

{
n(s + 1)

2
(k − 1) −

[
n(s + 1)

2

]
k

}
.

This concludes the proof of Lemma 1.

Set

d
(n)
k (s) :=

n(s + 1)

2
(k − 1) −

[
n(s + 1)

2

]
k

for k = k(s) + 1, ..., n. Then we have the following simple lemma.



[7] Behavior of Lagrange interpolants to the etc. 315

Lemma 2. For s ∈ (−1, 1) and n ≥ 2, the coefficient of xn in

Ln(fs;x) is

an :=
2(−1)n−k(s)

(n − 1)n!

(
n

2

)n−1 (
n − 1

k(s)

)
d(n)

n (s).

Proof. Note that

an = 2 × (the coefficient of xn in Ln(φs;x))

when n ≥ 2, and

the coefficient of xn in Ln(φs;x) =
∆n

nφs(−1)

n!

(
n

2

)n

.

We can now apply Lemma 1 (ii) to establish this lemma.

Lemma 3. For s ∈ (−1, 1), we have

lim sup
n→∞

|d(n)
n (s)|1/n = 1.

Proof. Since

|d(n)
n (s)| =

∣∣∣∣
n(s + 1)

2
(n − 1) −

[
n(s + 1)

2

]
n

∣∣∣∣ ≤ n2(|s| + 1) ≤ 2n2,

we have

lim sup
n→∞

|d(n)
n (s)|1/n ≤ 1.

Write

d(n)
n (s) = n(n − 1)

{
s + 1

2
− 1

n − 1

[
n(s + 1)

2

]}
=: n(n − 1)In(s).

Then, to prove the lemma, it suffices to show

(8) lim sup
n→∞

|In(s)|1/n ≥ 1
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for all s ∈ (−1, 1). Assume, to the contrary, (8) is not true for some

s ∈ (−1, 1). Then, there exist r ∈ (0, 1) and N > 0 such that

(9) |In(s)| < rn

for all n ≥ N . Consequently,

(10) |In(s) − In+1(s)| < 2rn

for n ≥ N . But, with t = (s + 1)/2 ∈ (0, 1),

n(n − 1)|In(s) − In+1(s)| = n(n − 1)

∣∣∣∣
[(n + 1)t]

n
− [nt]n − 1

∣∣∣∣ =

= |(n − 1)[(n + 1)t] − n[nt]|.

If there are infinitely many n such that

(11) (n − 1)[(n + 1)t] − n[nt] += 0,

then for those n, n(n − 1)|In(s) − In+1(s)| ≥ 1. So lim supn→∞ |In(s) −
In+1(s)|1/n ≥ 1, contradicting (10). Hence there are only finitely many

n such that (11) holds. Therefore, there is a constant M > 0 such that

(n − 1)[(n + 1)t] = n[nt] for all n ≥ M . Then In(s) = In+1(s) for n ≥ M .

This, together with (9), tells us that In(s) = 0 for n ≥ M . That is,

t =
[nt]

n − 1

for all n ≥ M , which implies that (n − 1)t is an integer for every n ≥ M .

This can happen only if t = 0 or t = 1, which is impossible. This

completes the proof.

Lemma 4. Let s ∈ (−1, 1). Then

(12) lim sup
n→∞

|an|1/n = e−U(s).
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Proof. From Lemmas 2 and 3 and Stirling’s formula we obtain

lim sup
n→∞

|an|1/n =
e

(1 + s)(1+s)/2(1 − s)(1−s)/2
= e−U(s).

Lemma 5. Let x ≤ s. Then,

|Ln(φs;x)| ≤ 2n2

n!

(
n

2

)n (
n

k(s) + 1

)
|wn(x)| =: c(n; s)|wn(x)|,

and

(13) lim
n→∞

c(n; s)1/n = e−U(s).

Proof. Write dk for d
(n)
k (s), k = k(s)+1, . . . , n. Then, using Lemma

1, we have

Ln(φs;x) =

=
n∑

k=k(s)+1

(−1)k−k(s)(k − 2)!

k!(k − k(s)−1)!k(s)!

2

n
dk

(
n

2

)k

(x + 1) · · · (x + 1 − 2(k − 1)

n
) =

=
n∑

k=k(s)+1

(−1)k−k(s)wn(x)
(

n
2

)k−1
dk

k(k−1)(k−k(s)−1)!k(s)!(x+1− 2k
n

) · · · (x+1− 2(n−1)

n
)(x−1)

Now, note that

∣∣∣∣x + 1 − 2 (k(s) + 1)

n

∣∣∣∣ ≥
∣∣∣∣s + 1 − 2 (k(s) + 1)

n

∣∣∣∣ =
2

∣∣dk(s)+1

∣∣
nk(s)

,

and

∣∣∣∣x + 1 − 2k

n

∣∣∣∣ ≥ −1 +
2k

n
−

(
−1 +

2(k(s) + 1)

n

)
=

2

n
(k − k(s) − 1)
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for k = k(s) + 2, · · · , n. Thus

|Ln(φs;x)| =

≤ |wn(x)| (n
2

)n

n!

(
n

k(s) + 1

)
+

+
n∑

k=k(s)+2

|wn(x)| (n
2

)k−1 |dk|
k(k−1)(k−k(s)−1)!k(s)! 2

n
(k−k(s)−1) · · · 2

n
(n−k(s)−1)

=

=
|wn(x)| (n

2

)n

n!

(
n

k(s) + 1

)
+

+
n∑

k=k(s)+2

|wn(x)| (n
2

)k−1 |dk|
k(k − 1)(k − k(s) − 1)(n − k(s) − 1)!k(s)!

(
2
n

)n−k+1
≤

≤ |wn(x)| (n
2

)n

n!

(
n

k(s) + 1

)
+

+
n∑

k=k(s)+2

|wn(x)| (n
2

)n
2n

(k(s) + 1)(n − k(s) − 1)!k(s)!
≤

≤ 2n2

n!

(
n

2

)n (
n

k(s) + 1

)
|wn(x)|.

Equation (13) follows directly from an application of Stirling’s for-

mula. This completes the proof of Lemma 5.

Lemma 6. For z ∈ [−1, 1], there holds

|wn(z)|e−nU(z) ≤ 3n2.

Proof. To simplify the notation, we write xk for x
(n)
k , k = 0, 1, ..., n.

Using the monotonicity of log x on (0,∞), we have for k = 1, 2, ..., k(z),

1

n
log(z − xk) ≤ 1

2

∫ xk

xk−1

log |z − t|dt;
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and for k = k(z) + 1, ..., n − 1,

1

n
log(xk − z) ≤ 1

2

∫ xk+1

xk

log |z − t|dt.

Summing the above inequalities, we get

1

n

n−1∑

k=1

log |z − xk| ≤ 1

2

(∫ xk(z)

−1

+

∫ 1

xk(z)+1

)
log |z − t|dt,

or, equivalently,

(15)
1

n
log |wn(z)| − 1

n
log(1 − x2) ≤ U(z) − 1

2

∫ xk(z)+1

xk(z)

log |z − t|dt.

Now ∫ xk(z)+1

xk(z)

log |z − t|dt = g(z − xk(z)) + g(xk(z)+1 − z),

where g(u) := u log u − u. Note that g′(u) = log u < 0 for u ∈ (0, 1), so g

is decreasing and g(u) < g(0+) = 0 on the interval (0, 1). Since

z − xk(z), xk(z)+1 − z ∈ (0,
2

n
),

it then follows that

∣∣∣∣∣

∫ xk(z)+1

xk(z)

log |z − t|dt

∣∣∣∣∣ ≤ 2|g(
2

n
)| =

4

n
(1 + log

n

2
).

Using this together with (15), we obtain

1

n
log |wn(z)| ≤ U(z) +

2

n
(1 + log

n

2
),

which implies (14).



320 X. LI – E.B. SAFF [12]

3 – Proofs of Theorems

We are now ready to prove the theorems of Section 1.

Proof of Theorem 1. Let s ∈ (−1, 1). If x ≤ s, then, from

Lemma 5, we have |Ln(φs;x)| ≤ c(n; s)|wn(x)|, and so

(16) |Ln(fs;x) − |x − s|| = 2|Ln(φs;x)| ≤ 2c(n; s)|wn(x)|.

If x ≥ s, then, since

Ln(|t − s|; x) = Ln(| − t + s|;x) = Ln(|t − (−s)|;−x)

it follows from (16) and the fact that |wn(−x)| = |wn(x)|,

|Ln(fs;x)−|x−s|| = |Ln(|t−(−s)|;−x)−|−x−(−s)|| ≤ 2c(n;−s)|wn(x)|.

Hence, with ĉ(n; s) := max{c(n; s), c(n;−s)},

(17) |Ln(fs;x) − |x − s|| ≤ 2ĉ(n; s)|wn(x)|

for all x ∈ [−1, 1]. Note that, from (13),

(18) lim
n→∞

ĉ(n; s)1/n = e−U(s).

Next we need to estimate Ln(fs; z) for z ∈ C. Let us first estimate

Ln(fs; z) − |z − s| by extending (17) to C. For definiteness, we assume

s > 0; the case when s < 0 can be handled similarly. Define for n ≥ 2

p(z) := log |Ln(fs; z) − (s − z)| − nU(z).

Then p(z) is a subharmonic function in C \ [−1, 1] with p(∞) = log |an|.
Using the maximum principle, we have

(19) p(z) ≤ max
z∈[−1,1]

p(z) = max{ max
z∈[−1,s]

p(z), max
z∈[s,1]

p(z)}, z ∈ C.

By (17),

max
z∈[−1,s]

p(z) = max
z∈[−1,s]

{
log

∣∣∣∣
Ln(fs; z) − |z − s|

wn(z)

∣∣∣∣ + log |wn(z)| − nU(z)

}
≤

≤ max
z∈[−1,s]

log
{
2ĉ(n; s)|wn(z)|e−nU(z)

}
≤ log{6ĉ(n; s)n2},
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where in the last inequality we used (14). On the other hand, for z ∈ [s, 1],

ep(z) = |Ln(fs; z) − |z − s| − 2(s − z)| e−nU(z) ≤
≤ |Ln(fs; z) − |z − s|| e−nU(z) + 2|z − s|e−nU(z) ≤
≤ 2ĉ(n; s)|wn(z)|e−nU(z) + 4e−nU(z) ≤ 6ĉ(n; s)n2 + 4e−nU(z),

where in the last inequality we used (14) again. So,

max
z∈[s,1]

p(z) ≤ log{6ĉ(n; s)n2 + 4e−nU(s)}.

Hence, for z ∈ C,

(20)
p(z) ≤ max

{
log

(
6ĉ(n; s)n2

)
, log

(
6ĉ(n; s)n2 + 4e−nU(s)

)}
=

= log
{
6ĉ(n; s)n2 + 4e−nU(s)

}
=: log K(n; s);

and, by using (18), it is easy to verify that

(21) lim
n→∞

K(n; s)1/n = e−U(s).

An important consequence of (20) and (21) is the following: For

s > 0,

(22)
lim sup

n→∞
|Ln(fs; z) − (s − z)|1/n ≤ lim

n→∞
K(n; s)1/neU(z) =

= eU(z)−U(s) < 1

for all z ∈ Int(Γs).

Now, we are ready to estimate Ln(fs; z). Let Gs(t) be the Green’s

function for Ext(Ωs) with pole at ∞. Set Γ̂ρ := {z ∈ C : Gs(z) = ρ},

ρ > 0. Since

lim
n→∞

{K(n; s)enU(z)}1/n = eU(z)−U(s) > 1

uniformly for z ∈ Γ̂ρ, we have, for n sufficiently large and z ∈ Γ̂ρ, |z−s| ≤
K(n; s)enU(z). Thus, using (20) we obtain, for n large and z ∈ Γ̂ρ,

(23) |Ln(fs; z)| ≤ |z − s| + K(n; s)enU(z) ≤ 2K(n; s)enU(z).
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Next, define

P (z) := log |Ln(fs; z)| − nU(z).

Then P (z) is subharmonic in C\[−1, 1] with P (∞) = log |an|. From (23),

for each ρ > 0, there is a constant N(ρ) > 0 such that when n ≥ N(ρ),

(24) P (z) ≤ log{2K(n; s)}, for z ∈ Γ̂ρ.

Fix ρ∗ > 0, and let Iρ∗ denote the set of all the zeros of Ln(fs; z) that lie

in Ext(Γ̂ρ∗). Choose ρ ∈ (0, ρ∗). Let G(z; ζ) be the Green’s function for

Ext(Γ̂ρ) with pole at ζ. Then G(z; ∞) ≡ Gs(z) − ρ. Define

h(z) := P (z) +
∑

ζ∈Iρ∗

G(z; ζ).

The function h(z) is subharmonic in Ext(Γ̂ρ), and by (24),

lim sup
z→ξ∈Γ̂ρ

h(z) = P (ξ) ≤ log{2K(n; s)}.

Hence, the maximum principle for subharmonic functions gives

(25) h(z) ≤ log{2K(n; s)}

for all z ∈ Ext(Γ̂ρ). Note that G(∞; ζ) = G(ζ;∞) ≥ ρ∗ − ρ for ζ ∈
Ext(Γ̂ρ∗). Thus

h(∞) = log |an| +
∑

ζ∈Iρ∗

G(∞; ζ) ≥ log |an| + nνn{ Ext(Γ̂ρ∗)}(ρ∗ − ρ),

where νn is the normalized counting measure of the zeros of Ln(fs; z). It

then follows from (25) that

(26) (ρ∗ − ρ)nνn{ Ext(Γ̂ρ∗)} ≤ log
2K(n; s)

|an| .

Now, from Lemma 4, we can find an infinite subsequence of positive

integers, say Λ, such that

lim
n→∞
n∈Λ

|an|1/n = e−U(s).
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Thus, (26) and (21) imply that

lim sup
n→∞
n∈Λ

νn{ Ext(Γ̂ρ∗)} ≤ (ρ∗ − ρ)−1 lim
n→∞
n∈Λ

log

{
2K(n; s)

|an|

}1/n

= 0,

and so

(27) lim
n→∞
n∈Λ

νn{ Ext(Γ̂ρ∗)} = 0 for every ρ∗ > 0.

Let ν be a weak star limit of {νn}∞
n=1. Then, from (27), supp(ν) ⊆

C\ Ext(Ωs). But (22) implies that Ln(fs; z) → z−s for z ∈ Int(Γs), and

therefore Ln(fs; z) has only finitely many zeros in each compact subset

of Int(Γs). Hence, we must have supp(ν) ⊆ Ωs.

We now show that the sequence {νn}n∈Λ converges in the weak star

topology to the measure bs. Suppose that for some infinite sequence

Λ0 ⊆ Λ, νn → ν in the weak star topology as n → ∞ and n ∈ Λ0. We

claim that

(28)

∫

Ωs

log |z − t|dν(t) ≤ U(z)

for all z ∈ Ext(Ωs). Indeed, fix z ∈ Ext(Ωs). Then, by (24), we have for

n ≥ nz

(29)

∫

C

log |z − t|dνn(t) − U(z) ≤ log

{
2K(n; s)

|an|

}1/n

.

Let R > |z| + 1, so that

∫

|t|≥R

log |z − t|dνn(t) ≥ 0.

Then (29) yields

∫

|t|≤R

log |z − t|dνn(t) ≤ U(z) + log

{
2K(n; s)

|an|

}1/n

,
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and so, on letting n → ∞, n ∈ Λ0, we obtain

lim sup
n→∞
n∈Λ0

∫

|t|≤R

log |z − t|dνn(t) ≤ U(z).

By the lower envelope theorem (cf. [5]), we then get

(30)

∫

|t|≤R

log |z − t|dν(t) ≤ U(z),

for quasi-every z ∈ Ext(Ωs), with R > |z| + 1. But since both poten-

tials in (30) are continuous in Ext(Ωs), (recall that supp(ν) ⊆ Ωs), this

inequality holds for every z ∈ Ext(Ωs), R > |z| + 1. Letting R → ∞
gives ∫

C

log |z − t|dν(t) ≤ U(z),

which is equivalent to claim (28).

Since the difference of the two sides in (28) is a harmonic function

in Ext(Ωs) even at ∞ with value 0, the equality in (28) must hold for

all z ∈ Ext(Ωs). Thus ν is a balayage of dt/2 on [−1, 1] to Ωs. By the

uniqueness of bs, ν = bs. Therefore, the sequence {νn}n∈Λ has only one

weak star limit and so it converges in the weak star topology, and the

limit measure is bs.

Proof of Theorem 2. Equation (4) follows from (22). We now

verify (3). Inequality (23) implies that

(31) lim sup
n→∞

|Ln(fs; z)|1/n ≤ lim
n→∞

{2K(n; s)}1/neU(z) = eU(z)−U(s)

for z ∈ Γ̂ρ, ρ > 0. By the arbitrariness of ρ > 0, (31) holds for all

z ∈ Ext(Ωs). On the other hand, if Λ is chosen such that (2) holds,

then νn → bs as n → ∞ and n ∈ Λ by Theorem 1. So, for quasi-every

z ∈ Ext(Ωs), we have by the lower envelope theorem

lim sup
n→∞
n∈Λ

|Ln(fs; z)|1/n = lim sup
n→∞
n∈Λ

{
exp

(∫
log |z − t|dνn(t)

)
|an|1/n

}
=

= eU(z)−U(s).
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Therefore, equality holds in (31) quasi-everywhere in Ext(Ωs), and so (3)

is true.

Proof of Theorem 3. Equation (5) is valid for z ∈ R by [6].

So we assume z ∈ C \ R. First, note that U(z) > U(0) = −1 and

limn→∞ |wn(z)|1/n = eU(z) for z ∈ C \ R. Next, note that (5) is a conse-

quence of the following:

(32) For z ∈ C \ R, lim
n→∞

|Ln(|t|; z)|1/n = eU(z)+1.

Hence, we need only show (32).

Let n′ := [n/2]. Since Ln(|t|; x) is an even function, we can write

Ln(|t|; x) = Pn′(x2) for some Pn′ ∈ Pn′ . It is easy to verify that Pn′ is

the polynomial of degree at most n′ which interpolates
√

x at the points

(0 ≤) tn′ < tn′−1 < ... < t1 < t0 = 1 with tk = (x
(n)
k )2, k = 0, 1, ..., n′.

Define w∗
n(x) :=

∏n′
k=0(x − tk). We now claim that

(33) Pn′(z) − √
z =

w∗
n(z)

π

∫ ∞

0

√
t dt

w∗
n(−t)(t + z)

, z ∈ C \ (−∞, 0].

We check (33) only for the case when n is even. The proof for the case

when n is odd follows the same line and is simpler. When n is even,

tn′ = 0. So, the point 0 is a point of interpolation and Pn′(z)/z is the

polynomial of degree n′−1 that interpolates 1/
√

z at points (0 <) tn′−1 <

... < t1 < t0 = 1. Then, using the Hermite formula:

(34)
Pn′(z)

z
− 1√

z
=

w∗
n(z)

2zπi

∫

γ

dζ√
ζ(w∗

n(ζ)/ζ)(z − ζ)
, z ∈ Int(γ),

where γ is an arbitrary positively oriented contour in C\(−∞, 0] that con-

tains [tn′−1,1] in its interior. Let γ deform to the boundary of A(ϕ, r, R) :=

{z : |arg(z)| ≤ ϕ and r ≤ |z| ≤ R} with 0 < ϕ < π and 0 < r < 1/n2 <

1 < R. Now, let the inner radius r tend to 0 and the outer radius R

tend to ∞ and then let the angle ϕ tend to π. Then the integral in (34)

converges to the integral in (33) multiplied by −2/i, from which our claim

(33) follows.

In terms of Ln(|t|; z), (33) yields

(35) Ln(|t|; z) − z =
w∗

n(z2)

π

∫ ∞

0

√
t dt

w∗
n(−t)(t + z2)

, Re(z) > 0.
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Define

Sn(z) :=
(−1)n′+1

π

∫ ∞

0

√
t dt

w∗
n(−t)(t + z)

, z ∈ C \ (−∞, 0].

Then

Sn(z) =

∫ ∞

0

ψn(t)dt

t + z
, z ∈ C \ (−∞, 0],

where

ψn(t) :=
(−1)n′+1

√
t

πw∗
n(−t)

≥ 0 for t ≥ 0.

Thus, Sn(z) is a Stieltjes function and we observe that

Im(z) · Im(Sn(z)) < 0 if Im(z) += 0;

and

Sn(z) > 0 if z > 0.

Now, we can define an analytic function Hn(z) := Log(Sn(z)/Sn(1))

for z ∈ C \ (−∞, 0]. Since |Im(Hn(z))| = |Arg(Sn(z)/Sn(1))| < π, then

we have

(36) lim
n→∞

1

n
|Im(Hn(z))| = 0,

locally uniformly for z ∈ C \ (−∞, 0]. By Schwarz’s integral formula,

Hn(z) can be expressed in terms of Im(Hn(z)) and Re(Hn(z0)) in any

disk with center z0 contained in C \ (−∞, 0]. In particular, from (36) we

have

(37) lim
n→∞

1

n
Re(Hn(z)) = 0,

uniformly for |z−1| ≤ ρ (ρ < 1). Then, by using a chain of circles we can

extend (37) to all points contained in C \ (−∞, 0]. It then follows that

(38) lim
n→∞

(
1

n
log |Sn(z)| − 1

n
log Sn(1)

)
= 0
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locally uniformly for z ∈ C \ (−∞, 0]. Using (1) with x = 1 in (35), we

get

lim
n→∞

1

n
log Sn(1) = 1,

and so (38) implies that

lim
n→∞

1

n
log |Sn(z)| = 1

locally uniformly for z ∈ C \ (−∞, 0]. This, together with (35), gives us

(39) lim
n→∞

∣∣∣∣
Ln(|t|; z) − z

wn(z)

∣∣∣∣
1/n

= e

locally uniformly for Re(z) > 0. Similarly,

(40) lim
n→∞

∣∣∣∣
Ln(|t|; z) + z

wn(z)

∣∣∣∣
1/n

= e

locally uniformly for Re(z) < 0. Now, from (39) and (40), we see that

(32) holds if, in addition, we assume Re(z) += 0.

Finally, we verify that (32) holds when Re(z) = 0. The proof for this

case turns out to be very lengthy. We will give here only a sketch of the

proof and leave the details to the reader. Assume z = bi for some real

number b += 0. It is easy to see that

w′
n(x

(n)
k ) =

(
2

n

)n

(−1)n−kk!(n − k)!.

So, using Lagrange’s formula, we have

(41) Ln(|t|; bi) =

(
n

2

)n (−1)n

n!
wn(bi)

n∑

k=0

(−1)k

(
n

k

) |x(n)
k |

bi − x
(n)
k

.

The summation in (41) (let’s call it Sn) can be written as

n′∑

k=0

(−1)k

(
n

k

) −2bi|x(n)
k |

b2 + (x
(n)
k )2

for even n,
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and
n′∑

k=0

(−1)k

(
n

k

)
2(x

(n)
k )2

b2 + (x
(n)
k )2

for odd n.

For odd n, we apply the residue theorem to write Sn as

Sn =
1

2πi

∫

Cδ,M

(−1)n′
2Γ(n + 1)

Γ(n+1
2

+ 1 + z)Γ(n+1
2

− z)

( 1+2z
n

)2

b2 + ( 1+2z
n

)2

πdz

sin πz
,

where Cδ,M denotes the rectangle formed by lines Re(z) = −δ/2 (0 < δ <

1), Re(z) = n/2, and Im(z) = ±M (M > 0). (This integral representa-

tion of Sn can be verified by noting that the integrand is analytic in Cδ,M

except at z = 0, 1, ..., (n − 1)/2 where it has simple poles and the residue

at z = (n − 1)/2 − k is the kth term in the summation form of Sn.) Let

Ω(z) denote the integrand. It can be verified that

(i) for fixed n, the integral along lines Im(z) = ±M tends to 0 as

M → ∞,

(ii) the integral along Re(z) = n/2 tends to 0 as n → ∞,

(iii) the absolute value of the integral along Re(z) = −δ/2 is greater than

c|Ω(−δ/2)| for some positive constant c independent of n.

Indeed, (i) follows from the (crude) estimate Ω(z) = O(|z|−2) (n

fixed), while (ii) is proved by showing Ω(z) = O(n−1/2(1/4 + t2)−1) (n →
∞) with z = n/2 + it (t real). Assertion (iii) is verified by the saddle

point method (cf. [1]). Note that the integrand Ω(z) can be written as

Ω(z) =
2n!(1 + 2z)2

(z + n+1
2

)(z + n+1
2

− 1) · · · (z + n+1
2

− n)(n2b2 + (1 + 2z)2)
.

Writing z = −δ/2+it, we see that |(z+ n+1
2

)(z+ n+1
2

−1) · · · (z+ n+1
2

−n)|
strictly increases as |t| increases from 0 to ∞. So, the point z = −δ/2 will

play the role of a saddle point. (Actually, z = −1/2 is a saddle point.)

Then according to [1, §5.10], we know that the absolute value of the

integral along Re(z) = −δ/2 can be successfully compared to |Ω(−δ/2)|
as given in (iii).

Now, by Stirling’s formula, |Ω(−δ/2)|1/n → 2 as n → ∞. Hence, by

(i)-(iii) above, we have lim infn→∞, n odd |Sn|1/n ≥ 2, which, together with

(41), implies (32) when n is restricted to odd integers. The case when
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n is even can be handled similarly, and (32) holds. This completes our

proof.
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