Behavior of Lagrange interpolants to the absolute value function in equally spaced points

X. LI - E.B. SAFF

Dedicated to Aldo Ghizzetti

Riassunto: Viene trovato il limite "star" debole della successione delle misure "counting" normalizzate degli zeri delle interpolanti di Lagrange, associate a nodi equidistanti in $[-1,1]$ e relativi alla funzione $f_{s}(x)=|x-s|$, con $s \in(-1,1)$. Questo risultato viene poi utilizzato per stabilire la regione esatta, in cui le interpolanti di Lagrange convergono geometricamente.

Abstract: We find the weak star limit of the sequence of normalized counting measures of the zeros of the Lagrange interpolants to $f_{s}(x)=|x-s|(-1<s<1)$ associated with equidistant nodes on $[-1,1]$. We use this to establish the exact region in which the Lagrange interpolants converges geometrically.

1 - Introduction and statements of main results

For a function f defined on $[-1,1]$, let $L_{n}(f ; \cdot)$ denote the Lagrange

[^0]A.M.S. Classification: 41A05

Research supported, in part, by National Science Foundation Grant DMS 920-3659.
interpolating polynomial of degree at most n to f at the equidistant nodes

$$
x_{k}^{(n)}:=-1+2 k / n, k=0,1, \ldots, n .
$$

Bernstein proved that (cf. [8]) for $f(x)=|x|$, the sequence $L_{n}(|t| ; x)$ diverges if $0<|x|<1$. Recently, Byrne, Mills and Smith [9] considered the rate of this divergent sequence. They proved, if $0<|x|<1$, then

$$
\limsup _{n \rightarrow \infty}\left|L_{n}(|t| ; x)-|x|\right|^{1 / n}=(1+x)^{(1+x) / 2}(1-x)^{(1-x) / 2}
$$

Li and Mohapatra [6] further improved this result by showing that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{L_{n}(|t| ; x)-|x|}{w_{n}(x)}\right|^{1 / n}=e \tag{1}
\end{equation*}
$$

for all $x \in \mathbf{R}$ (the set of real numbers), where $w_{n}(x):=\prod_{k=0}^{n}\left(x-x_{k}^{(n)}\right)$.
In contrast to the above results, under the assumption that f is bounded on $[-1,1]$ and analytic at $x=0$, the authors proved in [7] that the sequence $L_{n}(f ; x)$ converges to f geometrically in a neighborhood (in the complex plane) of $x=0$. This leads to the question of finding the exact region where $L_{n}(f ; \cdot)$ converges to f. Although the answer in the general situation is still unknown, we try in this note to gain some insight by considering the special but interesting case when

$$
f(x)=f_{s}(x):=|x-s| \quad(-1<s<1)
$$

We determine the exact region in which $L_{n}\left(f_{s} ; \cdot\right)$ converges to (an analytic continuation of) f_{s} geometrically. This is done by studying the zero distribution of $L_{n}\left(f_{s} ; \cdot\right)$, which is equivalent to the nth root asymptotics of $L_{n}\left(f_{s} ; z\right)$ in \mathbf{C}. Furthermore, we will show that (1) has an extension to all z in the complex plane \mathbf{C}.

To state our results, we first introduce some notation. The potential corresponding to the uniform distribution $\frac{1}{2} d t$ on $[-1,1]$ is given by

$$
U(z):=\frac{1}{2} \int_{-1}^{1} \log |z-t| d t
$$

The level curves of $U(z)$ are denoted by $\Gamma_{s}:=\{z \in \mathbf{C}: U(z)=U(s)\}$, $s \in \mathbf{R}$. Let

$$
\Omega_{s}:=[-1,-s] \cup \Gamma_{s} \cup[s, 1] \text { for }|s|<1
$$

Let $\nu_{n}(t)$ be the normalized counting measure of the zeros of $L_{n}\left(f_{s} ; \cdot\right)$, i.e.,

$$
\int_{B} d \nu_{n}(t)=\frac{\text { the number of the zeros of } L_{n}\left(f_{s} ; z\right) \text { in } B}{n}
$$

for every Borel set $B \subseteq \mathbf{C}$. For a compact set $S \subseteq \mathbf{C}$, we will use $\operatorname{Ext}(S)$ and $\operatorname{Int}(S)$ to denote the unbounded and the (union of) bounded components of $\overline{\mathbf{C}} \backslash S$, respectively, where $\overline{\mathbf{C}}=\mathbf{C} \cup\{\infty\}$. We need one more concept from potential theory. A measure b_{s} supported on Ω_{s} is called a balayage of the uniform distribution $\frac{1}{2} d t$ on $[-1,1]$ to Ω_{s} if

$$
\int_{\Omega_{s}} \log |z-t| d b_{s}(t)=U(z) \text { for all } z \in \operatorname{Ext}\left(\Omega_{s}\right)
$$

On using the fact that Γ_{s} is regular with respect to the Dirichlet problem for $\operatorname{Int}\left(\Gamma_{s}\right)$, one can show that at least one such balayage b_{s} exists (cf. [5, §4.2]), and since $U(z)$ is continuous in \mathbf{C}, such a measure b_{s} must be unique ([5, Theorem 4.6, Corollary 2$]$).

We now state our results. Their proofs are given in Section 3.
THEOREM 1. The sequence of the normalized counting measures $\left\{\nu_{n}\right\}$ of the zeros of $L_{n}\left(f_{s} ; \cdot\right)$ converges, in the weak star topology, to the balayage b_{s} of $\frac{1}{2} d t$ on $[-1,1]$ to Ω_{s}, as $n \rightarrow \infty$ through a subsequence Λ of positive integers.

Remark 1. Our proof shows that, in Theorem 1, Λ can be any sequence for which

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ n \in \Lambda}}\left|a_{n}\right|^{1 / n}=e^{-U(s)}, \tag{2}
\end{equation*}
$$

where a_{n} denotes the leading coefficient of $L_{n}\left(f_{s} ; \cdot\right)$.
REmark 2. It can be shown (by using Khinchine's theorem [10] in Lemma 3 below) that for almost all $s \in(-1,1)$,

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=e^{-U(s)}
$$

So, by Remark 1, the whole sequence $\left\{\nu_{n}\right\}_{n=1}^{\infty}$ converges to b_{s} for almost all s.

Theorem 2. For $s \in(-1,1)$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|L_{n}\left(f_{s} ; z\right)\right|^{1 / n}=e^{U(z)-U(s)} \tag{3}
\end{equation*}
$$

quasi-everywhere in $\operatorname{Ext}\left(\Omega_{s}\right)$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}\left(f_{s} ; z\right)=(s-z) \operatorname{sgn}(s) \tag{4}
\end{equation*}
$$

geometrically for every $z \in \operatorname{Int}\left(\Gamma_{s}\right)$.
Here we use "quasi-everywhere" to mean that the property holds except on a set having logarithmic capacity zero.

Remark 3. Note that $U(z)>U(s)$ for $z \in \operatorname{Ext}\left(\Omega_{s}\right)$, so (3) implies that for quasi-every $z \in \operatorname{Ext}\left(\Omega_{s}\right)$ a subsequence of $L_{n}\left(f_{s} ; z\right)$ tends to ∞ geometrically. It is also possible to show that (3) holds for almost all $z \in \operatorname{Ext}\left(\Gamma_{s}\right) \backslash\{-1,1\}$ and $s \in(-1,1)$.

Remark 4. Using Remarks 1 and 2, it can be shown that for almost all s, limsup can be replaced by \lim in (3).

Remark 5. The relation (4) also follows from the general theorem proved in [7].

Theorem 3. For all $z \in \mathbf{C}$, there holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{L_{n}(|t| ; z)-|z|}{w_{n}(z)}\right|^{1 / n}=e . \tag{5}
\end{equation*}
$$

Readers familiar with the subject of asymptotic zero distributions of best polynomial approximants (cf. [2], [3], [11]) will recognize that the above results and their proofs have a flavor similar to those for the best polynomial approximants. However, our proofs are a bit more involved because in the present situation, unlike the case for best polynomial approximations, the limit measure b_{s} is not the equilibrium measure on its support.

2-Lemmas

Define

$$
\phi_{s}(x):=\left\{\begin{array}{lr}
x-s, & s \leq x \leq 1 \\
0, & -1 \leq x \leq s
\end{array}\right.
$$

Then, if $x<s$,

$$
\frac{L_{n}\left(f_{s} ; x\right)-|x-s|}{2}=L_{n}\left(\phi_{s} ; x\right)
$$

By Newton's formula (cf. [8, p.14]),

$$
L_{n}\left(\phi_{s} ; x\right)=\sum_{k=0}^{n} \frac{\Delta_{n}^{k} \phi_{s}(-1)}{k!}\left(\frac{n}{2}\right)^{k}(x+1) \cdots\left(x+1-\frac{2(k-1)}{n}\right)
$$

where

$$
\Delta_{n}^{k} \phi_{s}(-1)=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r} \phi_{s}\left(-1+\frac{2 r}{n}\right), k=0,1, \ldots, n
$$

Set $k(s):=\max \left\{k: x_{k}^{(n)} \leq s\right\}$. Then $k(s)=[n(s+1) / 2]$ and $x_{k(s)}^{(n)}$ is the closest node to the left of s (or equal to s).

Lemma 1. (i) If $0 \leq k \leq k(s)$, then $\Delta_{n}^{k} \phi_{s}(-1)=0$.
(ii) If $k(s)+1 \leq k \leq n$, then

$$
\Delta_{n}^{k} \phi_{s}(-1)=\frac{(-1)^{k-k(s)}(k-2)!}{(k-k(s)-1)!k(s)!} \frac{2}{n}\left\{\frac{n(s+1)}{2}(k-1)-\left[\frac{n(s+1)}{2}\right] k\right\}
$$

Proof. Assertion (i) is obvious. To prove (ii), we need the following two formulae [4]:

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{n}{k}=(-1)^{m}\binom{n-1}{m} \quad(n \geq 1) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{k}\binom{n}{k} k=(-1)^{m} n\binom{n-2}{m-1} \quad(n \geq 2) \tag{7}
\end{equation*}
$$

Now

$$
\begin{aligned}
\Delta_{n}^{k} \phi_{s}(-1)= & \sum_{r=k(s)+1}^{k}(-1)^{k-r}\binom{k}{r} \phi_{s}\left(-1+\frac{2 r}{n}\right)= \\
= & \sum_{r=k(s)+1}^{k}(-1)^{k-r}\binom{k}{r}\left(-s-1+\frac{2 r}{n}\right)= \\
= & \sum_{l=0}^{k-k(s)-1}(-1)^{l}\binom{k}{l}\left(-s-1+\frac{2(k-l)}{n}\right)= \\
= & \left(-s-1+\frac{2 k}{n}\right)^{k-k(s)-1} \sum_{l=0}(-1)^{l}\binom{k}{l}-\frac{2^{2}}{n} \sum_{l=0}^{k-k(s)-1}(-1)^{l}\binom{k}{l} l= \\
= & \left(-s-1+\frac{2 k}{n}\right)(-1)^{k-k(s)-1}\binom{k-1}{k-k(s)-1}+ \\
& -\frac{2}{n}(-1)^{k-k(s)-1} k\binom{k-2}{k-k(s)-2}= \\
= & \frac{\left.(-1)^{k-k(s)-1}(k-2)!!\left(-s-1+\frac{2 k}{n}\right)(k-1)-\frac{2}{n} k(k-k(s)-1)\right\}=}{(k-k(s)-1)!k(s)!}\left\{\begin{array}{l}
(-1)^{k-k(s)}(k-2)! \\
(k-k(s)-1)!k(s)!\frac{2}{n}\left\{\frac{n(s+1)}{2}(k-1)-\left[\frac{n(s+1)}{2}\right] k\right\}
\end{array}\right]
\end{aligned}
$$

This concludes the proof of Lemma 1.

Set

$$
d_{k}^{(n)}(s):=\frac{n(s+1)}{2}(k-1)-\left[\frac{n(s+1)}{2}\right] k
$$

for $k=k(s)+1, \ldots, n$. Then we have the following simple lemma.

Lemma 2. For $s \in(-1,1)$ and $n \geq 2$, the coefficient of x^{n} in $L_{n}\left(f_{s} ; x\right)$ is

$$
a_{n}:=\frac{2(-1)^{n-k(s)}}{(n-1) n!}\left(\frac{n}{2}\right)^{n-1}\binom{n-1}{k(s)} d_{n}^{(n)}(s)
$$

Proof. Note that

$$
a_{n}=2 \times\left(\text { the coefficient of } x^{n} \text { in } L_{n}\left(\phi_{s} ; x\right)\right)
$$

when $n \geq 2$, and

$$
\text { the coefficient of } x^{n} \text { in } L_{n}\left(\phi_{s} ; x\right)=\frac{\Delta_{n}^{n} \phi_{s}(-1)}{n!}\left(\frac{n}{2}\right)^{n}
$$

We can now apply Lemma 1 (ii) to establish this lemma.
Lemma 3. For $s \in(-1,1)$, we have

$$
\limsup _{n \rightarrow \infty}\left|d_{n}^{(n)}(s)\right|^{1 / n}=1
$$

Proof. Since

$$
\left|d_{n}^{(n)}(s)\right|=\left|\frac{n(s+1)}{2}(n-1)-\left[\frac{n(s+1)}{2}\right] n\right| \leq n^{2}(|s|+1) \leq 2 n^{2}
$$

we have

$$
\limsup _{n \rightarrow \infty}\left|d_{n}^{(n)}(s)\right|^{1 / n} \leq 1
$$

Write

$$
d_{n}^{(n)}(s)=n(n-1)\left\{\frac{s+1}{2}-\frac{1}{n-1}\left[\frac{n(s+1)}{2}\right]\right\}=: n(n-1) I_{n}(s)
$$

Then, to prove the lemma, it suffices to show

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|I_{n}(s)\right|^{1 / n} \geq 1 \tag{8}
\end{equation*}
$$

for all $s \in(-1,1)$. Assume, to the contrary, (8) is not true for some $s \in(-1,1)$. Then, there exist $r \in(0,1)$ and $N>0$ such that

$$
\begin{equation*}
\left|I_{n}(s)\right|<r^{n} \tag{9}
\end{equation*}
$$

for all $n \geq N$. Consequently,

$$
\begin{equation*}
\left|I_{n}(s)-I_{n+1}(s)\right|<2 r^{n} \tag{10}
\end{equation*}
$$

for $n \geq N$. But, with $t=(s+1) / 2 \in(0,1)$,

$$
\begin{aligned}
n(n-1)\left|I_{n}(s)-I_{n+1}(s)\right| & =n(n-1)\left|\frac{[(n+1) t]}{n}-[n t] n-1\right|= \\
& =|(n-1)[(n+1) t]-n[n t]|
\end{aligned}
$$

If there are infinitely many n such that

$$
\begin{equation*}
(n-1)[(n+1) t]-n[n t] \neq 0 \tag{11}
\end{equation*}
$$

then for those $n, n(n-1)\left|I_{n}(s)-I_{n+1}(s)\right| \geq 1$. So $\lim \sup _{n \rightarrow \infty} \mid I_{n}(s)-$ $\left.I_{n+1}(s)\right|^{1 / n} \geq 1$, contradicting (10). Hence there are only finitely many n such that (11) holds. Therefore, there is a constant $M>0$ such that $(n-1)[(n+1) t]=n[n t]$ for all $n \geq M$. Then $I_{n}(s)=I_{n+1}(s)$ for $n \geq M$. This, together with (9), tells us that $I_{n}(s)=0$ for $n \geq M$. That is,

$$
t=\frac{[n t]}{n-1}
$$

for all $n \geq M$, which implies that $(n-1) t$ is an integer for every $n \geq M$. This can happen only if $t=0$ or $t=1$, which is impossible. This completes the proof.

Lemma 4. Let $s \in(-1,1)$. Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=e^{-U(s)} \tag{12}
\end{equation*}
$$

Proof. From Lemmas 2 and 3 and Stirling's formula we obtain

$$
\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\frac{e}{(1+s)^{(1+s) / 2}(1-s)^{(1-s) / 2}}=e^{-U(s)} .
$$

Lemma 5. Let $x \leq s$. Then,

$$
\left|L_{n}\left(\phi_{s} ; x\right)\right| \leq \frac{2 n^{2}}{n!}\left(\frac{n}{2}\right)^{n}\binom{n}{k(s)+1}\left|w_{n}(x)\right|=: c(n ; s)\left|w_{n}(x)\right|
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} c(n ; s)^{1 / n}=e^{-U(s)} \tag{13}
\end{equation*}
$$

Proof. Write d_{k} for $d_{k}^{(n)}(s), k=k(s)+1, \ldots, n$. Then, using Lemma 1, we have

$$
\begin{aligned}
& L_{n}\left(\phi_{s} ; x\right)= \\
& =\sum_{k=k(s)+1}^{n} \frac{(-1)^{k-k(s)}(k-2)!}{k!(k-k(s)-1)!k(s)!} \frac{2}{n} d_{k}\left(\frac{n}{2}\right)^{k}(x+1) \cdots\left(x+1-\frac{2(k-1)}{n}\right)= \\
& =\sum_{k=k(s)+1}^{n} \frac{(-1)^{k-k(s)} w_{n}(x)\left(\frac{n}{2}\right)^{k-1} d_{k}}{k(k-1)(k-k(s)-1)!k(s)!\left(x+1-\frac{2 k}{n}\right) \cdots\left(x+1-\frac{2(n-1)}{n}\right)(x-1)}
\end{aligned}
$$

Now, note that

$$
\left|x+1-\frac{2(k(s)+1)}{n}\right| \geq\left|s+1-\frac{2(k(s)+1)}{n}\right|=\frac{2\left|d_{k(s)+1}\right|}{n k(s)}
$$

and

$$
\left|x+1-\frac{2 k}{n}\right| \geq-1+\frac{2 k}{n}-\left(-1+\frac{2(k(s)+1)}{n}\right)=\frac{2}{n}(k-k(s)-1)
$$

for $k=k(s)+2, \cdots, n$. Thus

$$
\begin{aligned}
& \left|L_{n}\left(\phi_{s} ; x\right)\right|= \\
& \leq \frac{\left|w_{n}(x)\right|\left(\frac{n}{2}\right)^{n}}{n!}\binom{n}{k(s)+1}+ \\
& +\sum_{k=k(s)+2}^{n} \frac{\left|w_{n}(x)\right|\left(\frac{n}{2}\right)^{k-1}\left|d_{k}\right|}{k(k-1)(k-k(s)-1)!k(s)!\frac{2}{n}(k-k(s)-1) \cdots \frac{2}{n}(n-k(s)-1)}= \\
& =\frac{\left|w_{n}(x)\right|\left(\frac{n}{2}\right)^{n}}{n!}\binom{n}{k(s)+1}+ \\
& +\sum_{k=k(s)+2}^{n} \frac{\left|w_{n}(x)\right|\left(\frac{n}{2}\right)^{k-1}\left|d_{k}\right|}{k(k-1)(k-k(s)-1)(n-k(s)-1)!k(s)!\left(\frac{2}{n}\right)^{n-k+1}} \leq \\
& \leq \frac{\left|w_{n}(x)\right|\left(\frac{n}{2}\right)^{n}}{n!}\binom{n}{k(s)+1}+ \\
& +\sum_{k=k(s)+2}^{n} \frac{\left|w_{n}(x)\right|\left(\frac{n}{2}\right)^{n} 2 n}{(k(s)+1)(n-k(s)-1)!k(s)!} \leq \\
& \leq \frac{2 n^{2}}{n!}\left(\frac{n}{2}\right)^{n}\binom{n}{k(s)+1}\left|w_{n}(x)\right| .
\end{aligned}
$$

Equation (13) follows directly from an application of Stirling's formula. This completes the proof of Lemma 5.

Lemma 6. For $z \in[-1,1]$, there holds

$$
\left|w_{n}(z)\right| e^{-n U(z)} \leq 3 n^{2}
$$

Proof. To simplify the notation, we write x_{k} for $x_{k}^{(n)}, k=0,1, \ldots, n$. Using the monotonicity of $\log x$ on $(0, \infty)$, we have for $k=1,2, \ldots, k(z)$,

$$
\frac{1}{n} \log \left(z-x_{k}\right) \leq \frac{1}{2} \int_{x_{k-1}}^{x_{k}} \log |z-t| d t
$$

and for $k=k(z)+1, \ldots, n-1$,

$$
\frac{1}{n} \log \left(x_{k}-z\right) \leq \frac{1}{2} \int_{x_{k}}^{x_{k+1}} \log |z-t| d t
$$

Summing the above inequalities, we get

$$
\frac{1}{n} \sum_{k=1}^{n-1} \log \left|z-x_{k}\right| \leq \frac{1}{2}\left(\int_{-1}^{x_{k(z)}}+\int_{x_{k(z)+1}}^{1}\right) \log |z-t| d t
$$

or, equivalently,
(15) $\quad \frac{1}{n} \log \left|w_{n}(z)\right|-\frac{1}{n} \log \left(1-x^{2}\right) \leq U(z)-\frac{1}{2} \int_{x_{k(z)}}^{x_{k(z)+1}} \log |z-t| d t$.

Now

$$
\int_{x_{k(z)}}^{x_{k(z)+1}} \log |z-t| d t=g\left(z-x_{k(z)}\right)+g\left(x_{k(z)+1}-z\right)
$$

where $g(u):=u \log u-u$. Note that $g^{\prime}(u)=\log u<0$ for $u \in(0,1)$, so g is decreasing and $g(u)<g(0+)=0$ on the interval $(0,1)$. Since

$$
z-x_{k(z)}, x_{k(z)+1}-z \in\left(0, \frac{2}{n}\right)
$$

it then follows that

$$
\left|\int_{x_{k(z)}}^{x_{k(z)+1}} \log \right| z-t|d t| \leq 2\left|g\left(\frac{2}{n}\right)\right|=\frac{4}{n}\left(1+\log \frac{n}{2}\right)
$$

Using this together with (15), we obtain

$$
\frac{1}{n} \log \left|w_{n}(z)\right| \leq U(z)+\frac{2}{n}\left(1+\log \frac{n}{2}\right)
$$

which implies (14).

3 - Proofs of Theorems

We are now ready to prove the theorems of Section 1.
Proof of Theorem 1. Let $s \in(-1,1)$. If $x \leq s$, then, from Lemma 5, we have $\left|L_{n}\left(\phi_{s} ; x\right)\right| \leq c(n ; s)\left|w_{n}(x)\right|$, and so

$$
\begin{equation*}
\left|L_{n}\left(f_{s} ; x\right)-|x-s|\right|=2\left|L_{n}\left(\phi_{s} ; x\right)\right| \leq 2 c(n ; s)\left|w_{n}(x)\right| \tag{16}
\end{equation*}
$$

If $x \geq s$, then, since

$$
L_{n}(|t-s| ; x)=L_{n}(|-t+s| ; x)=L_{n}(|t-(-s)| ;-x)
$$

it follows from (16) and the fact that $\left|w_{n}(-x)\right|=\left|w_{n}(x)\right|$,
$\left|L_{n}\left(f_{s} ; x\right)-|x-s|\right|=\left|L_{n}(|t-(-s)| ;-x)-|-x-(-s)|\right| \leq 2 c(n ;-s)\left|w_{n}(x)\right|$.
Hence, with $\hat{c}(n ; s):=\max \{c(n ; s), c(n ;-s)\}$,

$$
\begin{equation*}
\left|L_{n}\left(f_{s} ; x\right)-|x-s|\right| \leq 2 \hat{c}(n ; s)\left|w_{n}(x)\right| \tag{17}
\end{equation*}
$$

for all $x \in[-1,1]$. Note that, from (13),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \hat{c}(n ; s)^{1 / n}=e^{-U(s)} \tag{18}
\end{equation*}
$$

Next we need to estimate $L_{n}\left(f_{s} ; z\right)$ for $z \in \mathbf{C}$. Let us first estimate $L_{n}\left(f_{s} ; z\right)-|z-s|$ by extending (17) to \mathbf{C}. For definiteness, we assume $s>0$; the case when $s<0$ can be handled similarly. Define for $n \geq 2$

$$
p(z):=\log \left|L_{n}\left(f_{s} ; z\right)-(s-z)\right|-n U(z)
$$

Then $p(z)$ is a subharmonic function in $\overline{\mathbf{C}} \backslash[-1,1]$ with $p(\infty)=\log \left|a_{n}\right|$. Using the maximum principle, we have

$$
\begin{equation*}
p(z) \leq \max _{z \in[-1,1]} p(z)=\max \left\{\max _{z \in[-1, s]} p(z), \max _{z \in[s, 1]} p(z)\right\}, z \in \mathbf{C} \tag{19}
\end{equation*}
$$

By (17),

$$
\begin{aligned}
\max _{z \in[-1, s]} p(z) & =\max _{z \in[-1, s]}\left\{\log \left|\frac{L_{n}\left(f_{s} ; z\right)-|z-s|}{w_{n}(z)}\right|+\log \left|w_{n}(z)\right|-n U(z)\right\} \leq \\
& \leq \max _{z \in[-1, s]} \log \left\{2 \hat{c}(n ; s)\left|w_{n}(z)\right| e^{-n U(z)}\right\} \leq \log \left\{6 \hat{c}(n ; s) n^{2}\right\}
\end{aligned}
$$

where in the last inequality we used (14). On the other hand, for $z \in[s, 1]$,

$$
\begin{aligned}
e^{p(z)} & =\left|L_{n}\left(f_{s} ; z\right)-|z-s|-2(s-z)\right| e^{-n U(z)} \leq \\
& \leq\left|L_{n}\left(f_{s} ; z\right)-|z-s|\right| e^{-n U(z)}+2|z-s| e^{-n U(z)} \leq \\
& \leq 2 \hat{c}(n ; s)\left|w_{n}(z)\right| e^{-n U(z)}+4 e^{-n U(z)} \leq 6 \hat{c}(n ; s) n^{2}+4 e^{-n U(z)}
\end{aligned}
$$

where in the last inequality we used (14) again. So,

$$
\max _{z \in[s, 1]} p(z) \leq \log \left\{6 \hat{c}(n ; s) n^{2}+4 e^{-n U(s)}\right\}
$$

Hence, for $z \in \mathbf{C}$,

$$
\begin{align*}
p(z) & \leq \max \left\{\log \left(6 \hat{c}(n ; s) n^{2}\right), \log \left(6 \hat{c}(n ; s) n^{2}+4 e^{-n U(s)}\right)\right\}= \\
& =\log \left\{6 \hat{c}(n ; s) n^{2}+4 e^{-n U(s)}\right\}=: \log K(n ; s) \tag{20}
\end{align*}
$$

and, by using (18), it is easy to verify that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} K(n ; s)^{1 / n}=e^{-U(s)} \tag{21}
\end{equation*}
$$

An important consequence of (20) and (21) is the following: For $s>0$,

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left|L_{n}\left(f_{s} ; z\right)-(s-z)\right|^{1 / n} & \leq \lim _{n \rightarrow \infty} K(n ; s)^{1 / n} e^{U(z)}= \tag{22}\\
& =e^{U(z)-U(s)}<1
\end{align*}
$$

for all $z \in \operatorname{Int}\left(\Gamma_{s}\right)$.
Now, we are ready to estimate $L_{n}\left(f_{s} ; z\right)$. Let $G_{s}(t)$ be the Green's function for $\operatorname{Ext}\left(\Omega_{s}\right)$ with pole at ∞. Set $\hat{\Gamma}_{\rho}:=\left\{z \in \mathbf{C}: G_{s}(z)=\rho\right\}$, $\rho>0$. Since

$$
\lim _{n \rightarrow \infty}\left\{K(n ; s) e^{n U(z)}\right\}^{1 / n}=e^{U(z)-U(s)}>1
$$

uniformly for $z \in \hat{\Gamma}_{\rho}$, we have, for n sufficiently large and $z \in \hat{\Gamma}_{\rho},|z-s| \leq$ $K(n ; s) e^{n U(z)}$. Thus, using (20) we obtain, for n large and $z \in \hat{\Gamma}_{\rho}$,

$$
\begin{equation*}
\left|L_{n}\left(f_{s} ; z\right)\right| \leq|z-s|+K(n ; s) e^{n U(z)} \leq 2 K(n ; s) e^{n U(z)} \tag{23}
\end{equation*}
$$

Next, define

$$
P(z):=\log \left|L_{n}\left(f_{s} ; z\right)\right|-n U(z)
$$

Then $P(z)$ is subharmonic in $\mathbf{C} \backslash[-1,1]$ with $P(\infty)=\log \left|a_{n}\right|$. From (23), for each $\rho>0$, there is a constant $N(\rho)>0$ such that when $n \geq N(\rho)$,

$$
\begin{equation*}
P(z) \leq \log \{2 K(n ; s)\}, \text { for } z \in \hat{\Gamma}_{\rho} \tag{24}
\end{equation*}
$$

Fix $\rho^{*}>0$, and let $I_{\rho^{*}}$ denote the set of all the zeros of $L_{n}\left(f_{s} ; z\right)$ that lie in $\operatorname{Ext}\left(\hat{\Gamma}_{\rho^{*}}\right)$. Choose $\rho \in\left(0, \rho^{*}\right)$. Let $G(z ; \zeta)$ be the Green's function for $\operatorname{Ext}\left(\hat{\Gamma}_{\rho}\right)$ with pole at ζ. Then $G(z ; \infty) \equiv G_{s}(z)-\rho$. Define

$$
h(z):=P(z)+\sum_{\zeta \in I_{\rho^{*}}} G(z ; \zeta)
$$

The function $h(z)$ is subharmonic in $\operatorname{Ext}\left(\hat{\Gamma}_{\rho}\right)$, and by (24),

$$
\limsup _{z \rightarrow \xi \in \hat{\Gamma}_{\rho}} h(z)=P(\xi) \leq \log \{2 K(n ; s)\}
$$

Hence, the maximum principle for subharmonic functions gives

$$
\begin{equation*}
h(z) \leq \log \{2 K(n ; s)\} \tag{25}
\end{equation*}
$$

for all $z \in \operatorname{Ext}\left(\hat{\Gamma}_{\rho}\right)$. Note that $G(\infty ; \zeta)=G(\zeta ; \infty) \geq \rho^{*}-\rho$ for $\zeta \in$ $\operatorname{Ext}\left(\hat{\Gamma}_{\rho^{*}}\right)$. Thus

$$
h(\infty)=\log \left|a_{n}\right|+\sum_{\zeta \in I_{\rho^{*}}} G(\infty ; \zeta) \geq \log \left|a_{n}\right|+n \nu_{n}\left\{\operatorname{Ext}\left(\hat{\Gamma}_{\rho^{*}}\right)\right\}\left(\rho^{*}-\rho\right)
$$

where ν_{n} is the normalized counting measure of the zeros of $L_{n}\left(f_{s} ; z\right)$. It then follows from (25) that

$$
\begin{equation*}
\left(\rho^{*}-\rho\right) n \nu_{n}\left\{\operatorname{Ext}\left(\hat{\Gamma}_{\rho^{*}}\right)\right\} \leq \log \frac{2 K(n ; s)}{\left|a_{n}\right|} \tag{26}
\end{equation*}
$$

Now, from Lemma 4, we can find an infinite subsequence of positive integers, say Λ, such that

$$
\lim _{\substack{n \rightarrow \infty \\ n \in \Lambda}}\left|a_{n}\right|^{1 / n}=e^{-U(s)}
$$

Thus, (26) and (21) imply that

$$
\limsup _{\substack{n \rightarrow \infty \\ n \in \Lambda}} \nu_{n}\left\{\operatorname{Ext}\left(\hat{\Gamma}_{\rho^{*}}\right)\right\} \leq\left(\rho^{*}-\rho\right)^{-1} \lim _{\substack{n \rightarrow \infty \\ n \in \Lambda}} \log \left\{\frac{2 K(n ; s)}{\left|a_{n}\right|}\right\}^{1 / n}=0
$$

and so

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ n \in \Lambda}} \nu_{n}\left\{\operatorname{Ext}\left(\hat{\Gamma}_{\rho^{*}}\right)\right\}=0 \text { for every } \rho^{*}>0 \tag{27}
\end{equation*}
$$

Let ν be a weak star limit of $\left\{\nu_{n}\right\}_{n=1}^{\infty}$. Then, from $(27), \operatorname{supp}(\nu) \subseteq$ $\mathbf{C} \backslash \operatorname{Ext}\left(\Omega_{s}\right)$. But (22) implies that $L_{n}\left(f_{s} ; z\right) \rightarrow z-s$ for $z \in \operatorname{Int}\left(\Gamma_{s}\right)$, and therefore $L_{n}\left(f_{s} ; z\right)$ has only finitely many zeros in each compact subset of $\operatorname{Int}\left(\Gamma_{s}\right)$. Hence, we must have $\operatorname{supp}(\nu) \subseteq \Omega_{s}$.

We now show that the sequence $\left\{\nu_{n}\right\}_{n \in \Lambda}$ converges in the weak star topology to the measure b_{s}. Suppose that for some infinite sequence $\Lambda_{0} \subseteq \Lambda, \nu_{n} \rightarrow \nu$ in the weak star topology as $n \rightarrow \infty$ and $n \in \Lambda_{0}$. We claim that

$$
\begin{equation*}
\int_{\Omega_{s}} \log |z-t| d \nu(t) \leq U(z) \tag{28}
\end{equation*}
$$

for all $z \in \operatorname{Ext}\left(\Omega_{s}\right)$. Indeed, fix $z \in \operatorname{Ext}\left(\Omega_{s}\right)$. Then, by (24), we have for $n \geq n_{z}$

$$
\begin{equation*}
\int_{\mathbf{C}} \log |z-t| d \nu_{n}(t)-U(z) \leq \log \left\{\frac{2 K(n ; s)}{\left|a_{n}\right|}\right\}^{1 / n} \tag{29}
\end{equation*}
$$

Let $R>|z|+1$, so that

$$
\int_{|t| \geq R} \log |z-t| d \nu_{n}(t) \geq 0
$$

Then (29) yields

$$
\int_{|t| \leq R} \log |z-t| d \nu_{n}(t) \leq U(z)+\log \left\{\frac{2 K(n ; s)}{\left|a_{n}\right|}\right\}^{1 / n}
$$

and so, on letting $n \rightarrow \infty, n \in \Lambda_{0}$, we obtain

$$
\limsup _{\substack{n \rightarrow \infty \\ n \in \Lambda_{0}}} \int_{|t| \leq R} \log |z-t| d \nu_{n}(t) \leq U(z)
$$

By the lower envelope theorem (cf. [5]), we then get

$$
\begin{equation*}
\int_{|t| \leq R} \log |z-t| d \nu(t) \leq U(z) \tag{30}
\end{equation*}
$$

for quasi-every $z \in \operatorname{Ext}\left(\Omega_{s}\right)$, with $R>|z|+1$. But since both potentials in (30) are continuous in $\operatorname{Ext}\left(\Omega_{s}\right)$, (recall that $\left.\operatorname{supp}(\nu) \subseteq \Omega_{s}\right)$, this inequality holds for every $z \in \operatorname{Ext}\left(\Omega_{s}\right), R>|z|+1$. Letting $R \rightarrow \infty$ gives

$$
\int_{\mathbf{C}} \log |z-t| d \nu(t) \leq U(z)
$$

which is equivalent to claim (28).
Since the difference of the two sides in (28) is a harmonic function in $\operatorname{Ext}\left(\Omega_{s}\right)$ even at ∞ with value 0 , the equality in (28) must hold for all $z \in \operatorname{Ext}\left(\Omega_{s}\right)$. Thus ν is a balayage of $d t / 2$ on $[-1,1]$ to Ω_{s}. By the uniqueness of $b_{s}, \nu=b_{s}$. Therefore, the sequence $\left\{\nu_{n}\right\}_{n \in \Lambda}$ has only one weak star limit and so it converges in the weak star topology, and the limit measure is b_{s}.

Proof of Theorem 2. Equation (4) follows from (22). We now verify (3). Inequality (23) implies that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|L_{n}\left(f_{s} ; z\right)\right|^{1 / n} \leq \lim _{n \rightarrow \infty}\{2 K(n ; s)\}^{1 / n} e^{U(z)}=e^{U(z)-U(s)} \tag{31}
\end{equation*}
$$

for $z \in \hat{\Gamma}_{\rho}, \rho>0$. By the arbitrariness of $\rho>0$, (31) holds for all $z \in \operatorname{Ext}\left(\Omega_{s}\right)$. On the other hand, if Λ is chosen such that (2) holds, then $\nu_{n} \rightarrow b_{s}$ as $n \rightarrow \infty$ and $n \in \Lambda$ by Theorem 1. So, for quasi-every $z \in \operatorname{Ext}\left(\Omega_{s}\right)$, we have by the lower envelope theorem

$$
\begin{aligned}
\limsup _{\substack{n \rightarrow \infty \\
n \in \Lambda}}\left|L_{n}\left(f_{s} ; z\right)\right|^{1 / n} & =\limsup _{\substack{n \rightarrow \infty \\
n \in \Lambda}}\left\{\exp \left(\int \log |z-t| d \nu_{n}(t)\right)\left|a_{n}\right|^{1 / n}\right\}= \\
& =e^{U(z)-U(s)}
\end{aligned}
$$

Therefore, equality holds in (31) quasi-everywhere in $\operatorname{Ext}\left(\Omega_{s}\right)$, and so (3) is true.

Proof of Theorem 3. Equation (5) is valid for $z \in \mathbf{R}$ by [6]. So we assume $z \in \mathbf{C} \backslash \mathbf{R}$. First, note that $U(z)>U(0)=-1$ and $\lim _{n \rightarrow \infty}\left|w_{n}(z)\right|^{1 / n}=e^{U(z)}$ for $z \in \mathbf{C} \backslash \mathbf{R}$. Next, note that (5) is a consequence of the following:

$$
\begin{equation*}
\text { For } z \in \mathbf{C} \backslash \mathbf{R}, \lim _{n \rightarrow \infty}\left|L_{n}(|t| ; z)\right|^{1 / n}=e^{U(z)+1} \tag{32}
\end{equation*}
$$

Hence, we need only show (32).
Let $n^{\prime}:=[n / 2]$. Since $L_{n}(|t| ; x)$ is an even function, we can write $L_{n}(|t| ; x)=P_{n^{\prime}}\left(x^{2}\right)$ for some $P_{n^{\prime}} \in \mathcal{P}_{n^{\prime}}$. It is easy to verify that $P_{n^{\prime}}$ is the polynomial of degree at most n^{\prime} which interpolates \sqrt{x} at the points $(0 \leq) t_{n^{\prime}}<t_{n^{\prime}-1}<\ldots<t_{1}<t_{0}=1$ with $t_{k}=\left(x_{k}^{(n)}\right)^{2}, k=0,1, \ldots, n^{\prime}$. Define $w_{n}^{*}(x):=\prod_{k=0}^{n^{\prime}}\left(x-t_{k}\right)$. We now claim that

$$
\begin{equation*}
P_{n^{\prime}}(z)-\sqrt{z}=\frac{w_{n}^{*}(z)}{\pi} \int_{0}^{\infty} \frac{\sqrt{t} d t}{w_{n}^{*}(-t)(t+z)}, z \in \mathbf{C} \backslash(-\infty, 0] \tag{33}
\end{equation*}
$$

We check (33) only for the case when n is even. The proof for the case when n is odd follows the same line and is simpler. When n is even, $t_{n^{\prime}}=0$. So, the point 0 is a point of interpolation and $P_{n^{\prime}}(z) / z$ is the polynomial of degree $n^{\prime}-1$ that interpolates $1 / \sqrt{z}$ at points $(0<) t_{n^{\prime}-1}<$ $\ldots<t_{1}<t_{0}=1$. Then, using the Hermite formula:

$$
\begin{equation*}
\frac{P_{n^{\prime}}(z)}{z}-\frac{1}{\sqrt{z}}=\frac{w_{n}^{*}(z)}{2 z \pi i} \int_{\gamma} \frac{d \zeta}{\sqrt{\zeta}\left(w_{n}^{*}(\zeta) / \zeta\right)(z-\zeta)}, z \in \operatorname{Int}(\gamma) \tag{34}
\end{equation*}
$$

where γ is an arbitrary positively oriented contour in $\mathbf{C} \backslash(-\infty, 0]$ that contains $\left[t_{n^{\prime}-1}, 1\right]$ in its interior. Let γ deform to the boundary of $A(\varphi, r, R):=$ $\{z:|\arg (z)| \leq \varphi$ and $r \leq|z| \leq R\}$ with $0<\varphi<\pi$ and $0<r<1 / n^{2}<$ $1<R$. Now, let the inner radius r tend to 0 and the outer radius R tend to ∞ and then let the angle φ tend to π. Then the integral in (34) converges to the integral in (33) multiplied by $-2 / i$, from which our claim (33) follows.

In terms of $L_{n}(|t| ; z),(33)$ yields

$$
\begin{equation*}
L_{n}(|t| ; z)-z=\frac{w_{n}^{*}\left(z^{2}\right)}{\pi} \int_{0}^{\infty} \frac{\sqrt{t} d t}{w_{n}^{*}(-t)\left(t+z^{2}\right)}, \operatorname{Re}(z)>0 \tag{35}
\end{equation*}
$$

Define

$$
S_{n}(z):=\frac{(-1)^{n^{\prime}+1}}{\pi} \int_{0}^{\infty} \frac{\sqrt{t} d t}{w_{n}^{*}(-t)(t+z)}, z \in \mathbf{C} \backslash(-\infty, 0]
$$

Then

$$
S_{n}(z)=\int_{0}^{\infty} \frac{\psi_{n}(t) d t}{t+z}, z \in \mathbf{C} \backslash(-\infty, 0]
$$

where

$$
\psi_{n}(t):=\frac{(-1)^{n^{\prime}+1} \sqrt{t}}{\pi w_{n}^{*}(-t)} \geq 0 \text { for } t \geq 0
$$

Thus, $S_{n}(z)$ is a Stieltjes function and we observe that

$$
\operatorname{Im}(z) \cdot \operatorname{Im}\left(S_{n}(z)\right)<0 \text { if } \operatorname{Im}(z) \neq 0
$$

and

$$
S_{n}(z)>0 \text { if } z>0
$$

Now, we can define an analytic function $H_{n}(z):=\log \left(S_{n}(z) / S_{n}(1)\right)$ for $z \in \mathbf{C} \backslash(-\infty, 0]$. Since $\left|\operatorname{Im}\left(H_{n}(z)\right)\right|=\left|\operatorname{Arg}\left(S_{n}(z) / S_{n}(1)\right)\right|<\pi$, then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n}\left|\operatorname{Im}\left(H_{n}(z)\right)\right|=0 \tag{36}
\end{equation*}
$$

locally uniformly for $z \in \mathbf{C} \backslash(-\infty, 0]$. By Schwarz's integral formula, $H_{n}(z)$ can be expressed in terms of $\operatorname{Im}\left(H_{n}(z)\right)$ and $\operatorname{Re}\left(H_{n}\left(z_{0}\right)\right)$ in any disk with center z_{0} contained in $\mathbf{C} \backslash(-\infty, 0]$. In particular, from (36) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Re}\left(H_{n}(z)\right)=0 \tag{37}
\end{equation*}
$$

uniformly for $|z-1| \leq \rho(\rho<1)$. Then, by using a chain of circles we can extend (37) to all points contained in $\mathbf{C} \backslash(-\infty, 0]$. It then follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{1}{n} \log \left|S_{n}(z)\right|-\frac{1}{n} \log S_{n}(1)\right)=0 \tag{38}
\end{equation*}
$$

locally uniformly for $z \in \mathbf{C} \backslash(-\infty, 0]$. Using (1) with $x=1$ in (35), we get

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log S_{n}(1)=1
$$

and so (38) implies that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|S_{n}(z)\right|=1
$$

locally uniformly for $z \in \mathbf{C} \backslash(-\infty, 0]$. This, together with (35), gives us

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{L_{n}(|t| ; z)-z}{w_{n}(z)}\right|^{1 / n}=e \tag{39}
\end{equation*}
$$

locally uniformly for $\operatorname{Re}(z)>0$. Similarly,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\frac{L_{n}(|t| ; z)+z}{w_{n}(z)}\right|^{1 / n}=e \tag{40}
\end{equation*}
$$

locally uniformly for $\operatorname{Re}(z)<0$. Now, from (39) and (40), we see that (32) holds if, in addition, we assume $\operatorname{Re}(z) \neq 0$.

Finally, we verify that (32) holds when $\operatorname{Re}(z)=0$. The proof for this case turns out to be very lengthy. We will give here only a sketch of the proof and leave the details to the reader. Assume $z=b i$ for some real number $b \neq 0$. It is easy to see that

$$
w_{n}^{\prime}\left(x_{k}^{(n)}\right)=\left(\frac{2}{n}\right)^{n}(-1)^{n-k} k!(n-k)!
$$

So, using Lagrange's formula, we have

$$
\begin{equation*}
L_{n}(|t| ; b i)=\left(\frac{n}{2}\right)^{n} \frac{(-1)^{n}}{n!} w_{n}(b i) \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{\left|x_{k}^{(n)}\right|}{b i-x_{k}^{(n)}} \tag{41}
\end{equation*}
$$

The summation in (41) (let's call it S_{n}) can be written as

$$
\sum_{k=0}^{n^{\prime}}(-1)^{k}\binom{n}{k} \frac{-2 b i\left|x_{k}^{(n)}\right|}{b^{2}+\left(x_{k}^{(n)}\right)^{2}} \text { for even } n
$$

and

$$
\sum_{k=0}^{n^{\prime}}(-1)^{k}\binom{n}{k} \frac{2\left(x_{k}^{(n)}\right)^{2}}{b^{2}+\left(x_{k}^{(n)}\right)^{2}} \text { for odd } n
$$

For odd n, we apply the residue theorem to write S_{n} as

$$
S_{n}=\frac{1}{2 \pi i} \int_{C_{\delta, M}} \frac{(-1)^{n^{\prime}} 2 \Gamma(n+1)}{\Gamma\left(\frac{n+1}{2}+1+z\right) \Gamma\left(\frac{n+1}{2}-z\right)} \frac{\left(\frac{1+2 z}{n}\right)^{2}}{b^{2}+\left(\frac{1+2 z}{n}\right)^{2}} \frac{\pi d z}{\sin \pi z},
$$

where $C_{\delta, M}$ denotes the rectangle formed by lines $\operatorname{Re}(z)=-\delta / 2(0<\delta<$ $1), \operatorname{Re}(z)=n / 2$, and $\operatorname{Im}(z)= \pm M(M>0)$. (This integral representation of S_{n} can be verified by noting that the integrand is analytic in $C_{\delta, M}$ except at $z=0,1, \ldots,(n-1) / 2$ where it has simple poles and the residue at $z=(n-1) / 2-k$ is the k th term in the summation form of S_{n}.) Let $\Omega(z)$ denote the integrand. It can be verified that
(i) for fixed n, the integral along lines $\operatorname{Im}(z)= \pm M$ tends to 0 as $M \rightarrow \infty$,
(ii) the integral along $\operatorname{Re}(z)=n / 2$ tends to 0 as $n \rightarrow \infty$,
(iii) the absolute value of the integral along $\operatorname{Re}(z)=-\delta / 2$ is greater than $c|\Omega(-\delta / 2)|$ for some positive constant c independent of n.
Indeed, (i) follows from the (crude) estimate $\Omega(z)=O\left(|z|^{-2}\right)$ (n fixed), while (ii) is proved by showing $\Omega(z)=O\left(n^{-1 / 2}\left(1 / 4+t^{2}\right)^{-1}\right)(n \rightarrow$ ∞) with $z=n / 2+i t$ (t real). Assertion (iii) is verified by the saddle point method (cf. [1]). Note that the integrand $\Omega(z)$ can be written as

$$
\Omega(z)=\frac{2 n!(1+2 z)^{2}}{\left(z+\frac{n+1}{2}\right)\left(z+\frac{n+1}{2}-1\right) \cdots\left(z+\frac{n+1}{2}-n\right)\left(n^{2} b^{2}+(1+2 z)^{2}\right)}
$$

Writing $z=-\delta / 2+i t$, we see that $\left|\left(z+\frac{n+1}{2}\right)\left(z+\frac{n+1}{2}-1\right) \cdots\left(z+\frac{n+1}{2}-n\right)\right|$ strictly increases as $|t|$ increases from 0 to ∞. So, the point $z=-\delta / 2$ will play the role of a saddle point. (Actually, $z=-1 / 2$ is a saddle point.) Then according to $[1, \S 5.10]$, we know that the absolute value of the integral along $\operatorname{Re}(z)=-\delta / 2$ can be successfully compared to $|\Omega(-\delta / 2)|$ as given in (iii).

Now, by Stirling's formula, $|\Omega(-\delta / 2)|^{1 / n} \rightarrow 2$ as $n \rightarrow \infty$. Hence, by (i)-(iii) above, we have $\liminf _{n \rightarrow \infty, n \text { odd }}\left|S_{n}\right|^{1 / n} \geq 2$, which, together with (41), implies (32) when n is restricted to odd integers. The case when
n is even can be handled similarly, and (32) holds. This completes our proof.

REFERENCES

[1] N.G. De Bruijn: Asymptotic Methods in Analysis, (The Third Edition), NorthHolland, Amsterdam, 1970.
[2] H.-P. Blatt - E.B. Saff - M. Simkani: Jentzsch-Szegö type theorems for the zeros of best approximants, J. London Math. Soc., 38 (1988), 307-316.
[3] R. Grothmann: On the zeros of sequences of polynomials, J. Approx. Theory, 61 (1992), 351-359.
[4] I.S. Gradshteyn - I.M. Ryzhik: Table of Integrals, Series, and Products, Academic Press, New York, 1980.
[5] N.S. Landkof: Foundations of Modern Potential Theory, Springer-Verlag, New York, 1972.
[6] X. Li - R.N. Mohapatra: On the divergence of Lagrange interpolation with equidistant nodes, Proc. Amer. Math. Soc., 118 (1993), 1205-1212.
[7] X. Li - E.B. Saff: Local convergence of Lagrange interpolation associated with equidistant nodes, J. Approx. Theory, 76 (1994), in print.
[8] I.P. Natanson: Constructive Function Theory, Vol.III, Frederick Ungar, New York, 1965.
[9] G.J. Byrne - T.M. Mills - S.J. Smith: On Lagrange interpolation with equidistant nodes, Bull. Austral. Math. Soc., 42 (1990), 81-89.
[10] V.G. Sprindzhuk: The Metric Theory of Diophantine Approximations, Wiley, 1979.
[11] E.B. Saff - V. Totik: Logarithmic Potentials with External Fields, SpringerVerlag, (to appear).

Lavoro pervenuto alla redazione il 14 febbraio 1994

INDIRIZZO DEGLI AUTORI:

Xin Li - Department of Mathematics - University of Central Florida - Orlando, FL 32816
E.B. Saff - Department of Mathematics - University of South Florida - Tampa, FL 33620

[^0]: Key Words and Phrases: Lagrange interpolation - Equidistant nodes - Zero distribution - Potential theory

