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Non linear two-obstacle problems:

Pointwise regularity

I. BIRINDELLI – M.A. VIVALDI

Riassunto: Vengono dimostrate l’esistenza, la regolaritá e il decadimento della
energia di soluzioni di problemi a due ostacoli con operatore ellittico degenere e Hamil-
toniana quadratica.

Abstract: Existence, pointwise regularity and energy decay, are shown for two-
obstacle problems involving degenerate elliptic operators and quadratic Hamiltonian.

1 – Introduction

The investigation of boundary regularity for solutions of the Dirich-

let problem in an open region D ⊂ IRN , N ≥ 3, mainly carried out by

H. Lebesgue around 1920, culminated in the celebrated Wiener Criterion

in 1924. Indeed by relying on a fundamental notion of potential the-

ory, namely that of capacity of an arbitrary set of IRN , N.Wiener was

able to characterize the boundary regular points as classically defined by

H.Lebesgue in terms of an intrinsic condition regarding the neighbour-

hood of a given point x0 of the boundary.
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A boundary point x0 of an open domain D, D ⊂ IRN , N ≥ 2 is

termed regular if whenever g(x) is a given continuous function on ∂D the

corresponding generalized solution u of the Dirichlet problem:

(1.1)

{
∆u = 0 in D

u = g on ∂D

is such that u(x) has limit g(x0) as x approaches x0 from D. In the form

given to it by O.D. Kellog and F. Vasilesco (1929) and in terms of

relative capacities the Wiener criterion can be written at a given point

x0 ∈ ∂D as follows:

x0 is regular if and only if the following Wiener integral diverges

(1.2)

R∫

0

cap(Bρ ∩ Dc, B2ρ)

cap(Bρ, B2ρ)

dρ

ρ
= +∞

Dc is the complement of D in IRN and Bρ := Bρ(x0) the ball centered at

x0 of radius ρ.

The capacities involved are the usual harmonic capacities which were

defined by Wiener for any arbitrary bounded subset of IRN , as required

in the application.

As pointed out by Wiener himself, the characterizations of regular-

ity that had been previously given by Lebesgue and others, all suffered

from the defect of involving the geometrical character of the boundary

only in a very indirect and devious manner. The novelty of Wiener’s

approach was the use of the electrostatic notion of capacity to obtain a

priori geometrical characterization of the regular points.

The structural nature of Wiener’s criterion had been shown by W.

Littman, G Stampacchia and H. Weinberger (1963) [20] and G.

Stampacchia (1965) [25] who proved that a boundary point of a given

domain D is regular with respect to the Laplace operator if and only if

it is regular with respect to any arbitrary second order uniformly elliptic

operator in divergence form:

(1.3) L0 = −
N∑

i,j=1

∂i(aij∂j)
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where λ|ξ|2 ≤ Σaij(x)ξiξj ≤ Λ|ξ|2 a.e. in D, with λ > 0.

V.G. Maz’ja (1963) brought into light what was implicit in Wiener’s

proof, namely the relationship between the rate of divergence of the in-

tegral (1.2) and the modulus of continuity at x0.

Around the same period in the theory of variational inequalities H.

Brezis, H.Lewy, G. Stampacchia and others initiated the study of

the regularity of solutions of a class of free boundary problems, the so

called unilateral problem involving a second order elliptic operator L

as in (1.3). Of course Wiener’ criterion cannot be applied directly to

obstacle problems, because the free boundary, i.e., the boundary of the

coincidence set E, is not known explicitly. However it is natural to ask

whether a pointwise result holds that assure the continuity of u at a given

point x0 ∈ ∂E, under the assumption that Wiener’s condition (1.2) with

Dc = E is satisfied at x0 and the obstacle ψ is continuous at x0 on E.

Many results concerning the continuity of a solution at a point x0 in

the neighborhood of which the obstacle is continuous have been proved

(see L.A. Caffarelli, D. Kinderlehrer, J. Frehse, etc. ). On the

other hand obstacle problems present an interesting feature: discontinu-

ous obstacles may still have continuous solutions. It is the free boundary

that self adjusts to keep the solution continuous. This in particular was

studied by U. Mosco [24] who developed a theory of pointwise regu-

larity based on the Wiener criterion for local solutions of one obstacle

problem relative to second order uniformly elliptic operator in divergence

form. The contest is that of calculus of variation, combining methods

from P.D.E and potential theory. These results were extended to the two

obstacle problem in [10] and by [17] and [23] in a more general contest

but with different methods.

The theory of two obstacle problems provides a unified framework to

study the regular points both for Dirichlet problems and for unilateral

one-obstacle problem. The point x0, at which the regularity is tested,

may indeed be a point of a fixed boundary, as in the Dirichlet problems,

as well as a point of a free boundary, that is a point where the solution

leaves one of the two obstacles. The “geometry” of the obstacles may

even be more complicated, the two obstacles may “touch” each other at

x0, while both oscillate very much in an arbitrarily small neighborhood

of the point, interpenetrating each other.

In this work we study the two obstacle problem relative to quasi
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linear degenerate elliptic operator of the form Lu + H(u) and we extend

previous results obtained in [4] and in [17] in a quite different context

and by different methods.

Here L is a degenerate elliptic second order operator in divergence

form with a ”weight” w(x) (in the ellipticity conditions) which is assumed

to belong to the Muckenhoupts class A2 see (2.5). The characterization

of the regular boundary points for the corresponding linear (i.e. H ≡ 0)

Dirichlet problem has been given by [12] as generalization of the Wiener

criterion established in [20] for uniformly elliptic operators. In their the-

ory an intrinsic notion of w-capacity associated with the weighted Sobolev

space H1,2
0 (Ω, w) plays an important role. To emphasize the difference

with respect to the usual H1,2
0 capacity, let us point out that a single

point in IRN may have for particular weights a positive capacity. Any

such point is indeed regular for the Dirichlet problem. The theory of

pointwise regularity for one obstacle problems in the linear case was de-

veloped by M. Biroli e U. Mosco in [5]. In the same framework we

are going to consider the two obstacle problem associated to a quasilinear

degenerate elliptic operator L + H (see (2.8) and (3.24)).

In section 2 we introduce notations and some preliminary results,

section 3 is devoted to show the existence of bounded weak solutions

(th 3.1). We extend to the degenerate case an approximation procedure

and some a priori estimates by means of “suitable” test functions used

by L. Boccardo, F. Murat, J-P. Puel in the uniformly elliptic case

(see [6]). Let us also remark that obstacle problems involving quasi-

linear uniformly elliptic operators have been extensively studied, let us

just mention e.g. [3],[7],[15],[27] and let us refer to the more complete

literature there quoted.

In section 4 we evaluate the modulus of continuity of a weak bounded

solution in terms of the divergence of the Wiener integral (see (2.19)) of

the relevant level sets of the obstacles (th 4.1). Moreover, if the obstacles

admit a “regular” separating function (see (4.42)) then we prove that

the energy decay also can be estimated in terms of the obstacles Wiener

integrals (th 4.4).

Finally in section 5 we give the proofs of the intermediary results

that are used to prove the main theorems of section 4.
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2 – Notations and preliminaries

Let Ω be a bounded connected open set of IRN . We suppose for

simplicity that diamΩ ≤ 1.

Denote by Lp(Ω, w) the weighted Lebesgue class with norm

(2.4) ‖f‖0,p = (

∫

Ω

|f(x)|pwdx)
1
p p ∈ [1, +∞)

where here and in the following the weight w(x) is a nonnegative function

belonging to L1
loc(IR

N) and satisfying the Muckenhoupt’s condition A2:

(2.5) sup
B

(

∮

B

wdx ·
∮

B

w−1dx) ≤ k0 .

The supremum is taken over all euclidean balls B and

∮

B

gdx =

∫

B

gdx · (

∫

B

dx)−1 .

Let us recall that if w satisfies the condition (2.5) then the following

duplicating property holds:

∃k > 0 depending only on k0 and on N such that

(2.6) w(B2ρ(x)) ≤ kw(Bρ(x))

for each x ∈ IRN and for each ρ > 0.

We refer to [11] and [12] for the proof of (2.6).

From now on we use the following notations for any measurable set E:

w(E) =

∫

E

wdx, | E |=
∫

E

dx

Similarly H1(Ω, w) is the completion of Lip(Ω) for the norm

‖f‖1,2 = {‖f‖2
0,2 + ‖∇f‖2

0,2}1/2,

and H1
0 (Ω, w) the closure of C∞

0 (Ω) in H1(Ω, w). The dual space of

H1
0 (Ω, w) is H−1(Ω, w).
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Finally the following Poincaré inequality, consequence of a stronger

inequality, holds for any f ∈ C∞
0 (Ω):

(2.7)

∫

Ω

|f |2wdx ≤ C(diam Ω)2

∫

Ω

|∇f |2wdx .

See [11] and [12] for details and proofs.

We denote by L a linear bounded operator from H1
0 (Ω, w) to

H−1(Ω, w):

(2.8)





i) Lu = −∂j(aij∂iu) + a0u ≡ L0u + a0u , aij = aji

ii) λw(x)|ξ|2 ≤ aijξiξj ≤ Λw(x)|ξ|2 Λ, λ ∈ IR, λ > 0

iii) a0w(x) ≤ a0(x) ≤ a0w(x) a0, a0 ∈ IR, a0 > 0

In the following we will set a(u, v) =
∫
Ω

aij∂iu∂jvdx, the summation

symbol is clearly understood.

For every y ∈ Ω there exists the Green’s function Gy
Ω ≡ Gy for the

Dirichlet problem relative to L0 in Ω, which is defined as solution of

a(v, Gy
Ω) = v(y) ∀v ∈ C∞

0 (Ω).

Such a Green function is symmetric in x and y and satisfies the

following growth conditions

(2.9) γ1

R0∫

r

(w(Bs(y)))−1sds ≤ Gy(x) ≤ γ2

R1∫

r

w(Bs(y)))−1sds

where γ1, γ2 are positive constants depending on N, Λ, λ and k0 in (2.5),

BR0
(y) ⊂ Ω ⊂ BR1

(y), and |x − y| = r <
R0

2
.

Let us consider the regularized Green functions Gy
Ω,r ≡ Gy

r , r > 0

which is the unique solution in H1
0 (Ω, w) of the problem:

(2.10)





∫
Ω

aijvi(G
y
r)jdx =

1

w(Br(y))

∫
Br(y)

v(x)w(x)dx

∀v ∈ C∞
0 (Ω) .
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Remark 2.1. The following properties hold:

Gy
r → Gy uniformly in each compact subset of (Ω − {y}) and weakly

in Lp(Ω, w), p ∈
(
1,

2N

2N − 1

)
.

For each r ∈ (0, R] and for each v ∈ H1
0 (Ω, w)

⋂
L∞(Ω) such that

v = 0 a.e. in Br(y) we have

(2.11)

∫

Ω

|∇Gy
r |2v2wdx ≤ 4(

Λ

λ
)2

∫

Ω

(Gy
r)

2|∇v|2wdx

Let K be a compact subset of Ω. We define

(2.12) capw(K, Ω) = inf{
∫

Ω

|∇v|2wdx; v ∈ C1
0 (A); v ≥ 1 in K }

We can extend naturally to any open set B and any arbitrary set E by

the usual passage to the supremum and to the infimum.

We will say that a property P (x) holds in w-capacity almost every-

where (w.q.e) in E ⊂ Ω if there exists a set E0 with capw(E0,Ω) = 0,

such that P (x) holds for every x ∈ E − E0.

Let v be a function E → [−∞,+∞] , defined everywhere except at

most on a set of w-capacity zero. Recall that the oscillation of v on a set

E with non zero capacity is:

osc
E

v = sup
E

wv − inf
E

wv

where here and in the following infE
w (supE

w) denote the essential infi-

mum (supremum) taken in the w-capacity sense, and with the convention

that (+∞ − (−∞)) = 0 and (−∞ − (+∞)) = 0. If the w-capacity of E is

zero we set the oscillation to be zero.

We say that v is w-quasi continuous if for every ε > 0 there exist

A ⊂ Ω with capw(A, Ω) < ε such that v is continuous in Ω \ A. For every

v ∈ H1(Ω, w) there exists a w-quasi continuous representative ṽ = v a.e.:

ṽ(x) = lim
ρ→0

inf(w(Bρ(x)))−1

∫

Bρ(x)

vwdx
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By vE = vE,Ω where E ⊂ Ω, we denote the w-capacitary potential of

E in Ω with respect to the operator L0 i.e. the unique solution of

(2.13)





vE ∈ H1
0 (Ω, w) vE ≥ 1w-q-e in E

a(vE, vE − f) ≤ 0

∀f ∈ H1
0 (Ω, w) f ≥ 1w-q-e inE.

L0vE belongs to H−1(Ω, w) and is a positive radon measure µE supported

on ∂E satisfying:

(2.14) a(vE, f) =

∫

Ω

fdµE ∀f ∈ H1
0 (Ω, w).

See [5], [11] and [12] for proofs and details.

In section 5 we use the following bounds which are true for every

r ∈ (0, R/2):

C1

( R∫

r

s(w(Bs(x0)))
−1ds

)−1

≤ capw(Br(x0), BR(x0)) ≤

≤ C2

( R∫

r

s(w(Bs(x0)))
−1ds

)−1

Definition 2.1. The set of Radon‘s measures µ defined on Ω such

that:

lim
r→0+

(
sup
x∈Ω

∫

Br(x)∩Ω

( 1∫

|y−x|

s2

w(Bs(x))

ds

s

)
d|µ|(y)

)
= 0

where |µ| denote the total variation of µ, is called the Kato space K(Ω) ≡
K(Ω, w).

This definition actually generalizes the one given by Kato in [16] and

is due to Dal Maso and Mosco in the case w ≡ 1, (see [9]).

The natural norm with which K(Ω) is equipped, is:

‖µ‖K(Ω) ≡ sup
x∈Ω

∫

Ω

( 1∫

|y−x|

s2

w(Bs(x))

ds

s

)
d|µ|(y).
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Remark 2.2. We can easily check that if f ∈ Lp(Ω, w) with p ≥
p0(N, w), then fw ∈ K(Ω), in particular if f ∈ L∞ then ‖fw‖K(Ω) ≤
C(diam Ω)2. Moreover it can be seen that K(Ω) ⊂ H−1(Ω, w) (see [1]).

For other properties of Kato spaces, see [1] and [9].

We state now a theorem which will be repeatedly used in the proof

of the main results.

Theorem 2.1. If ν ∈ H1(BR(x0), w) and L0ν = µ in the weak

sense with µ ∈ K(BR(x0)) then for each q ∈ (0, 1)

osc
BqR

2ν ≤ C

w(BR(x0))
‖ν − νR‖2

L2(BR(x0)) + C‖µ‖2
K(BR(x0))

∫

BqR(x0)

|∇ν|2Gx0
B2R

wdx ≤ C

w(BR(x0))
‖ν − νR‖2

L2(BR(x0)) + C‖µ‖2
K(BR(x0))

where νR =
1

w(BR(x0))

∫

BR

νwdx and C stands for any positive constant

depending only on λ,Λ, N ,k0 and q.

In particular, ν is continuous in BR.

The proof of this theorem can be obtained as in [9], just modifying

in the most natural way when the presence of w makes it necessary.

We introduce the following level sets:

E1(ε, ρ) =E1(ψ1, x0; ε, ρ)={x ∈ Bρ(x0) :ψ1(x)≥sup w
Bρ(x0)ψ1 − ε}

(2.15)

E2(ε, ρ) =E2(ψ2, x0; ε, ρ)={x ∈ Bρ(x0) :ψ2(x)≤ inf w
Bρ(x0)ψ2 + ε}

and their relative capacities

(2.16) δ1(ε, ρ) =
capw(E1(ε, ρ), B2ρ(x0))

capw(Bρ(x0), B2ρ(x0))

(2.17) δ2(ε, ρ) =
capw(E2(ε, ρ), B2ρ(x0))

capw(Bρ(x0), B2ρ(x0))
.
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According to [24] and [10] the Wiener modulus of the obstacle ψi for

σ > 0 is defined by:

(2.18)

ωi,σi
(r, R)=ωi,σi

(ψi, x0; r, R)=inf

{
ω > 0 : ω exp

( R∫

r

δi(σω, ρ)
dρ

ρ

)
≥ 1

}

where i = 1 refers to the lower obstacle and i = 2 to the upper obstacle.

We state now a few properties which are particularly relevant. For their

proofs see [24].

Lemma 2.2. Let 0 < r ≤ R be fixed. Then the constant ε > 0, and

σi > 0 for i = 1; 2 satisfy

σi = ε exp

( R∫

r

δi(ε, ρ)
dρ

ρ

)

if and only if

ωi,σi
(r,R) = exp

(
−

R∫

r

δi(ε, ρ)
dρ

ρ

)
and σiωi,σi

(r, R) = ε.

We shall also refer to the following integral

(2.19)

R∫

r

δ∗
i (ε, ρ)

dρ

ρ

where δ∗
i are the relative w-capacity for i = 1 and i = 2 of, respectively,

the level sets

E∗
1(ε, ρ) = {x ∈ Bρ(x0) : ψ1(x) ≥ ψ1(x0) − ε}

E∗
2(ε, ρ) = {x ∈ Bρ(x0) : ψ2(x) ≤ ψ

2
(x0) + ε}

where the pointwise values v(x0) and v(x0) ∈ [−∞,+∞] of an arbitrary

function v : Ω → [−∞, +∞] are defined by:

(2.20) v(x) = inf
ρ>0

( sup
Bρ(x)

wv)
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(2.21) v(x) = sup
ρ>0

( inf
Bρ(x)

wv)

The Wiener moduli ω∗
i,σi

(r, R) are defined as ωi,σi
(r, R) with δi replaced

by δ∗
i .

Remark 2.3. From the definitions it follows immediately that

δi(ε, ρ) ≤ δ∗
1(ε, ρ) for every ε > 0, ρ > 0, hence ωi,σi

(r, R) ≤ ω∗
i,σi

(r, R)

for every 0 < r ≤ R and σ > 0. Moreover Lemma 2.2 holds with the δi

and ωi,σi
replaced by δ∗

i and ω∗
i,σi

.

The vanishing of ωi,σi
(r, R) will play an important role in the estima-

tion of the Holder continuity of the solution. The following lemma links

the convergence to zero of the Wiener modulus and the behavior of the

relative capacity of the level sets.

Lemma 2.3. Assume that −∞ < ψ1(x0) < +∞ and −∞ <

ψ
2
(x0) < +∞. Then for i = 1 and i = 2 the following are equivalent:

i) for every ε > 0 there exists R > 0 such that limr→0 ωi,σi
(r, R) = 0 for

σi = σi(r) such that σiωi,σi
(r, R) = ε for all 0 < r ≤ R

ii) for every ε > 0 there exists R > 0 such that

(2.22)

R∫

0

δi(ε, ρ)
dρ

ρ
= +∞

Definition 2.2. We say that x0 is a Wiener point of {ψ1, ψ2} if

for every ε > 0 and for every R > 0

(2.23)

R∫

0

δ∗
i (ε, ρ)

dρ

ρ
= +∞

for i = 1; 2.

Remark 2.4. If ψ1(x0) = −∞ and ψ
2
(x0) = +∞ then x0 is trivially

a Wiener point. Furthermore x0 is a Wiener point for the double obstacle

problem if and only if it is a Wiener point for both the lower and upper

obstacle as defined in [24] and [5].
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3 – Existence of solutions

In this section we prove an existence result for two obstacle problems

involving quasi linear degenerate elliptic operator.

Let H(x, η, ξ) : IRN × IR × IRN → IR satisfies

(3.24)





H is a Caratheodory function

H(x, ., .) is locally Lipschitz continuous for a.e.x ∈ Ω

|H(x, η, ξ)| ≤ (k1 + k2(|η|)|ξ|2)w(x)

k2(|η|)can be supposed not decreasing in η

Consider the problem

(3.25)





u ∈ K ∩ L∞(Ω)

a(u, v − u) +
∫
Ω

(a0 + H(u))(v − u)dx ≥ 0

∀v ∈ K ∩ L∞(Ω)

where H(u) ≡ H(x, u(x),∇u(x)) and

K = {v ∈ H1
0 (Ω, w) : ψ1 ≤ v ≤ ψ2 w − q.e.}.

Suppose

(3.26) K ∩ L∞(Ω) *= ∅

Theorem 3.1. Assume (2.8),(3.24) and (3.26) then there exist u

solution of problem (3.25).

To prove Theorem 3.1, we shall use the following approximation pro-

cedure (see [6]). We’ll find the existence for an approximated problem

and then show that the sequence converges to the solution using uniform

L∞ and H1(Ω, w) bounds.
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Explicitly, consider the sequence of approximating problems

(3.27)





um ∈ K

a(um, v − um) +
∫
Ω

(a0um + Hm(um))(v − um)dx ≥ 0

∀v ∈ K

where Hm(u) = Hm(x, u(x),∇u(x)) and Hm is defined by

(3.28) Hm(x, η, ξ) =
H(x, η, ξ)

1 + m−1w−1(x)|H(x, η, ξ)|

so that Hm satisfies

(3.29)





i) Hmw−1 ∈ L2(Ω, w) and soHm ∈ H−1(Ω, w)

ii) |Hm| ≤ mw

iii) |Hm| ≤ |H|

Proposition 3.2. In the previous notations and hypotheses um

solution of problem (3.27) exists.

Proof. Consider the operators Tm : H1
o (Ω, w) → K that maps

v ∈ H1(Ω, w) into Tm(v) = gm the unique solution of the following

variational inequality which exists by Stampacchia theorem on bilinear,

coercive forms:

(3.30)





gm ∈ K

a(gm, f − gm) +
∫
Ω

(a0gm + Hm(v))(f − gm)dx ≥ 0

∀f ∈ K

Any fixed point for Tm is a solution of (3.27), thus it will be enough

to prove that the assumptions of the Schauder fixed point theorem are

satisfied.
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First choose as a test function in (3.30) f = gm−1

2
(gm−dm)++

1

2
(gm−

dm)− where dm = sup{supw
Ω ψ1, m/a0} and dm = inf{infw

Ω ψ2,−m/a0}
using the properties of Hm it is easy to obtain

(‖(gm − dm)+‖)2
1,2 + (‖(gm − dm)−‖)2

1,2 ≤ 0

hence

‖Tm(v)‖∞ ≤ dm where dm = dm ∨ (−dm) ∀ v ∈ H1
0 (Ω, w).

Consider the convex set closed in H1
0 (Ω, w):

B = {v ∈ H1
0 (Ω, w) ∩ L∞(Ω) : ‖v‖∞ ≤ dm}

First claim : Tm is continuous from B into B in the H1(Ω, w)-norm.

Indeed as Hm is a Caratheodory function we can apply the Lebesgue

dominated theorem and so if vn is a sequence of functions in B converging

in the H1(Ω, w)-norm towards a function v ∈ B, then:

Hm(vn)w−1 → Hm(v)w−1 in L2(Ω, w).

Now consider the problem (3.30)n where Hm(v) is replaced by Hm(vn),

then choosing as test function Tm(vn) and Tm(v) respectively in (3.30)

and (3.30)n we obtain

(λ ∧ a0)‖Tm(vn) − Tm(v)‖1,2 ≤ ‖(Hm(vn) − Hm(v))w−1‖0,2

and the first claim is proved.

Second claim Tm is relatively compact in H1(Ω, w).

The following inequality can be easily derived from (3.30) for a fixed

v0 ∈ K

(λ ∧ a0)‖Tm(v)‖2
1,2 ≤ (Λ ∨ a0)‖v0‖1,2‖Tm(v)‖1,2+

+ mw1/2(Ω)(‖v0‖0,2 + ‖Tm(v)‖0,2)
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hence there is a constant Cm such that

‖Tm(v)‖1,2 ≤ Cm ∀v ∈ H1(Ω, w).

Choosing again as a test function Tm(vn) and Tm(vn′) respectively in

(3.30)n′ and (3.30)n we obtain

(λ ∧ a0)‖Tm(vn) − Tm(vn′)‖1,2 ≤ 2mw1/2(Ω)‖(Hm(vn) − Hm(vn′))w−1‖0,2

and the second claim is proved.

This concludes the proof.

The following proposition shows that um, solution of (3.27), admits

uniform bounds in m.

Proposition 3.3. Assume previous notations and hypotheses then

the following estimates hold for any solution um of (3.27)

‖um‖∞ ≤ k3(3.31)

‖um‖1,2 ≤ k4(3.32)

where k3 = {supw
Ω ψ1 ∨(k1a

−1
0 )∨(− infw

Ω ψ2)} and k4 depends on the struc-

tural data of the problem but not on m.

Proof. We will only introduce convenient test functions, as the proof

is analogous to the one of the uniformly elliptic case (see [6]). We choose

as a test function in (3.27)

v = um − η(um − C3)
+ exp tm((um − C3)

+)2+

+ η∗(um − C∗
3 )− exp tm((um − C∗

3 )−)2

where 



C3 = supw
Ω ψ1 ∨ (k1a

−1
0 )

C∗
3 = infw

Ω ψ2 ∧ (−k1a
−1
0 )

tm = λ−2k2
2(‖um‖∞)

η = exp(−tm{‖um‖∞ + C3}2)

η∗ = exp(−tm{‖um‖∞ + C∗
3}2)
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It is immediate to obtain that

C∗
3 ≤ um ≤ C3

and thus (3.31). Similarly, for (3.32) we use the test function

(3.33) v = um + η(v0 − um) exp t(v0 − um)2

where 



t = λ−2k2
2(k3)

η = exp(−t(‖um‖∞ + ‖v0‖∞)2)

v0 ∈ K ∩ L∞(Ω) .

It is easy to see that plugging v into (3.27) we obtain (3.32).

Proof of theorem 3.1. Consider the sequence {um}m∈N where

for each m, um is a solution (3.27), by estimate (3.31) and (3.32) we can

find a subsequence such that:

{
um ⇀ u weakly in H1

0 (Ω, w)

um → u a.e. in Ω.

in particular u belongs to K ∩ L∞(Ω).

Now we can choose as test function the one introduced in (3.33) with

v0 := u and by the Lebesgue dominated convergence we can check the

strong convergence of the um towards u in H1(Ω, w).

On the other hand the sequence {Hm(um)} converges a.e. to H(u),

hence by (3.24) and (3.29) Hm(um)w−1 converges L1-strong to H(u)w−1

by Vitali’s theorem and then

a(u, u) ≤ lim inf a(um, um) ≤

≤ lim{a(um, v) −
∫

Ω

(a0um + Hm(um))(v − um)dx} =

= a(u, v) −
∫

Ω

(a0u + H(u))(v − u)dx

and the proof is achieved.
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4 – Oscillation and energy estimates

In this section we first estimate the oscillation of a solution of the two-

obstacle problem then in a slightly more restricted situation we estimate

the energy.

Here and throughout this section we shall use the same notations and

the same hypotheses on L, H,K, etc. as in the previous sections. We’ll

assume also that H(x, τ, ξ) is differentiable in the τ variable for any ξ

and a.e. on x and

(4.34)
∂H

∂τ
+ a0 ≥ α0w(x) where α0 ∈ IR, α0 > 0.

For simplicity of notations we denote H̃(x, τ, ξ) = H(x, τ, ξ) + a0τ and

H̃(u) ≡ H̃(x, u,∇u).

We are then concerned with u solution of:

(4.35)





u ∈ H1(Ω, w) ∩ L∞(Ω) ψ1 ≤ u ≤ ψ2

a(u, v−u)+

∫

Ω

(H̃(u))(v−u) dx ≥ 0

∀v ∈ H1(Ω, w) ∩ L∞(Ω) ψ1 ≤ v ≤ ψ2 , u − v ∈ H1
0 (Ω, w).

Definition 4.1. We say that x0 is a regular point of {ψ1, ψ2} if

any solution u of (4.35) is continuous at x0

We need some notations to express the modulus of continuity of u at

a Wiener point x0 ∈ Ω. Here and in the following Bρ = Bρ(x0) unless

some ambiguity arise.

dR =





sup
BR

ψ1 ∧ inf
BR

ψ2 if uR < sup
BR

ψ1 ∧ inf
BR

ψ2

uR =
1

w(BR)

∫

BR

u(x)w(x)dx if sup
BR

ψ1∧inf
BR

ψ2 ≤uR ≤sup
BR

ψ1∨inf
BR

ψ2

sup
BR

ψ1 ∨ inf
BR

ψ2 if sup
BR

ψ1 ∨ inf
BR

ψ2 < uR

Z(R) = {[sup
BR

ψ1 − inf
BR

ψ2]
+ + w(BR)− 1

2 ‖u − dR‖L2(BR,w)
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and finally

Ψ(ε1, ε2, R) = [ψ
2
(x0) − ψ1(x0)] + {[sup

BR

ψ1 − ψ
2
(x0)] ∨ ε2}+

+ {[ψ1(x0) − inf
BR

ψ2] ∨ ε1}

In particular for 0 < r ≤ R, σ1 > 0, σ2 > 0 let

Ψσ1,σ2
(r, R) = Ψ(ε1, ε2, R) where εi = σiωi,σi

(r,R) for i = 1; i = 2.

Let us give a first estimate which involves only the oscillation of u.

Theorem 4.1. Assume hypothesis (2.5), (2.8), (3.24) and (4.34).

Let s ∈ (0, 1) then there exist positive constants C = C(λ, Λ, N, k0, s),

β = β(λ, Λ, N, k0) and α = α(λ, Λ, N, k0) such that for any solution of

(4.35) we have:

(4.36) osc
Br

u ≤ Ψσ1,σ2
(r,R) + c{(Z(R)[ω∗

1,σ1
(r,R) + ω∗

2,σ2
(r, R)]β + Rα}

for every 0 < r ≤ sR and for every σi > 0.

Remark 4.1. If −∞ < ψ1(x0) = ψ
2
(x0) < +∞ then Theorem 4.1

guarantees that:

x0 is a Wiener point according to definition 2.2

implies

x0 is a regular point according to definition 4.1.

More precisely:

Ψσ1,σ2
(r, R) = (sup

BR

ψ1 − ψ1(x0)) ∨ (σ2ω
∗
2,σ2

(r, R))+

+ [ψ
2
(x0) − inf

BR

ψ2] ∨ (σ1ω
∗
1,σ1

(r, R))

therefore if x0 is a Wiener point for {ψ1, ψ2} then the Wiener moduli go

to zero as r does and u is continuous at x0, indeed:

lim
r→0+

sup osc
Br

u ≤ (sup
BR

ψ1 − ψ1(x0)) + (ψ
2
(x0) − inf

BR

ψ2) + CRα
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and, of course, the right hand side converges to zero as soon as R does.

To give the proof of Theorem 4.1 we need to state the following

propositions that will be proved in the next section :

Proposition 4.2. In the previous hypotheses and for 0 < s <
1

3
there exists C = C(λ, Λ, N, k0) such that:

(4.37) osc
BsR

u ≤ [sup
BR

ψ1− inf
BR

ψ2]
++C

{
1

w(BR(x0))
1
2

‖u−dR‖L2(BR,w)+R

}

for u solution of (4.35).

Next we are giving estimates of the supremum and the infimum of u

in term of

Ψ1(ε, R) = inf
BR

ψ2 ∧ [ψ1(x0) − ε], Ψ2(ε, R) = sup
BR

ψ1 ∨ [ψ
2
(x0) + ε].

Lemma 4.3. In the previous hypotheses, there exist some positive

constants C = C(λ, Λ, N, k0), β = β(λ, Λ, N, k0) and α = α(λ, Λ, N, k0)

such that

(4.38) inf
Br

u≥Ψ1(ε, R)−C

{
[inf
BR

u−Ψ1(ε, R)]−exp

(
−β

R∫

r

δ∗
1(ε, ρ)

dρ

ρ

)
+Rα

}

(4.39) sup
Br

u≤Ψ2(ε, R)+C

{
[sup

BR

u−Ψ2(ε, R)]+exp

(
−β

R∫

r

δ∗
2(ε, ρ)

dρ

ρ

)
+Rα

}

for any 0 < r ≤ R, and ε1 > 0, ε2 > 0.
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We can now proceed to the

Proof. Let t1 = Ψ1(ε1, sR); t2 = Ψ2(ε2, sR). Subtracting (4.38) to

(4.39) we get:

osc
Bsr

u≤ t2−t1+C

{
[ inf
BsR

u−t1]
−∨(sup

BsR

u−t2)
+]

2∑

i=1

exp

(
−β

R∫

r

δ∗
i (εi, ρ)

dρ

ρ

)
+Rα

}

Considering that t1 ≤ t2, inf u ≤ t2 and supu ≥ t1:

(4.40) osc
BsR

u ≥ ( inf
BsR

u − t1)
− ∨ (sup

BsR

u − t2)
+

and estimating oscBsR
u in the left hand side of (4.40) by Proposition 4.2,

we obtain:

(4.41) osc
Br

u ≤ Ψ(ε1, ε2, R))+C

{
Z(R)

2∑

i=1

exp

(
−β

R∫

r

δ∗
i (εi, ρ)

dρ

ρ

)
+Rα

}

From this and the definition of ω∗
i,σi

(r, R) we have immediately (4.36).

The next goal is to estimate the potential semi-norm V (R)

V (R) = osc
BR

u +

(
λ

∫

BR

|∇u|2Gx0
B

2 R
q

(x0)w(x)dx

) 1
2

of the solution u of problem (4.35), at the point x0 ∈ Ω. We recall

that here and in the rest of the section Br ≡ Br(x0) when no confusion

arise. We obtain an energy decay under the hypothesis that there exists

a function ν such that

(4.42) ν ∈ H1(BR1
, w), L0ν ∈ K(BR1

) and ψ1 ≤ ν ≤ ψ2 q.e. in BR1

for some R1 > 0.

Observe that if ψ1(x0) < ψ
2
(x0) then (4.42) is satisfied by a suitable

constant provided that R1 is small enough.
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Theorem 4.4. Assume (2.5),(2.8),(3.24),(4.34) and (4.42) then

there is a constant C = C(λ, Λ, N, k0) such that for u solution of (4.35)

V (r) ≤C{w(BR(x0))
−1/2‖u−ν‖L2(BR,w)[ω1,σ1

(r, R)+ω2,σ2
(r, R)]β+

(4.43) + σ1ω1,σ1
(r, R) + σ2ω2,σ2

(r, R)+

+ w(BR(x0))
−1/2‖ν − νR‖L2(BR,w) + ‖L0ν‖1/2

K(BR) + Rα}

for every 0 < r ≤ R < R1 and for every σ1 and σ2 positive, α and β as

in theorem 4.1.

To prove this theorem we need the following two propositions that

will be proved in the next section.

Set g(R)2 = R2 + ‖L0ν‖K(BR) +
1

w(BR)
‖ν − νR‖2

L2 .

Proposition 4.5. In the hypothesis of theorem 4.4 for each 0 <

q <
1

3
:

(4.44)

sup
BqR

((u − ν)±)2 + λ

∫

BqR

|∇(u − ν)±|2Gx0
B2R

w(x)dx ≤

≤ C{ 1

w(BR)

∫

BR\BqR

|(u − ν)±|2wdx + g(R)2}.

In order to stress the constants that we have to carefully evaluate,

we shall denote by C all the harmless ones while those to be evaluated

by cj with j ∈ IN.

Proposition 4.6. In the hypothesis of theorem 4.4 for every γ > 0

(4.45) λ

∫

BsR(z)

|∇(u − ν)±|2Gz
BtR(z)w(x)dx + ((u − ν)±)2(z) ≤

(c1+γ) sup
BtR(z)

((u−ν)+)2+
c2λ

γ

∫

BtR(z)\BsR(z)

|∇(u−ν)±|2Gz
BtR(z)w(x)dx+Cg(R)2

where s <
2

3
t.
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Let us introduce now the following quantities

mr =
1

w(Br)

∫

Br

(u − ν)w(x)dx

ar =





supw
Br

(ψ1 − ν) if mr < supBr
(ψ1 − ν)

mr if supBr
(ψ1 − ν) ≤ mr ≤ infBr(ψ2 − ν)

infBr(ψ2 − ν) if mr > infBr(ψ2 − ν)

Before starting the proof of theorem 4.4, we state one more lemma

which is a refined form of Lemma 4.3 and which will allow us to give an

estimate to |ar − mr|:

Lemma 4.7. In the previous hypothesis, there exist two constants

C = C(λ, Λ, N, k0) and β = β(λ, Λ, N, k0) such that

(4.46)

inf
Br

(u − ν) ≥sup
Br

(ψ1 − ν) − C

{
osc
BR

(u − ν) exp

(
− β

R∫

r

δ1(ε, ρ)
dρ

ρ

)
+

+ ε1 + w(BR)− 1
2 ‖ν − νR‖L2(BR) + ‖L0ν‖K(BR) + Rα

}

(4.47)

sup
Br

(u − ν)≤ inf
Br

(ψ2 − ν)+ C

{
osc
BR

(u − ν)] exp

(
− β

R∫

r

δ2(ε, ρ)
dρ

ρ

)
+

+ ε2 + w(BR)− 1
2 ‖ν − νR‖L2(BR)+‖L0ν‖K(BR) + Rα

}

for every 0 < r ≤ R, ∀ε > 0 and for α as in Theorem 4.1.

Remark 4.2. From lemma 4.7, we immediately have that

(4.48)

|ar − mr| ≤C

[
osc
BR

(u − ν)
2∑

i=1

exp

(
− β

R∫

r

δi(εi, ρ)
dρ

ρ

)
+ ε1+

+ ε2 + g(R) + Rα

]
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for r < R.

We are giving now the proof of theorem 4.4.

Proof. In Proposition 4.6 we may choose z ∈ BqR(x0) with q < 1/3,

and thus if we take s = 2q and t = (1 − q) in order to have B(1−q)R(z) −
BsR(z) ⊂ BR(x0) − BqR(x0), (4.45) becomes:

sup
BqR(x0)

((u − ν)±)2 ≤ (c1 + γ) sup
BR(x0)

((u − ν)±)2+

+
c3λ

γ

∫

BR(x0)\BqR(x0)

|∇(u − ν)±|2Gx0
B2R(x0)wdx + Cg(R)2.

Observe that we have used the property (2.9) of the Green function.

Furthermore Proposition 4.5 gives the following

c4λ

∫

BqR

|∇(u − ν)±|2Gx0
B2R

wdx ≤ sup
BR

[(u − ν)±]2 + Cg(R)2

where obviously c4 can be chosen as small as desired.

Adding these two inequalities, multiplying by γ and summing to the

resulting inequality the term c3λ
∫

BqR(x0)

|∇(u− ν)±|2Gx0
B2R

wdx we obtain:

(4.49)

γ sup
BqR

((u − ν)±)2 + (c4λγ + c3λ)

∫

BqR

|∇(u − ν)±|2Gx0
B2R

wdx ≤

≤ γ(1 + c1 + γ) sup
BR

((u − ν)±)2+

+ c3λ

∫

BR

|∇(u − ν)±|2Gx0
B2R

wdx + Cg(R)2.

Notice that if ν satisfies (4.42) then so does also ν + aR, therefore we

can rewrite (4.49) with ν + aR. We make this shift because we want

to estimate the oscillation of u − ν and as supBR
(u − ν − aR) > 0 and

infBR
(u − ν − aR) < 0 for R ≥ r ≥ 0 these imply that oscBR

(u − ν) =
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supBR
(u − ν − aR)+ + supBR

(u − ν − aR)− . (4.49) becomes:

γ

2
osc
BqR

2(u − ν) + (c4λγ + c3λ)

∫

BqR

|∇(u − ν)|2Gx0
B2R

wdx ≤

≤ γ(1 + c1 + γ) osc
BR

2(u − ν) + c3λ

∫

BR

|∇(u − ν)|2Gx0
B2R

wdx + Cg(R)2.

Through the Maximum Principle and (2.9) (see also [5]), we obtain the

following inequality that will be useful later.

Gx0
B2R(x0) = Gx0

B
2Rq−1 (x0) + Gx0

B2R(x0) − Gx0
B

2Rq−1 (x0) ≤

≤ Gx0
B

2Rq−1 (x0) − CR2

λw(BR)
.

The following Poincaré inequality (see [11] and [12]) will also be used

later:

Cc3R
2

w(BR)

∫

BR

|∇(u − ν)|2wdx ≥ c5

w(BR)

∫

BR

|(u − ν − mR)|2wdx ≥

≥ c5

w(BR)

∫

BR

|(u − ν − aR)|2wdx − C|aR − mR|2 ≥

≥ c6 osc
BqR

2(u − ν) − C|aR − mR|2 − Cg(R)2.

The last inequality follows from (4.44). Thus we obtain:

(4.50)

(γ

2
+ c6

)
osc
BqR

2(u − ν) + (c4λγ + c3λ)

∫

BqR

|∇(u − ν)|2Gx0
B2R

wdx ≤

≤ γ(1 + c1 + γ) osc
BR

2(u − ν)+

+ c3λ

∫

BR

|∇(u − ν)|2Gx0
B

2Rq−1
wdx + C|aR − mR|2 + Cg(R)2.
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We are practically done, we will just use ”standard” techniques to get

precisely (4.43).

Namely, we will first estimate |aR −mR| using (4.48) with r = R and

R = R2/2, then we will add on both sides of (4.50) hc3λ oscBqR
2(u − ν).

Now we can choose γ such that
γ

2
+ c6 > γ(1 + c1 + γ) and h such that

c3λ +
1

h
(
γ

2
+ c6) = c4γ + c3.

This guarantees that the constant is larger on the left hand side than

on the right hand side, so that (4.50) can be written

(4.51)

(1 + c7)Vν(qR)2 ≤

≤ c7Vν(R)2 + C̃

(
Vν

(R2

2

) 2∑

i=1

exp

(
− β

R2∫

R

δi(εi, ρ)
dρ

ρ

)
+ ε1+

+ ε2 + g2(R2) + R2α
2

)
≡ c7V

2
ν (R) + C̃A2(R, R2)

where

Vν(ρ)2 ≡ h osc
Bρ

(u − ν) + λ

∫

Bρ

|∇(u − ν)|2Gx0
B

2ρq−1
wdx.

Fix r ∈
(
0,

qR

2

)
and 1 ≤ τ ≤ R

2r
, suppose

(4.52) τ > q−1 and V 2
ν (r) ≥ 2C̃A2(τr,R)

then for q−1r ≤ ρ ≤ τr:

(1 + C)V 2
ν (qρ) ≤ CV 2

ν (ρ)

which implies by a standard analytical lemma (see e.g. [24]):

(4.53) V 2
ν (r) ≤ Cτ−βV 2

ν (τr) .

If 1 ≤ τ ≤ q−1 (4.53) holds trivially for C = q−β.



440 I. BIRINDELLI – M.A. VIVALDI [26]

If Vν does not satisfy (4.52) then

(4.54) V 2
ν (r) ≤ 2C̃A2(τr,R).

Therefore in any case we have

(4.55)
V 2

ν (r) ≤ C

{
V 2

ν

(R

2

)[
τ−β + τβ

2∑

i=1

exp

(
− β

R∫

r

δi(εi, ρ)
dρ

ρ

)]
+

+ ε2
1 + ε2

2 + g(R)2 + R2α

}
.

We have used the fact that δi ≤ 1 and thus:

τβ exp

(
− β

τr∫

r

δi(εi, ρ)
dρ

ρ

)
≥ 1.

Consequently if we choose

τ =

[
1

2

2∑

i=1

exp

(
−

R∫

r

δi(εi, ρ)
dρ

ρ

)]− 1
2

<
R

2r

(4.55) becomes:

(4.56)
V 2

ν (r) ≤ C

{
V 2

ν (R/2)

[ 2∑

i=1

exp

(
− β

2

R∫

r

δi(εi, ρ)
dρ

ρ

)]
+

+ ε2
1 + ε2

2 + g(R)2 + R2α

}

It is easy to check that (see also Thm 2.1)

|V0(r) − Vν(r)| ≤
[
h( osc

BR/2

ν)2 + λ

∫

BR/2

|∇ν|2Gx0
Rq−1wdx

]1/2

≤ g(R)

We have finally obtained

(4.57)
V0(r) ≤ C

{
V0(R/2)

[ 2∑

i=1

exp

(
− β

R∫

r

δi(εi, ρ)
dρ

ρ

)]
+

+ ε1 + ε2 + g(R)

}
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Inequality (4.57) obviously holds also with V replacing V0, thus we ob-

tain the desired inequality (4.43) as soon as we let εi → σiωi,σi
(r, R) for

i = 1; i = 2.

Remark 4.3. Theorem 4.4 extends the results obtained in [10] for

the uniformly elliptic linear case, to the degenerate case with quadratic

Hamiltonian (see theorem 2.2 of [10]). But it should be noticed that

in the right hand side of (4.43) there is the term ‖L0ν‖
1
2
K(BR) which is

somehow less natural then ‖L0ν‖K(BR) appearing in theorem 2.2 of [10].

Some comments thus seem necessary.

As previously mentioned , if ψ1(x0) < ψ
2
(x0) then in a small neigh-

borhood of x0, we can choose a constant as the regular separating func-

tion ν of (4.42) and thus, of course, the anomaly disappears. If instead,

ψ1(x0) = ψ
2
(x0) then beside (4.43), we can obtain the following inequal-

ity,

(4.58)

V (r)≤C

{
w(BR(x0))

−1/2‖u−ν‖L2(BR,w)[ω1,σ1
(r,R)+ω2,σ2

(r,R)]β+

+ σ1ω1,σ1
(r, R) + σ2ω2,σ2

(r,R)+

+
1

(w(BR(x0))
1
2

‖ν − νR‖L2(BR,w) + ‖L0ν‖K(BR) + Rα+

+ (sup
BR

ψ1 − νR)+ + (νR − inf
BR

ψ2)
+

}

Inequality (4.58) doesn’t appear to us to be a real improvement with

respect to (4.43).

5 – Proofs of the propositions

In this section we give the proof of the propositions and lemmas used

to prove the two theorems of the previous section. Most of these are

analogous to the proof of proposition 4.5 though usually slightly easier.

Thus we will write it down in details, in the other proofs we will just

emphasize the differences.

Proof of proposition 4.5. Let X1 = cosh{M((u − ν)+)2} and

X2 = sinh{M((u − ν)+)2}. Similarly to [27] we choose as a test function
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in (4.35)

v = u − ε[(u − ν)+θGρX1]

where Gρ = Gz
ρ refers to the approximate Green’s function relative to

Gz
B2R(z) (see (2.10)) and θ is a suitable function which is zero outside of

BtR(z) and that will be determined later.

It is easy to check that for the convexity of K, with ε sufficiently

small, v is in K, and (4.35) becomes

0 ≥ a(u, (u − ν)+θGρX1) +

∫

BR(z)

H̃(u)(θGρ(u − ν)+X1)dx =

= a((u − ν)+, (u − ν)+θGρX1) +

∫

BR(z)

H̃(u)(θGρ(u − ν)+X1)dx+

+ a(ν, (u − ν)+θGρX1) ≥
≥ λ

∫

BR(z)

|∇(u − ν)+|2(X1 + 2M [(u − ν)+]2X2)θGρwdx+

(5.59) +

∫

BR(z)

aij(u − ν)iθjGρX1(u − ν)+dx+

+

∫

BR(z)

aij(u − ν)i(Gρ)jθX1(u − ν)+dx+

− k1

∫

BR(z)

GρθX1(u − ν)+wdx − k2

∫

BtR(z)

|∇(u−ν)|2GρθX1(u−ν)+wdx

− k2

∫

BtR(z)

|∇ν|2GρθX1(u − ν)+wdx + a(ν, (u − ν)+θGρX1)

≡ Aρ
1 + Aρ

2 + Aρ
3 − Aρ

4 − Aρ
5 − Aρ

6 + Aρ
7.

Observe that a(ν, (u − ν)+θGρX1) =
∫

BR

(Gρ)θ(u − ν)+X1d(L0ν) so

that letting ρ converge to zero we get from theorem 2.1:

A0
6 − A0

7 ≤ Cg(R)2.

Let s ∈ (0, t), t ∈ (0, 1) and τ ∈ C1(IRIN) such that 0 ≤ τ ≤ 1, τ = 1

on BsR(z) , suppτ ⊂ BtR(z) and

(5.60) |∇τ | ≤ C(t, s)r−1.
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We now choose θ = τ 2.

Let us evaluate the terms in (5.59). We first choose M large enough

such that

Aρ
1 − Aρ

5 ≥
∫

BtR(z)

|∇(u − ν)+|2Gρτ
2X1wdx.

Furthermore observe that

(5.61)

|Aρ
2| =

∣∣∣∣
∫

BR(z)

aij(u − ν)iθjGρX1(u − ν)+dx

∣∣∣∣ ≤

≤ Λε

∫

BtR(z)\BsR(z)

|∇(u − ν)+|2X1τ
2Gρwdx+

+
Λ

ε

∫

BtR(z)\BsR(z)

|(u − ν)+|2X1|∇τ |2Gρwdx.

Letting ρ converge to 0 and using (5.60) together with the properties

(2.9) of Gy we obtain:

(5.62)

|A0
2| ≤ Λε

∫

BtR(z)\BsR(z)

|∇(u − ν)+|2X1τ
2Gz

B2R(z)wdx+

+
Λ

ε

∫

BtR(z)\BsR(z)

|(u − ν)+|2X1|∇τ |2Gz
B2R(z)wdx ≤

≤ λ

6

∫

BtR(z)

τ 2X1|∇(u − ν)+|2Gz
B2R(z)wdx+

+
C

w(BsR(z))

∫

BtR(z)\BsR(z)

X1|(u − ν)+|2wdx

Similarly, with ρ <
sR

2
and choosing τ := τ0τ̃ where τ0 = 0 on BsR/2(z)

and equal to 1 on BtR(z) − BsR(z) so that we can use the inequality
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(2.11), Aρ
3 becomes:

Aρ
3 =

∫

BR(z)

aij(u − ν)i(Gρ)jτ
2X1(u − ν)+dx =

=
1

2M

∫

BR(z)

aij[X2τ
2]i(Gρ)jdx − 1

M

∫

BtR(z)\BsR(z)

aijX2τiτ(Gρ)jdx ≥

(5.63)

≥ 1

2Mw(Bρ(z))

∫

Bρ(z)

X2τ
2wdx − Λ3ε

Mλ2

∫

BtR(z)\BsR(z)

G2
ρ|∇(τX

1/2
2 )|2wdx+

− Λ

εM

∫

BtR(z)\BsR(z)

|∇τ |2X2wdx

Now we shall use the fact that

|∇(τX
1/2
2 )|2 ≤ 2

(
|∇τ |2X2 + τ 2|∇(u − ν)+|2((u − ν)+)2 X2

1

X2

)

and decompose ε = εη choosing η such that η = Cw(BsR(z))R−2. Hence

for ρ → 0 , using τ estimates (see also (2.9)), (5.63) becomes

A0
3 ≥ C

2
((u(z) − ν(z))+)2− CΛ

εw(BsR(z))

∫

BtR(z)\BsR(z)

((u − ν)+)2wdx+

(5.64) − 2Λ3εC

λ2

∫

BtR(z)\BsR(z)

Gz
B2R(z)((u − ν)+)2wdx+

− 2εΛ3C

λ2

∫

BtR(z)\BsR(z)

X2
1τ 2|∇(u − ν)+|2(Gz)B2R(z)wdx

We are only left to estimate Aρ
4, as before we let ρ converge to zero

and use inequality (3.12) of [27]:

|A0
4| ≤ C

∫

BtR(z)

Gz
B2R

wdx ≤ CR2.
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Considering all these estimates we derive from (5.59) for ε̃ sufficiently

small:

λ

∫

BtR(z)

τ 2|∇(u − ν)+|2Gz
B2R(z)wdx + [

C

2
(u(z) − ν(z))+]2 ≤

≤ Cλ

∫

BtR(z)\BsR(z)

|(u − ν)+|2Gz
B2R(z)wdx + Cg(R)2.

Clearly the constant in front of the first term on the right hand side is

the sum of the constants in front of all the terms of the same kind.

We finally obtain (see also (2.9) and (2.6)):

(5.65)

λ

∫

BsR(z)

|∇(u − ν)+|2Gz
B2R(z)wdx + [(u(z) − ν(z))+]2 ≤

≤ C

w(BtR(z))

∫

BtR(z)\BsR(z)

|(u − ν)+|2wdx + Cg(R)2.

As in the proof of theorem 4.4, we choose z ∈ BqR(x0) with q < 1/3,

s = 2q and t = (1 − q) in order to have B(1−q)R(z) \ BsR(z) ⊂ BR(x0) \
BqR(x0).

Applying inequality (2.6) in (5.65) we derive:

sup
BqR(x0)

((u− ν)+)2 ≤ C

{
1

w(BR(x0))

∫

BR(x0)\BqR(x0)

((u− ν)+)2wdx

}
+Cg(R)2

While to estimate the gradient term we simply choose z = x0, t = 1 and

s = q:

λ

2

∫

BqR

|∇(u − ν)+|2Gx0
B

2Rq−1 (x0)wdx ≤

≤ C

w(BR(x0))

λ

2

∫

BR(x0)\BqR(x0)

|(u − ν)+|2Gx0
B

2Rq−1 (x0)wdx + Cg(R)2.
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Summing these inequalities we have obtained the desired (4.44) for the

positive part. For the negative part we can of course proceede in an

analogous way.

The proof of proposition 4.2 is similar to the proof of proposition 4.5

hence, to avoid superfluous repetitions, we only stress the differences and

we refer to the previous proof for details.

Proof of proposition 4.2. Let X+ = cosh{M((u − d1)
+)2} and

X− = cosh{M((u − d2)
−)2} where:

d1 = sup
BR

ψ1 ∨ dR and d2 = inf
BR

ψ2 ∧ dR

and M is a positive large constant that will be chosen later.

Consider as a test function in (4.35)

v = u + εGz
ρτ

2[(u − d2)
−]X− − εGz

ρτ
2[(u − d1)

+]X+

with τ a cut off function as in the previous proof.

Proceeding as in the previous proof, we easily obtain (see in particular

(5.65) with ν = d1 and ν = d2):

(5.66)

sup
BsR

(u − d1)
+ + sup

BsR

(u − d2)
− ≤

≤ C

{(
1

w(BR(x0))

∫

BR\BsR

(|(u−d1)
+|2 + |(u−d2)

−|2)wdx

) 1
2

+R

}

Now observing that supBR
ψ1 ∧ infBR

ψ2 ≤ dR ≤ supBR
ψ1 ∨ infBR

ψ2 we

have that

0 ≤ d1 − d2 ≤ [sup
BR

ψ1 − inf
BR

ψ2]
+.

Furthermore

osc
BsR

u ≤ d1 − d2 + sup
BsR

(u − d1)
+ + sup

BsR

(u − d2)
−

and
(u − d1)

+ ≤ (u − dR)+

(u − d2)
− ≤ (u − dR)−
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Thus (4.37) is an immediate consequence of (5.66).

From theorem 2.1 we derive in particular that if ν ∈ H1(BR1
, w),and

L0ν ∈ K(BR1
) then H̃(ν) ∈ K(BR1

). Moreover the following proposition

is true:

Proposition 5.1. If ν ∈ H1(BR1
, w) ∩ L∞ and L0ν + H̃(ν) = µ,

µ ∈ K(BR1
) then L0ν belongs to K(BR1

) and the following estimate holds:

(5.67) ‖ν‖L∞(BR) ≤ sup
∂BR

ν + C(‖µ‖K(BR1
) + Rα).

where α and C are positive constants independent of R and x0.

Sketch of the proof.

Step one: Proceeding as in the proof of Proposition 4.5 with the test

function v = τ 2Gρ(ν − νR) cosh M(ν − νR)2 we obtain:

(5.68)

∫

BqR(x0)

|∇ν|2Gx0
2Rdx≤C(

1

w(BR)
)‖ν −νR‖2

L2(BR−BqR)+‖µ‖2
K(BR1

)+R2

using with the same notations as in the proof of proposition 4.5.

Step two: We apply the Poincaré inequality to the right hand side of

inequality (5.68) in order to use the “hole filling” technique (see e.g.

[14]), thus we obtain that there exist α ∈ (0, 1) and C > 0 such that:

‖H̃(ν)‖K(BR) ≤ C(Rα + ‖µ‖K(BR))

By the conditions (3.24) on H, from the previous inequality and

remark 2.2 we can deduce that H̃(ν) ∈ K(BR1
) and the first part of

proposition 5.1 is proved.

Final step: As ν satisfies L0ν = µ − H̃(ν) ∈ K(BR1
) we can apply

proposition 5.3 of [10] and thus

‖ν‖L∞(BR) ≤ sup
∂BR

|ν| + C(‖µ‖K(BR) + ‖H̃(BR)‖K(BR))

≤ sup
∂BR

|ν| + C(‖µ‖K(BR) + Rα).

This completes the proof.
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In the proof of lemma 4.3 we are going to use a comparison result,

which is due to Barles and Murat see [2]. Our version is slightly

different from theirs because suited for our purposes but can be proved

in the same way. Precisely let u1, u2 be solutions of the following problems

for i = 1 and i = 2 respectively:




ui ∈ H1(Ω, w) ∩ L∞(Ω) φi ≤ ui ≤ χi

a(ui, ϕ − ui) +

∫

Ω

(H̃(ui) − fi)(ϕ − ui)dx ≥ 0

∀ϕ ∈ H1(Ω, w) ∩ L∞(Ω) φi ≤ ϕ ≤ χi; (ui − ϕ) ∈ H1
0 (Ω, w).

Lemma 5.2. Assume the previous notations and conditions in par-

ticular (4.34) and φ1 ≤ φ2, χ1 ≤ χ2, f1 ≤ f2 and (u1 − u2)
+ ∈ H1

0 (Ω, w)

then

u1 ≤ u2w-q.e. in Ω.

Proof of lemma 4.3. We shall prove (4.39) the other being anal-

ogous. For t := Ψ2(ε, R) = +∞ (4.39) is trivial, so we shall suppose that

t is finite. Let Et = {x ∈ BR/2 : ψ2 ≤ t}. Let v be a solution of the

following problem




v ∈ H1(BR, w) ∩ L∞(BR) v ≤ t w − q.e. in Et v = u ∨ t in ∂BR

a(v, ϕ − v) +

∫

Ω

(H̃(v))(ϕ − v)dx ≥
∫

BR

H̃(t)+(ϕ − v)dx

∀ϕ ∈ H1(BR, w) ∩ L∞(BR) ϕ ≤ t w − q.e. in Et ϕ = u ∨ t in ∂BR

then by lemma 5.2 v ≥ t and v ≥ u in BR. Hence

sup
Br

u ≤ sup
Br

v = inf
Br

v + osc
Br

v

Using for v, the results regarding the one obstacle case i.e. inequality

(3.54) and corollary 3.1 of [27] and remark 2.2, v satisfies:

(5.69) osc
Br

v ≤

C

([
1

w(BR)

∫

BR

|(v−t)|2w(x)dx

] 1
2

exp

(
−β

R∫

r

capw(Et∩Bρ, B2ρ)

capw(Bρ, B2ρ)

dρ

ρ

)
+R+ε

)
.
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Let us observe that E∗
2(ε2, ρ) ⊂ Et ∩ Bρ. Consider v2 solution of

{
L0v2 + H̃(v2) = H̃+(t) in BR

v2 = u ∨ t on ∂BR

Hence from Remark 2.2 and proposition 5.1 with µ ≡ H̃+(t), we derive

the following inequality:

(5.70) v − t ≤ v2 − t ≤ sup
∂BR

u ∨ t − t + CRα ≤ (sup
BR

u − t)+ + CRα

and we obtain (4.39) putting together inequalities (5.69) and (5.70). This

complete the proof.

Proof of lemma 4.7: We only prove (4.47), the other being anal-

ogous.

Fix t = infBr(ψ2 − ν), 0 < r ≤ R

4
and ξ = (L0ν + H̃(ν + t))+, and we

recall that ξ ∈ K(Ω) by Remark 5.1. Furthermore consider u2 solution of




u2∈H1(BR/2, w)∩L∞, u2 ≤ψ2 w-q.e. on BR/2, u2=u ∨ (ν+t) on ∂BR/2

a(u2, v − u2) +

∫

B R
2

H̃(u2)(v − u2)dx ≥
∫

B R
2

ξ(v − u2)dx

∀v∈H1(BR/2, w)∩L∞, v≤ψ2 w-q.e. on BR/2, u2 =u ∨ (ν+t) on ∂BR/2

By comparison lemma 5.2 we have, as in the proof of lemma 4.2:

ψ1 ≤ ν + t ≤ u2

and hence also u ≤ u2, therefore:

(5.71)

sup
Br

(u − ν) ≤ sup
Br

u2 − inf
Br

ν ≤ inf
Br

ψ2 + osc
Br

u2 − inf
Br

ν

≤ sup
Br

(ψ2 − ν) + osc
Br

u2 + osc
Br

ν.

So that using the results for one obstacle i.e. inequality (3.31) and corol-

lary 3.1 of [27], u2 satisfy:

(5.72) osc
Br

u2 ≤C

{
‖u2−d‖L2(BR/2,w)exp

(
−β

R/2∫

r

δ2(ε, ρ)
dρ

ρ

)
+R+ε+‖ξ‖K(BR/2)

}
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for any d ≤ ψ2, so that in particular we can choose d := d2 :=

infBR/2
(ν + t).

We consider now w2 solution of L0w2 + H̃(w2) = ξ, in BR/2 and

w2 = u∨(ν+t) on ∂BR/2 , which by comparison argument satisfy u2 ≤ w2.

To estimate the L2 norm of u2, we can procede as in [10] to get:

(5.73)

1

w(BR/2)
‖u2 − d2‖L2(B R

2
,w) ≤ sup

B R
2

(w2 − d2)

≤ sup
∂B R

2

[u ∨ (ν + t)] − inf
B R

2

(ν + t) + C(‖ξ‖K(BR) + Rα)

≤ [sup
B R

2

u − sup
B R

2

(ν + t)]+ + osc
B R

2

ν + C(‖ξ‖K(BR) + Rα)

≤ osc
B R

2

u + osc
B R

2

ν + C(‖ξ‖K(BR) + Rα)

≤ osc
B R

2

(u − ν) + C(
1

w(BR)
‖ν − νR‖L2(BR) + ‖ξ‖K(BR) + Rα)

For r ∈ (0,
R

4
] putting together inequalities (5.71) ,(5.72) and (5.73) we

get (4.47) for r ∈
(
0,

R

4

]
. For r ∈

(R

4
, R

)
then it is enough to notice

that:

exp(−β

R∫

r

δ2(ε, ρ)
dρ

ρ
) ≥ 4−β

so that

sup
Br

(u − ν) = inf
Br

(u − ν) + osc
Br

(u − ν)

≤ inf
Br

(ψ2 − ν) + 4β osc
BR

(u − ν) exp(−β

R∫

r

δ2(ε2, ρ)
dρ

ρ
).

which implies (4.47) for every C ≥ 4β.

This complete the proof.

Proof of proposition 4.6 We procede as in the proof of proposi-

tion 4.5 but we choose θ = θsR to be the w-capacitary potential of BsR(z)
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in BtR(z) with respect to L0. The proof proceedes analogously so that

we emphasize only the differences. In particular Aρ
2 becomes:

|Aρ
2| := |

∫

BR(z)

aij(u − ν)iθjGρX1(u − ν)+dx| ≤

CΛε

4

∫

BtR(z)\BsR(z)

|∇(u − ν)+|2Gρwdx +
CΛ

ε
sup |(u − ν)+|2

∫

BtR(z)\BsR(z)

|∇θ|2Gρwdx

We let ρ → 0 and we use the definition of potential to obtain for any

η > 0:

(5.74)

|A0
2| ≤ C

η

∫

BtR(z)\BsR(z)

|∇(u − ν)+|2Gz
B2R(z)wdx+

+ ΛCη capw(BsR(z), BtR(z)) sup((u − ν)+)2. sup
BtR(z)\BsR(z)

Gz
B2R(z).

On the other hand (5.63) becomes

Aρ
3 =

∫

BR(z)

aij(u − ν)i(Gρ)jθX1(u − ν)+dx =

=
1

2M

∫

BR(z)

aij[X2θ]i(Gρ)jdx − 1

2M

∫

BtR(z)\BsR(z)

aijX2θi(Gρ)jdx ≥

≥ C

2w(Bρ)(z)

∫

Bρ(z)

[(u − ν)+]2θwdx − 1

2M
a(θ, GρX2) + Aρ

2

So that we can use the previous estimate for the last term while it is easy

to see that:
1

2M
a(θ, GρX2) ≤ C sup

BtR(z)

((u − ν)+)2

and A0
3 becomes (see also (2.9), (2.14)) :

(5.75)

A0
3 ≥ C((u − ν)+)2(z) − C sup

BtR(z)

((u − ν)+)2−

− Cλ

η

∫

BtR(z)\BsR(z)

|∇(u − ν)+|2Gz
B2R(z)wdx
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Putting these estimates in (5.59) and choosing η = γ, and renaming

the constants we obtain:

(5.76)

λ

∫

BsR(z)

|∇(u − ν)+|2Gzwdx + [(u(z) − ν(z))+]2 ≤

≤ (c1 + γ) sup |(u − ν)+|2 +
c2Λ

γ

∫

BtR(z)\BsR(z)

Gz|∇(u − ν)+|2wdx+

+ g(R)2.

This complete the proof.

Proof of Remark 4.3. We are in the hypotheses that ψ1(x0) =

ψ
2
(x0). If we put

νR =
1

w(BR(x0))

∫

BR(x0)

ν(x)w(x)dx

and

d1R := sup
BR(x0)

ψ1 ∨ νR, d2R = inf
BR(x0)

ψ2 ∧ νR,

and proceed as in the proof of lemma 4.2 we obtain:

sup
BtR(x0)

((u − ν)+)2 ≤C

{
1

w(BR(x0))

∫

BR(x0)\BtR(x0)

((u − ν)+)2wdx+g1(R)2

}

(5.77)

sup
BtR(x0)

((u − ν)−)2 ≤C

{
1

w(BR(x0))

∫

BR(x0)\BtR(x0)

((u − ν)−)2wdx+g2(R)2

}

where

gi(R) = R + ‖L0ν‖K(BR(x0)) +
1

w(BR(x0))
1
2

‖ν − νR‖L2(BR(x0),w) + |di − νi|.

It is clear that if we use inequalities (5.77) to evaluate the terms Aρ
6, Aρ

7 in

the proof of proposition 4.5 then in the inequality (5.65) the term g(R)2
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is replaced by gi(R)2. Of course proposition 4.6 can be modified in the

same way. Thus (4.43) becomes:

V (r) ≤ C{w(BR(x0))
−1/2‖u − ν‖L2(BR,w)[ω1,σ1

(r, R) + ω2,σ2
(r, R)]β+

+ σ1ω1,σ1
(r, R) + σ2ω2,σ2

(r, R)+

(5.78)

+
1

w(BR(x0))
1
2

‖ν − νR‖L2(BR,w) + ‖L0ν‖K(BR) + Rα+

+ (sup
BR

ψ1 − νR)+ + (νR − inf
BR

ψ2)
+.

This completes the proof.
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