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Splitting methods for the solution of systems of linear

equations with singular matrices

I. GALLIGANI

Dedicated to the memory of Aldo Ghizzetti

Riassunto: In questo lavoro si sviluppa il metodo della “media aritmetica” per
risolvere sistemi di equazioni lineari di grandi dimensioni e sparsi quando la matrice
dei coefficienti è una matrice simmetrica semidefinita positiva oppure una M-matrice
singolare e irriducibile. Si applica tale metodo al problema del calcolo degli elementi
propri di una λ-matrice regolare.
Il metodo della “media aritmetica” è particolarmente adatto ad essere realizzato su un
calcolatore multivettoriale, come, ad es., il CRAY Y-MP.

Abstract: This paper is concerned with the development of the “arithmetic mean
method” for solving large sparse systems of linear equations when the coefficient matrix
is a symmetric positive semidefinite matrix or a singular, irreducible M- matrix. This
method has been applied for the computation of the minimal eigenpair of the generalized
eigenproblem.
The method of the arithmetic mean is well suited for parallel implementation on a
multivector computer, such as the CRAY Y-MP.

1 – Introduction and preliminaries

In this paper, we consider the iterative solution of the large sparse

Key Words and Phrases: Large sacle linear sistems – Iterative methods – Singular
systems
A.M.S. Classification: 65F10 – 65F35 – 65F15 – 65Y05



342 I. GALLIGANI [2]

linear system
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(1) Ax = b

where A = (aij) is an unstructured singular matrix of size n × n, x and

b are n-dimensional vectors.

We assume that (1) is solvable (or consistent), that is, b ∈ 8(A),

where 8(A) denotes the range of A. Also, we assume that the diagonal

entries aii of A are all non zero numbers.

To approximately solve (1), we consider the iterative method of first

degree

(2) B
uk+1 − uk

τ
+ Auk = b k = 0, 1, 2, . . .

where u0 is an arbitrary initial vector approximation to a solution u∗ of

(1), B is a non-singular matrix and τ is an iterative parameter (τ > 0).

The matrix B is taken to be an easily invertible matrix, i.e., for any vector

r it is relatively easy to solve the system Bw = r.

An alternative form of (2) is given by

(3) uk+1 = uk + τB−1(b − Auk)

or

(4) uk+1 = Huk + f

where H = I − τB−1A and f = τB−1b.

Since B is invertible, problems (1) and (4) have the same solution

set.

If A is non-singular, iteration (4) converges to the unique solution

x∗ = A−1b of (1), for every initial vector u0, if and only if ρ(H) < 1, so

that lim
k→∞

Hk = 0. Here, ρ(H) denotes the spectral radius of the iteration

matrix H. However, this is not the case when A is singular. We proceed

now to analyze this situation.

The matrix H is said to be convergent if lim
k→∞

Hk exists, although it

need not to be the zero matrix.

Let λi, i = 1, 2, . . . , n, denote the eigenvalues of H. Then, we can

verify that H is convergent whenever the following property holds: |λi| ≤
1 for i = 1, 2, . . . , n, |λi| = 1 implies λi = 1, and all the elementary
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divisors that correspond to λi = 1 are linear, i.e. there are no principal

vectors that correspond to λi = 1.

Assume for simplicity that λi = 1 for i = 1, 2, . . . , t, and |λi| < 1

for i = t + 1, t + 2, . . . , n (t may be zero). Then, we can say that H is

convergent if and only if there exists a non-singular matrix V such that

(5) H = V

(
It 0

0 K

)
V −1

where It is the t× t unit matrix and K has a Jordan canonical form with

eigenvalues λi, i = t + 1, t + 2, . . . , n.

We have the following basic result [2].

The following three conditions are equivalent:

a) The sequence {uk} converges for any choice of u0.

b) lim
k→∞

‖uk+1 − uk‖ = 0 for any choice of u0.

c) H is convergent and the linear system (I − H)u = f is solvable.

We now consider the asymptotic rate of convergence of the iterative

method (4).

If H is convergent, we adopt the notation

(6) δ(H) = max{|λ| : λ ∈ σ(H) , λ += 1}

where σ(H) denotes the spectrum of H.

Then, if ρ(H) < 1, δ(H) = ρ(H). Otherwise, δ(H) is the second largest

of the moduli of the eigenvalues of H. Therefore, δ(H) = ρ(K), where

K is given by (5). This leads to the observation that if H is convergent

then the asymptotic rate of convergence of the iterative method is given

by

(7) R∞(H) = − ln δ(H)

where δ(H) is given by (6).

It is useful to review some criteria that help us to decide whether H

in (4) is convergent.

Proposition 1[5]. Assume that x∗ solves (1), where A is an n × n

symmetric positive semidefinite matrix. Then, the error vectors ek =
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uk − x∗, k = 0, 1, 2, . . . , satisfy

(8) eT
k Aek − eT

k+1Aek+1 = (uk+1 − uk)
T P (uk+1 − uk)

where uk is generated by (4) and P =
1

τ
(B + BT ) − A.

Besides, if P is positive definite, the matrix H in (4) is convergent

and the sequence {uk} converges for any choice of u0.

Definition. A real n × n matrix A is an M -matrix if there exists a

non negative matrix M with maximal eigenvalue ρ(M) such that

A = αI − M

where α ≥ ρ(M).

Note that the main diagonal entries of an M -matrix are non negative

and all its other entries are non positive.

The set of n × n real matrices whose off-diagonal entries are non

positive is denoted by Zn×n.

If A is a non-singular M -matrix we must have that α > ρ(M), so

that
1

α
M is zero-convergent.

The total class of M -matrices can be thought of as the closure of

the class of non singular M -matrices. This is justified by the following

result [1].

“Let A ∈ Zn×n. Then A is an M -matrix if and only if A + εI is a

non singular M -matrix for all scalars ε > 0”.

Some characterizations of M -matrices are given in [1] and [3].

1) A matrix A in Zn×n is an M - matrix if and only if all its eigenvalues

have a non negative real part.

2) A matrix A in Zn×n is an M -matrix if and only if all its principal

minors are non negative.

3) Let the matrix A ∈ Zn×n be symmetric. Then, A is an M -matrix if

and only if A is positive semidefinite.

4) A matrix A in Zn×n is an M -matrix if and only if A + D is non

singular for every positive diagonal matrix D.

5) A non singular matrix A ∈ Zn×n is an M -matrix if and only if A−1

is non negative.
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For the last characterization of an M -matrix the following result is

very useful.

Lemma 1. Let A = (aij) be strictly or irreducibly diagonally domi-

nant and assume that aij ≤ 0, i += j, and aii > 0, i = 1, 2, . . . , n. Then,

A is a non singular M -matrix, i.e., A−1 ≥ 0.

The next result is one of the most important and relevant to our

study of M -matrices [3].

Lemma 2. If A is an irreducible M -matrix, then A is weak semi-

positive, i.e., there exists a vector x > 0 such that Ax ≥ 0.

Thus, if A = B − C is a weak regular splitting of A, Theorem 1 in

[6] (see, also, [7], pg 273) yields the following condition for the iteration

matrix B−1C.

Lemma 3. Let A = B −C be a weak regular splitting for A ∈ Rn×n.

If A is weak semipositive, then ρ(B−1C) ≤ 1 and B−1C has only linear

elementary divisors corresponding to the eigenvalue 1. However, it may

well happen that B−1C has some eigenvalues other than 1 on the unit

circle.

(We remember that, for a matrix A ∈ Rn×n, A = B −C is a splitting

if B is non singular. This splitting is regular if B−1 ≥ 0 and C ≥ 0 and

it is weak regular if B−1 ≥ 0 and B−1C ≥ 0).

Since H = I − τB−1A = (1 − τ)I + τB−1C, the eigenvalues λi of H,

i = 1, 2, . . . , n, are of the form λi = (1 − τ) + τµi; where µi is the i-th

eigenvalue of the matrix B−1C = I − B−1A. From Lemma 3 we deduce

that, for 0 < τ < 1, the matrix H has no eigenvalues other than 1 on the

unit circle and ρ(H) ≤ 1.

Combining this result with Lemmas 3 and 2 we have the following

important criterion.

Proposition 2. Let A be an irreducible M -matrix and let A =

B−C be a weak regular splitting of A. Then, the matrix H of the iteration

method (4) is convergent for all τ ∈ (0, 1).
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2 – The basic iterative methods

We can express the matrix A as the matrix sum

(9) A = L + D + U

where D = diag{a11, a22, . . . , ann} is the diagonal matrix with the same

diagonal elements of A and L and U are strictly lower and upper trian-

gular matrices, respectively.

In literature widely used forms of B in (3) are:

(10) B−1 = (D + ωU)−1D(D + ωL)−1 0 < ω < 2

and

(11) B−1 =
1

2

((
1

ω
D + L

)−1)
+

(
1

ω
D + U

)−1)
0 < ω < 2 .

If we assume that A+
2 − ω

ω
D is non-singular, the matrix B of formula

(11) has the expression [4]:

(12) B =
1

2

(
A +

2 − ω

ω
D

)
− R

(
1

2

(
A +

2 − ω

ω
D

))−1

R

where R =
1

2
(L − U).

It is interesting to note that the method (3) with the choice (11) of

B−1 is characterized by having within its overall mathematical structure

certain well-defined substructures that can be executed simultaneously

during each iteration k. This feature makes the method (3)-(11) ideally

suited for implementation on a multiprocessor system with two or more

vector processors, such as the CRAY Y-MP. The lower triangular system
( 1

ω
D+L

)
w

(1)
k = rk, and the upper triangular system

( 1

ω
D+U

)
w

(2)
k = rk,

where rk = b−Auk, can be solved simultaneously on two different vector

processors. Hence, the effectiveness of the method (3)-(11) depends on the

availability of an efficient parallel algorithm for solving these triangular

systems. When we use in (3) the matrix B−1 of formula (10), during
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each iteration k, the two triangular systems (D + ωL)w
(1)
k = rk and

(D + ωU)w
(2)
k = Dw

(1)
k are solved sequentially.

Since the iterative method (2) can be regarded as belonging to a gen-

eralized class referred to as the Method of Simultaneous Displacements

with some form of “preconditioning” to the original system (1), we call

the method (3) with the choice (10) of B−1 the Method of Simultaneous

Displacements with the SSOR preconditioner and the method (3) with

the choice (11) of B−1 the Method of Simultaneous Displacements with

the additive preconditioner.

A study of the convergence properties of these two iterative methods

is given under the assumption that A is symmetric positive semidefinite

or is a singular irreducible M -matrix.

Theorem 1. Let A of formula (9) be a symmetric positive semidef-

inite matrix. Then, the iterative method (3)-(10) is convergent for ωl ≤
ω ≤ ωu where ωl = (1−

√
τ/2)/(2/τ − 1) and ωu = (1+

√
τ/2)/(2/τ − 1)

and 0 < τ ≤ 1, and the iterative method (3)-(11) is convergent for

0 < ω < 2 and 0 < τ ≤ 1.

Proof. When we consider the matrix B of formula (10) we have

(U = LT ):

P =
1

2
(B + BT ) − A =

2

τ
(D + ωL)D−1(D + ωLT ) − L − D − LT =

=

(
2

τ
− 1

)
D +

(
2ω

τ
− 1

)
(L + LT ) +

2ω2

τ
LD−1LT .

Since LD−1LT is a symmetric positive semidefinite matrix and (1 −√
τ/2)/(2/τ − 1) ≤ ω ≤ (1 +

√
τ/2)/(2/τ − 1), for any z += 0, it is

easy to prove that

(
2ω

τ
− 1

)2

zT LD−1LTz ≤ 2ω2

τ
zT LD−1LTz .

Then, for 0 < τ ≤ 1, we have

zT Pz≥
(
2

τ
−1

)
zT Dz+

(
2ω

τ
−1

)
zT (L+LT )z+

(
2ω

τ
−1

)2

zT LD−1LTz=

=

(
2

τ
−2

)
zT Dz+zT

(
D+

(
2ω

τ
−1

)
L

)
D−1

(
D+

(
2ω

τ
−1

)
LT

)
z>0.
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Employing Proposition 1, we conclude that the iterative method (3)-(10)

is convergent for any choice of u0.

When we consider the matrix B of formula (11) we have from (12)

with R =
1

2
(L − Lt)

P =
1

τ
(B + BT ) − A =

=
2

τ

(
1

2

(
A +

2 − ω

ω
D

)
+ R

(
1

2

(
A +

2 − ω

ω
D

))−1

RT

)
− A =

=
2 − ω

τω
D +

4

τ
R

(
A +

2 − ω

ω
D)−1RT +

(
1

τ
− 1

)
A .

For 0 < ω < 2 the matrices
2 − ω

ω
D and A +

2 − ω

ω
D are symmetric

positive definite. Since the matrix P is the sum of a symmetric posi-

tive definite matrix and two symmetric positive semidefinite matrices for

0 < τ ≤ 1, the matrix P is symmetric positive definite. Employing Propo-

sition 1, we conclude that the iterative method (3)-(11) is convergent for

any u0.

Theorem 2. Let A = (aij) of formula (9) be a singular, irreducible

M -matrix and assume that the diagonal entries aii of A are all positive

numbers and that
1

ω
D + L and

1

ω
D + U are strictly diagonally dominant

matrices for 0 < ω ≤ 1. Then, the iterative methods (3)-(10) and (3)-(11)

are convergent for 0 < ω ≤ 1 and 0 < τ < 1.

Proof. When we consider the matrix B of formula (10) we have

C = B − A = (D + ωL)D−1(D + ωU) − L − D − U =

= (ω − 1)L + (ω − 1)U + ω2LD−1U .

By hypothesis, for 0 < ω ≤ 1, the matrix C is non-negative. Besides, D+

ωL and D + ωU are strictly diagonally dominant matrices with positive

entries on the diagonal and with non positive off-diagonal elements. Thus,

by Lemma 1, B is a non singular M -matrix: B−1 ≥ 0. Therefore, A =

B − C is a regular splitting for A.
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Now, employing Proposition 2, we conclude that the iterative method

(3)-(10) is convergent for any u0.

By hypothesis, for 0 < ω ≤ 1, the matrices
1

ω
D +L and

1

ω
D +U are

strictly diagonally dominant and the matrices
1 − ω

ω
D−U and

1 − ω

ω
D−

L are non negative. Thus, by Lemma 1 we deduce that

A =

(
1

ω
D + L

)
−

(
1 − ω

ω
D − U

)
= B1 − C1

A =

(
1

ω
D + U

)
−

(
1 − ω

ω
D − L

)
= B2 − C2

are two regular splittings of A.

When we consider the matrix B of formula (11) we have

B−1 =
1

2
B−1

1 +
1

2
B−1

2 ≥ 0

and

I − B−1A = I − 1

2
B−1

1 (B1 − C1) − 1

2
B−1

2 (B2 − C2) =

=
1

2
B−1

1 C1 +
1

2
B−1

2 C2 ≥ 0 .

Since
1

2
B−1

1 +
1

2
B−1

2 =
1

2
B−1

1 (B1 + B2)B
−1
2 and the matrix B1 + B2 =

( 2

ω
−1

)
D+A is non singular from the characterization 4) of the M -matrix

A for 0 < ω < 2, the matrix B is non singular.

Now, we consider the splitting A = B − C for A. We have B−1C =

B−1(B−A) = I−B−1A. Thus, this splitting A = B−C is a weak regular

splitting of A. Employing Proposition 2, we conclude that the iterative

method (3)-(11) is convergent for any choice of u0.

3 – An application

In many areas of science and technology it is required to compute the

smallest eigenvalue and a corresponding eigenvector of the generalized

eigenvalue problem

(13) (K − µN)x = 0
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where K and N are n × n symmetric positive definite matrices. Further-

more, these matrices are assumed to be large and sparse with irregular

structure, so that it is inconvenient to use similarity transformations or

to factorize either K or N , or a linear combination of K and N into a

product of simple matrices.

It is a well-known fact that, if K and N are n × n symmetric

matrices with N positive definite, problem (13) has n real eigenvalues

µ1 ≤ µ2 ≤ . . . µn and n corresponding linearly independent eigenvectors

v1,v2, . . . ,vn that can be chosen to be orthogonal in the inner product

(v,w)N = vT · Nw. The matrix K − µ1N is a positive semidefinite ma-

trix and the smallest eigenvalue µ1 and the largest eigenvalue µn are the

minimum and the maximum, respectively, of the Rayleigh quotient

(14) ρ(x) =
xT Kx

xT Nx

and the minimum and the maximum are taken on at any eigenvector

(not necessarily normalized) corresponding to µ1 and µn, respectively.

Every eigenvector corresponding to an eigenvalue not equal to µ1 or µn

is a stationary point of ρ(x). Moreover, if K is positive definite, then

the eigenvalues µ1, µ2, . . . , µn are all positive. One basic property of the

Rayleigh quotient is that if

x = vi cos θ + w sin θ

where vi and w are N -orthonormal (i.e. vT
i · Nw = 0 and vT

i · Nvi = 1,

wT · Nw = 1), makes an angle θ to an eigenvector vi for some i (i =

1, 2, . . . , n), then

(15) ρ(x) = µi +
(
wT · Kw − µi) sin2 θ .

That is, the approximation error of ρ(x) to µi is proportional to the square

of the approximation error of x to the corresponding eigenvector vi.

One of the most widely used methods for computing the minimal

eigenpair in (13) is the Rayleigh Quotient Iteration (RQI) Method [8,

pg 319]. This method is described by the following statements.

1. Choose an initial vector x(0), ‖x(0)‖ = 1; 1 → i .
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2. Calculate ρ(i) =
(
(x(i))T · Kx(i)

)/(
(x(i))T · Nx(i)

)
.

Solve the system of linear equations for z(i+1)

(16)
(
K − ρ(i)N

)
z(i+1) = Nx(i) .

3. If ‖z(i+1)‖ is large enough, goto step 4; otherwise

x(i+1) = z(i+1)
/

‖z(i+1)‖
i + 1 → i goto step 2

4. (x(i), ρ(i)) is the approximate eigenpair of the matrix pencil (K, N).

Here, the norm ‖ ‖ is Euclidean. Note that the matrix of (16) is

not positive definite since ρ(i) is always inside the range of eigenvalues

of K − µN . If ρ(i) is really very close to the eigenvalue µ1, the matrix

(K − ρ(i)N) is almost singular and approximately positive semidefinite.

When the initial vector x(0) is good, the method QRI converges very

quickly; the convergence rate is cubic. It is therefore usual to recommend

this method for solving large size generalized eigenproblems.

At each iteration step i we have to solve the linear system (16) whose

coefficient matrix A = K+ρ(i)N is “approximately” positive semidefinite.

We solve this system with the splitting method (2), where the precondi-

tioner B has the form (10) or (11). Theorem 1 assures the convergence

of this iterative method.

To analyse the rate of convergence of methods (2)-(10) and (2)-(11),

we remember that, using the Rayleigh quotient in an iterative method for

the determination of the eigenvalues, the accuracy of the eigenvalue ob-

tained is the square of that of the corresponding eigenvector (see formula

(15)). Hence, it seems reasonable to say that the rate of convergence

of the method (2) is determined by the convergence rate of the limiting

iteration.

(17) B
uk+1 − uk

τ
+ (K − µ1N)uk = b

where b = Nx(i).

The matrix A = K − µ1N is a positive semidefinite matrix.
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Since (I − τB−1(K − µ1N))v1 = v1, the vector v1 is an eigenvector

of the iteration matrix H of (17) corresponding to the eigenvalue λ1 = 1.

Besides, the matrix H = I − τB−1(K − µ1N) has no principal vectors

corresponding the eigenvalue λ1 = 1. This follows immediately from the

general proof given in [5] by identifying our positive semidefinite matrix

K − µ1N with the matrix A there and by setting the matrix N in [5]

equal to B. For two successive iterates of the sequence (17) we get the

expression

uT
k (K − µ1N)uk − uT

k+1(K − µ1N)uk+1 =

= (uk − uk+1)
T

(
1

τ
(B + BT ) − (K − µ1N)

)
(uk − uk+1) .

Since P =
1

τ
(B + BT ) − (K − µ1N) is symmetric positive definite for all

(1 −
√

τ/2)/(2/τ − 1) ≤ ω ≤ (1 +
√

τ/2)/(2/τ − 1) and 0 < τ ≤ 1 when

B has the form (10) and for all 0 < ω < 2 and 0 < τ ≤ 1 when B has the

form (11), the arguments in [5] exclude the existence of principal vectors

corresponding to λ1 = 1.

Then, for the above values of ω and τ , the spectral radius of H is

one and the eigenvalues λj += 1 of H have moduli strictly less than one.

Therefore, the asymptotic rate of convergence of (2)-(10) and (2)-(11)

is determined by the number R∞(H) = − ln(max
λj +=1

|λj|), where λj is an

eigenvalues of H.
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