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Conserved quantities of the gravitational field

in tetrad notation

M. FERRARIS — M. FRANCAVIGLIA — M. MOTTINI

RIASSUNTO: [ superpotenziali gravitazionali per la Lagrangiana del prim’ordine
che genera le equazioni di Finstein, dipendenti dalla scelta di un “background” e de-
terminati in un precedente lavoro, vengono qui riespressi nel formalismo delle tetrads.
Utilizzando risultati sulla controimmagine della forma di Poincaré-Cartan per Lagran-
giane del second’ordine, si dimostra che questi superpotenziali corrispondono a una
famiglia di Lagrangiane del prim’ordine nelle tetradi, invarianti sotto trasformazioni di
Lorentz.

ABSTRACT: We reexpress in tetrad form the background dependent family of su-
perpotentials for the first-order Lagrangians which generate Einstein’s field equations,
found in an earlier paper. Using a result on the pull-back properties of the Poincaré-
Cartan forms for second-order Lagrangian field theories, we show that these superpoten-
tials are the superpotentials corresponding to a Lorentz invariant family of first-order
tetrad Lagrangians.

— Introduction

Among the intriguing problems still open in General Relativity there
is the issue of a coherent definition of mass for the solutions of Einstein
equations, and more generally the systematic theory of conserved quan-
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tities. In particular, for the mass of the gravitational field there exist
in literature a number of different formulae, which often give different
results when applied to families of space-times more general than the
asymptotically flat ones (for which is commonly agreed that the mass
should reduce to the ADM’s formula [1]).

In the framework of calculus of variations on fiber bundles there is
a general method to construct conserved quantities and Nother currents
starting from the so-called Poincaré-Cartan form associated to a given
Lagrangian (see, e.g., [4] and [7]). This is based on the generation of a
(m — 1)-form E(w), where m is the dimension of the base manifold (usu-
ally m = 4 for relativistic field theories) and w is a vectorfield in the base.
It is known that E(w) reduces ‘on shell’, i.e. along critical sections of the
variational principle ensuing from the given Lagrangian, to the differen-
tial of a (m — 2)-form U(w), called the superpotential (see, e.g., [11]).
This method, applied to the standard Hilbert Lagrangian for the gravi-
tational field generates a classical superpotential, known as the KOMAR
superpotential [13]. However, it is also known that KOMAR’s superpo-
tential does not generate at once the mass and the angular momentum
of a rotating black hole, because of an extra factor 2. The superpotential
of KOMAR, in fact, has to be replaced by a more general superpotential
containing the previous one as a term, which apparently was the first
derived by KaTz [12].

The earlier result of KATZ found a complete explanation in the papers
[5] and [6] by two of us. In these papers it was shown that a whole
family of covariant first-order Lagrangians equivalent to the second-order
Hilbert Lagrangian exists, each one of them being parametrized by the
choice of an arbitrary linear connection which has no dynamical role.
This background connection may be fixed case by case on the basis of
possible physical requirements, such as a priori asymptotic conditions
(e.g., asymptotic flatness) or explicit perturbative expansions around a
given space-time (e.g., cosmological models based on FRW solutions).

To each one of these first-order Lagrangians there corresponds a new
superpotential, which is the sum of KOMAR’s term plus an extra term
depending of the background connection. Under the asymptotic flatness
condition one recovers the splitting by KATz.

This new class of superpotentials is stimulating not only because
it explains the anomalous factor 2 in KOMAR’s expression for the mass
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and angular momentum of a black hole, but also because it allows to
reproduce for the equivalent mass of a charged black hole a result which
can be obtained by applying the mass formula due to PENROSE [16]. As
it was shown in [18], PENROSE’s mass of a Reissner-Nordstrém solution
with mass parameter M and charge e is

which has a more convincing physical interpretation than the different

result

e2

Ex(r)=M — —
r
obtained by a direct evaluation through the KOMAR superpotential.

Since PENROSE’s formula and the new superpotential found in [5],
[6] reproduce the same result of charged black holes, it is interesting to
look for a way to compare the two expressions and seek their possible
relations. To this purpose, it seems to be more convenient to reexpress
in NP formalism [15] the metric dependent superpotentials generated by
the first-order Lagrangians. Hopefully, if not in general, one may try to
compare the relevant mass formulae in wide classes of space-times, e.g.
in the asymptotically flat cases or in some case of fixed symmetry (like
for instance spherical symmetry).

To this end, one needs first to reexpress all the result of [5], [6] in
the tetrad formalism, which is the basis for the NP formalism. In this
paper we shall thence reexpress in tetrad form the family of (covariant)
first-order metric Lagrangians and obtain a family of first-order tetrad
Lagrangians which are covariant and invariant under Lorentz transfor-
mations of the tetrad fields. Moreover, we show that the correspond-
ing superpotentials are the tetrad expressions of the relevant metric su-
perpotentials with background; these results were first obtained in the
Dissertation [14]. For the sake of simplicity and in order to let it be
easily understood by the physical audience, the calculations are here per-
formed in direct way; however, they rely on a fairly general result of
calculus of variations in fiber bundles, which roughly states the covari-
ance of Poincaré-Cartan forms under arbitrary bundle morphisms and,
as a consequence, the functoriality of the ensuing superpotentials.
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The application of these new tetrad superpotentials to the case of
spherically symmetric space-times gives rise to a new larger class of allow-
able asymptotic conditions, which will form the subject of a forthcoming
paper [8]. The transition from the tetrad version to the N P form of there
superpotentials and the comparison with PENROSE’s mass will be further
investigated and we hope to obtain promising indications.

1 — Preliminaries and notation

In this section we shall specify the mathematical notation and recall
some of the objects which will be used in the rest of this paper. For a
more thorough discussion see [2] and [3].

Throughout this section M is a manifold of dimension m, with local
coordinates (z*) p=0,...,m —1; (B, M, ) is a fibered manifold, with
fibered coordinates (z*,y') 4, j, k =0, ..., dim(B) — m — 1; J*B is the
kt"-order jet prolongation of B, with fibered coordinates (z*,y",y’,...);
nf : J*B — J"B is the natural projection (k > h); we set J°B = B.
For a generic manifold N: x(NN) is the space of all vectorfields on N,
QP(N) is the space of all p-forms on N, F(N) is the space of all real
differentiable functions of N and we set Q°(N) = F. We denote by | the
interior product.

1.1 - Horizontal and vertical operators

A contact form in (B, M,7) is a form w € QP(J*B) satisfying the
property (j%0)*w = 0 for every section o of (B, M, 7). Contact forms are
generated by exterior products of the base contact forms (or structural
forms) of B:

(11) ,’“91 = dyfxl...as - yf)cl...as)\dxA °

af...0g

A wertical vectorfield on B is a vectorfield V' € x(B) which satisfies
TroV =0. A horizontal form on B is a form w € Q°(B) satisfying the

property



[5] Conserved quantities of the gravitational field etc. 461

if X is a vertical vectorfield on B. Horizontal s-forms constitute a F(B)-
linear subspace Q3% (B) of Q*(B). In coordinates, a horizontal form w is
expressed by

(1.2) W= Way. 0T A AN dT™ .

Every 1-form w € Q'(B) can pulled-back to J'B and rewritten as
follows:

w = w,dr* + wdy’ = w,dz* + w;(dy" — yftdx“ + yidz“) =
= (wy + wiy, )da" + w1’

so that (7))*w can be decomposed into the sum of a contact form w9’
and of a horizontal form

(1.3) Hor(w) = (w, + wyy,,)dz" € Qp(J'B),

called the horizontal part of w. The definition of horizontal part is ex-
tended to forms w € Q'(J*B) by setting:

(1.4) Hor(w)= (wu—i—wiy;vtwiayi“—i—. . .—|—w?1"'o‘kyglmaku)d$“ cQL,(J"B),
for every 1-form

w = wyda’ + widy' +widyl, + ..+ w0yl € QY(JI'B)

on J*B.
Finally the definition of the operator Hor can be extended to p-forms
on J*B by setting

(1.5) Hor(f) = f
for f € F(J*B) and requiring:

(1.6) Hor(¢ A ) = Hor(¢) A Hor(99)

for generic forms ¢ and ¥. In fact, this defines uniquely a linear operator

Hor : Q7 (J*B) — Qb (J*'B)
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which coincides with the previous ones for p = 0 and p = 1 and satisfies
(1.6).

The horizontal differential dy of a horizontal p-form w € Q% (J*B)
is defined by

(1.7) dyw = Hor(dw) .
The horizontal differential satisfies the property

where ¢ € QY (J*B) and 9 € Q% (J*B) are both horizontal. Defining the
formal derivative d,, = d/dx" by means of

df _of | of ; of

dzr — Oxm + 8ygy“ et Yy o

Yo onn € F(JHB)

where f € F(J*B), we have that
(1.9) dy f = Hor(df) = (d,, f)dx" .

In general, if w = Wy .., dx** A ... A dz®r is a horizontal p-form, we
have

(1.10) dpw = (dyWa,...ap)dz" Ndx® A ... A\ dx .

Fromd,d,f = d,d,f it follows easily dydyw = 0 for every horizontal
form w.

The definition of dy can now be extended to all p-forms by recalling
that p-forms can be expressed as linear combinations of exterior products
of horizontal forms and base contact forms. Setting in fact:

(1.11) dHﬁLm = dﬁz”_ = —19;_”& A dx®

for every base contact form ¥, ~and requiring dy to be linear and to
satisfy the property (1.8) for every pair of forms, an operator

dy : Q(J*B) — QP JFHB)
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is uniquely defined and it satisfies the property

for every p-form ¢ € QP(J*B).
The horizontal differential and the formal derivative satisfy also the
relations

(" o) dpe = (j0) dp = d[(j%0)"¢]
(duf) ojk+10 = au(f % ]ka) s

where ¢ € Q(J*B), f € F(J¥B) and o is a section of the fibered mani-
fold (B, M, ).

The vertical differential dy of a p-form w € QP(J*B) is defined as the
difference between the standard differential and the horizontal differen-
tial; namely:

(1.13)

(1.14) dyw = dw — dyw € QP (J*B).

Vertical differentials of the base space coordinates z* are always zero,
while vertical differentials of the coordinates 3°, yL ... are the base contact
forms ¢, ¥, .... The vertical differential of any p-form is a contact form;
the horizontal part of a vertical differential is always zero. From the
properties of the standard differential and of the horizontal differential it
follows that the vertical differential is linear and satisfies

where ¢ € QP(J¥B) and ¥ € Q9(J*B). Furthermore the vertical differ-
ential of a vertical differential is always zero, i.e.:

There is a link between the vertical differential and the Lie derivative.
If (B, M,n) is a bundle of geometric objects with coordinates (z*,y"),
X is a vectorfield on M and Xp is its canonical lift to B, then the Lie
derivative £ xo along X of a section o of the bundle (see [9], [10]), defined
by
£x0=TocoX —Xpoo,
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satisfies

(1.16) £xo=—[(Xnpldvy')ojo] 88, .

7

For the notions of Lagrangian £, of Poincaré-Cartan form (L), of
energy-density flow E* (L, w)dsy and of the corresponding superpotentials
we refer the reader to the previous papers [3], [4], [11]. We just recall
that the Poincaré-Cartan form associated with a Lagrangian £ of order &k
is an m-form ©(L) € Q™(J**~1B) (where m is the dimension of the base
space M of the bundle (B, M,7) of the theory) satisfying the following
characteristic properties:

(a) the interior product of ©(L) with a vectorfield vertical with re-
spect to the projection 737" of J?*~'B on J* !B is always zero
(i.e. ©(L) does not contain dyf’”“_uj with j >k —1);

(b) the interior product of ©(L) with two vertical vectorfields is al-
ways zero (i.e. the contact part of ©(L) can be written as a linear
combination of the exterior products of a contact 1-form and a
horizontal form);

(c) the horizontal part of ©(L) is the Lagrangian £;

(d) the differential of ©(L) generates the field equations; in fact the
critical sections o (solutions of the field equations) satisfy

(7% o) [W]de(L)] =0

where W is a vectorfield on J?**~1B.

It is known (see e.g. [4], [5] and ref.s quoted therein) that Poincaré-
Cartan forms always exist globally for any Lagrangian of any order.
Uniqueness is lost for Lagrangians of order higher than one, for which
an infinite family exists depending upon extra parameters. In any case,
for second-order Lagrangians (which is the case of interest in this paper)
there is a unique preferred form in the family, which shall be hereafter
called the “canonical Poincaré-Cartan form”; it is defined as the only form
of the family having symmetric coefficients (see later for an expression;

(2.3)).
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1.2 - Linear frames and their prolongations

Let us know take B = L(M), the bundle of linear frames in M.

We assume that M can be given a Lorentzian metric g,,, with sig-
nature (—,+,...,+). In this case, Greek indices label coordinate bases
0/0x* and dz* in M; while Latin lowercase indices a,b,c =0,... ,m—1
label generic (usually orthonormal) bases e, and 6*.

Denoting by % the Minkowski metric, an orthonormal basis e, with
its dual 6 are given by the orthonormality condition

wov
guueaeb = Tab

which implies
(117) Guv = nabezeg :

Indices with respect to an orthonormal basis will be raised and low-
ered using 7,;, and n?.
Starting from an orthonormal basis we introduce the volume element

(1.18) E=0N.. N0 = Jgds

where g = |det(g,,)| and ds = da® A ... Ada™"'. We define also the
forms

& =€, = \/gelds,

(119) gab = ebjga = \/gegezdsuu
gabc = 6cJ gab = \/gegegegdsli”ﬂ

where
0 0 0
ds, = @jds, ds,, = %jds,“ ds, = %jdsw.
Setting locally e, = egd, and 0 = Ondz”, (z% ey) are natural

(fibered) coordinates for L(M).
If I'5, is any symmetric connection then we define the connection
forms @5 € Q'(L(M)) associated to I'§, by means of

(1.20) W = 05 (del + g eldxt) € Q' (L(M)) .
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We denote by wi = wg,dat € Qp (J'L(M)) the horizontal parts of
the connection forms @¢, namely

(1.21) wg = Hor(wg) = 05(e, + T, el)dz"

a

where (z%, e, e ) are natural coordinates in J'L(M). If o : M — L(M)

»Car Ca,p

is any section, then
(1.22) (' o) el = 65 (V el o™

where V, is the covariant derivative associated to the connection.
We remark that often in the literature the objects w; are called con-
nection forms instead of the objects w¢.
The horizontal parts of the connection forms can be expressed as
follows:
wo =ws, 0™,

: c : cC  — ,,C LU
where the coefficients w¢,  are given by wt, = wS e

ap-m:*

The ‘contact part’ of the connection forms is:
(1.23) Wy —wy = dyey = 0, (deg — ey dx").

Using the symmetry of the connection, which implies that Fg#dmﬁ A
dz* =0, we get

do" = —of N0
Taking the horizontal part of this relation we obtain
dpl® = —wi NO° = wi 0" N O™,

If w e x(M) is a vectorfield and we set V,w® = e#0°V ,w”, we get
(1.24) Vb = e, (w°) + wg, ,w™
where e, (w®) = e#0,(05w").

If the basis e, is orthonormal for the metric g,,,, then the connection
forms associated to the Levi-Civita connection of the metric g, satisfy

(125) Wpha — —Wab
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where wy, = Mpews.

The following properties of the connection forms are valid only for
Levi-Civita connections and orthonormal bases:

i) Being the horizontal parts of the connection forms skew-symmetric,
the symmetric parts of the connection forms are contact forms, namely

(1.26) Weqg + Wae = Oeadves + Ouadyed

where 0., = 1.,0°.
ii) The horizontal differentials of the forms (1.19) are

dHfa = WZ A gb
(127) ngab = WZ A gcb + wlf A\ fac
ngabc - WZ A gdbc + Wg A éadc + Wg A gabd 9

and
(1.28) dp&l = —wi A& +wy NEX.
iii) Being d€., = —&uom A O A 0% we obtain
(1.29) d€ab — Wg' N &mp — W' Aam = =Wy A& -

For the differential of & we get thence
(1.30)  d& + @2 A& —op ANEE = U™ A (=nky + 0% & + 65Emb)
where (...) denotes symmetrization.

We define the curvature forms Q¢ € Q*(L(M)) associated with any
given connection by means of
(1.31) Qf = dat + @5 AL

moreover we define the horizontal parts Q¢ of these forms by

Q¢ = Hor(Q¢) € Q2(J'L(M)).
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Denoting the 1-forms I'g dz* by I'g, we have

(1.32) Q° = 6°(dT + T2 ATH)el
so that
1
(1.33) Q2 = 02(dylG + T ATH)el = §ngngWd:c“ A da”

where Rf, , is the Riemann tensor associated with the connection. The
contact parts of curvature forms are

(1.34) Qf —QF = 0°dyTGe?

while the horizontal parts Q¢ of the curvature forms satisfy the property
Qea = — Qe where Q. = 1, Q0.

2 — Change of field variables and Poincaré-Cartan form

In this section we prove a result about the behaviour of the Poincaré-
Cartan form of a second-order field theory when the field variables are
changed in an arbitrary way. The proof of this result was first given in
the thesis [14]. This result will be useful in General Relativity in order
to change variables from metrics to tetrads.

The result is the following: Let (B',M,n’) and (B,M,n) be two
fibered manifolds with the same base space M. A second-order field the-
ory with Lagrangian L is given on (B, M,r); the change of variables is
specified by a fibered morphism

F:B — B,
over a diffeomorphism f of M. On B we have the canonical Poincaré-
Cartan form ©(L); on B" we have the pull-back Lagrangian F*L, depend-

ing on the new field variables, and the canonical Poincaré-Cartan form
O(F*L). Then we have:

(2.1) O(F'L) = F*O(L).
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PROOF. Let (z#,9") be coordinates of B and (¢, 2) be coordinates
of B’ (lowercase Latin indices label coordinates in B, uppercase Latin
indices label coordinates in B’ and Greek indices label coordinates in
M); the morphism F' is denoted by

y' =y (=4 17)
k= k().

Furthermore let (z*, ', y/,,/,,) be coordinates of J>B and (¢, 2%, 2/}, 25)
be coordinates of J2B'.

We have:

; o' 4 O va
Y = (32,42@ + ata)Xu

_ N’ N’ 924/t 924"
y1:<_yZA+_y>Xa+< V' a9 0Y  al

rv 0247 Ote ny 0240287« 0zA0th “a
— Xox?
T At T Grag ) et
where 3 52
™ t“
X4 = — X¢ = .
v oz, me Qar dar

From these relations it follows that

89& ayi ayz a2yi B 62yi
DA~ DATHT A <8zA8zBZ“ +82A8t0‘) z

oy, oy oy’ oy’
L= S X0X] b= X7
Oziy 0z MY 0zf 024 ot
82yi aQyz
2 B XPxe.
+ (82“‘8733 Zo azAata> nv

(2.2)

The canonical Poincaré-Cartan form associated to £ = Lds is
(2.3) O(L) = Lds + (fdvy" + f{"dvy,) Nds,

where

fvzai_iaL o= oL
YT 0y, dar oy, T Oyl
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Now we have

9y, %

Oy’
F*(dvy') = 02 AdVZ (dvy#) 2 Adv 8 Ade
and 1 )
F*(ds) = Ydr, F*(ds,) = Xf“?dra
where X = det(X ) and
dr =dt® A... Adt™ ! dr, = d
r , r 8taJ T

Using these relations we can compute the pull-back of the Poincaré-
Cartan form, which is:
=

f[“’ y“ L X vz ] Adrs.

F*O(L) = F*L +

i

P
v y")Xﬂd Ay

(2.4)

For the Lagrangian F*L = L'dr we get
F*L =F*(Lds) = £d
= s) = ~dr,
so that L' = L/X. The Poincaré-Cartan form associated to F*L is
O(F*L) = L'dr + (fldvz* + £.7%dy =) Adrg
where
O d O, ou
A0z dtr ozl T 02,7

Using the formulae (2.2), we get finally

fff:l[aL Wi | OL Oy _ s 0 (W )]:

X |0y, (?zg‘ dyi, 0z Vdte "'
(2 ) s
o1t 1o
A X7 0z, X0z
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Thus (2.1) follows as claimed. 0

3 — Energy-density and superpotentials from the Hilbert La-
grangian

In this section, starting from the tetrad version of the usual Hilbert
Lagrangian for the gravitational field and applying the method based on
the Poincaré-Cartan form as in [5] and [6], we deduce the formula for
the superpotential associated to a generic vectorfield. Throughout this
section and the following one M will be four dimensional.

The bundle of the fields is therefore L(M), the bundle of linear
frames, instead of Lor(M), the bundle of all the metrics of signature
(—,+,+,+). Between these bundles there is a morphism

(3.1) F: L(M) — Lor(M)

given by
F(0%) = 00 ®0°.

This morphism, which is surjective but not injective, specifies the
change of variables that we are performing.
The Hilbert Lagrangian expressed using the metric is

4 c4

C
Torq VIltds =54

(3.2) Lyds = V99" R, ds .

For the sake of simplicity in this section and in the next one we rescale
the volume form £ as (¢*/167G)0° A ... A 63, so that the factor ¢* /167G
that appears in (3.2) remains hidden in the forms £?. The pull-back of
Lds under the morphism F' is thence

(3.3) Ly =—E N,

which is the standard Hilbert Lagrangian in tetrad form (cfr. [17]).
We compute the variation of Ly using (1.28), and we find:

(3.4) SLy = —80" ANEY A QS — dp (€2 A SwE) .
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Accordingly, the field equations for the tetrad are (cfr. [17])
(3.5) CAQE =0,

Since the tetrad Lagrangian (3.3) is the pull-back of the metric La-
grangian (3.2), we can apply the theorem of section 2 to conclude that
the Poincaré-Cartan form dependent on the tetrad must be the pull-back
of the Poincaré-Cartan form dependent on the metric, which (cfr. [5] and
[6]) is known to be:

(3.6) O(Ly) = Luds + mdyuj, A ds,

where 7 = (¢*/167G) /99" and

« J— (0% 1 « g « g
up,u = Fuu - 5(6#1_‘0'1/ + 51/ Fo’u) ’
"%, being the Levi-Civita connection of the space-time metric g, .
The Poincaré-Cartan form dependent on the tetrad is thence

(3.7) O(Ly) = —€ A
In fact, rewriting this form in coordinates one finds:
(3.8) O(Ly) = —ENQ —E4N (ﬁg —Q) =Ly —EN GEeEdVFgM Adx"

so that
O(Ly) = Lyds + Wﬂpdvugp Adsy ;

©(Ly) is thence the pull-back of ©(Ly).

The expression given for ©(Ly) can be justified also verifying that it
satisfies the characteristic properties of the Poincaré-Cartan form recalled
in section 1. In fact, ©(L) satisfies trivially the first three properties: £?
is a horizontal 2-form, Qg is a 2-form containing differentials of e# and
el ., so that ©(Ly) is a 4-form satisfying the property (a); (b) holds true

since the contact part

—EN (8 —Q2) = —€2 A0l (dyTS,) A da
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is the exterior product of a contact 1-form with a horizontal form; the
horizontal part of O(Ly) is —£2 A Q¢, which implies (c). It is possible to
show that also condition (d) is fulfilled. In fact, computing dO(Lg) with
the aid of the definition of Q¢ and the formula (1.30) we obtain:

(3.9) dO(Ly)=—de*AQE—ENAQE =™ A (1€ 402 Enet02Eme) AQE .

As explained in section 1, @™ is a contact form; rewriting Q¢ as
the sum of )¢ and of a contact form, we can hence write

(3.10) dO(Ly) = =" A (=1hmnl + 6 bne + pbme) A Qt
' - w(mn) A (_nmnfg + 5?n€’ﬂ0 + 52&%6) N (QZ - Qg) )
where the second addendum is a contact form of order two, i.e. the
exterior product of two contact 1-forms with a horizontal form. Using
now the skewsymmetry of 2°* we have

dO(Ly) = =M@ ™ AN ELAQE A5 — O™ A (—0n ot

(3.11) en
+ 55@571,0 + dzgmc) A (QZ - QZ) :

Starting from this last expression of dO(Ly) and recalling that the
pull-back of a contact form along a section is zero, we obtain

(720) (W dO(Ly)] = —NmsN™"EL, A QS A 67
where o is a section of L(M), W is a vectorfield on J'(L(M)) and
A = (§30)* (W ]@w(™™). Then the differential of ©(Ly) gives the field
equations, so that ©(Ly) satisfies the last characteristic property of a
Poincaré-Cartan form.

From the expression of the Poincaré-Cartan form for the Hilbert La-
grangian, one immediately obtains the formula for the conserved quantity
associated to a vectorfield in space-time. If w is a vectorfield and w is its
canonical lift to the bundle of field variables, in this case J'L(M), then
the associated conserved quantity is

E(Ly,w) =—Hor [0|0(Ly)],
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namely

E(Ly,w) = —Hor(w| L) + Hor [@](£2 A egefdvrg# Adzt)]| =

3.12
(3.12) = —w|Ly — & N0l £, da"

where we have used equations (1.16) and (3.8) and the relation Hor(¢ A
dy) = 0, which holds for every pair of forms ¢ and . Using (3.3) and
the formula for the Lie derivative of a symmetric connection:

£w1“§“ =V, Vauw* — ngw"
we obtain

B(Li,w) = w] (62 N (—E0 A 05eE(V,V s — RS, 0°) A da’ =

(3.13) \
= w’€y, AN Qg — d(Vaw'el),

where w® = 0°w” and V,w® = €65V ,w"”.

Therefore, we see that the expression of E(Lyg,w) is the sum of two
terms. The first one contains field equations while the second is the
horizontal differential of the 2-form

(3.14) ULy, w) = —V,wE

which is the superpotential for the tetrad version of Einstein’s gravita-
tional theory. Then, the horizontal differential of E(Lp,w) is zero when
evaluated on the solutions of the field equations, being the horizontal
differential of a horizontal differential. This property justifies the name
“conserved quantity” for E(Ly,w).

The interpretation of E(Ly,w) as a physical quantity depends of
course on the vectorfield w: if w is time-like then E(Lpy,w) will be the
energy-density; if w is space-like and his flow is a spatial translation, then
E(Ly,w) is the momentum density in the direction of the translation,
while if w is space-like and his flow is a rotation around an axis, then
E(Ly,w) is the density of angular momentum with respect to the axis
of rotation.

The coordinate expression of the superpotential U(Ly,w) is

C4

UlLy,w)=—-V,wE = —Wegeﬁvuw”\/ﬁn“befegdsw =
4
c

= — Hap?
167G VoViurds,,
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which is the superpotential one finds starting from the metric Lagrangian
(3.2) of Hilbert (see, e.g. [5]); i.e., half of the well known KOMAR super-
potential (see [13]):

C4

&G

Uk = — VoViw“ds,, .

4 — Energy-density and superpotentials from first-order Lagran-
gians

In this section we finally show that invariant first-order Lagrangians
for general relativity can be written in tetrad form, in full analogy with
the result of [5] and [6] for the metric case.

From these first-order Lagrangians we compute conserved quantities
and the corresponding superpotentials.

Using the expression

(4.1) Q° = dpywt + w5 Aw
and (1.28), the Hilbert Lagrangian can be written as follows:
(42) L= =€ AL = —du (€8 Awl) — & Al A

The second term depends only on first derivatives of the field vari-
ables and differs from the Hilbert Lagrangian for a horizontal differential,
so that it might be considered as a first-order Lagrangian equivalent to
Hilbert’s one. However, this first-order Lagrangian is not invariant under
a tetrad change, because w; is not invariant. In fact, if we perform the
tetrad change

ao = A%e,, 0° =B¥0* (BYA, =6%)
where p — A% (p) is a smooth family of Lorentz transformations, we have

wl = 0% (Dgepda’® + T, e5dx’) = B 0% [05(Abed)da’+
+ 15, Abegda’] = BY Abywp + By dAb
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and the last term in general is not zero because A}, depends on position.
(Note that, because A?, depends only on position, we have 95 A% dz” =
dgAb, = dAY).

Applying to this first-order Lagrangian the procedure of section 3 to
obtain conserved quantities would give results dependent on the choice of
a tetrad. This situation is not acceptable for quantities that must have a
physical meaning; in fact, tetrads connected by a Lorentz transformation
describe the same physical situation, so that all physical quantities must
be equal whichever ‘equivalent’ tetrad one chooses.

We shall hence proceed in analogy with [6]. We introduce a fixed
symmetric connection I', (), the background connection, together with
the corresponding horizontal parts of the connection forms

wy = 0% (e 5 + TG, (x)ef ) da’ .

Hence we can write

Ly =—dy(E Aw;) —ENWiNwi =
(4.3) — —dp [0 A (w8 —@%)] — du (€S NDS) — EX A Wi A WS =
= —dp[€ A (Wi —®5)] — €A [Q, + (Wi — @) A (w§ — @5)]

where O, are the horizontal parts of the curvature forms associated with
the background connection. Defining

(4.4) Q. =w, —w,

we obtain for the Hilbert Lagrangian the expression

(45) Lo = =du(E2 N QE) = & N2, + Q4 A Q7
which gives a family of first-order equivalent Lagrangians:
(4.6) Lp=—€ N2 +Qa N Q.

Each one of these first-order Lagrangians is invariant under arbitrary
changes of tetrad. In fact, if we consider the same tetrad change as before
we have:

/ ’ b / b _ ! / b — / b
wl = BY Abwt + BYdAY . @ = BY ALl + B dAY,
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o _  d —a' _ a’ Ab a
Qy =wy —wy =B ApQy .
For the curvature forms we have
=a’ —a' —a’ —c a’ Ab O%
Qb/ = deb/ +wc/ /\wb/ = Ba Ab/Qb s
. / ’ ’ .
where we used the relations A% BS = 0% and B dA% = —A%dB? . Fi-
nally, we have

& =0" N0V AO¥ NOY =det(B)E =€
é’g,l _ nalc,eb/J (eC/Jé./) — BZ,AZ,&‘: ,

where we assumed det(B) = 1, which holds for Lorentz transformations
which do not modify the spatial orientation. Therefore, the Lagrangian
Lp satisfies the following transformation rule

Ly = —€5 N + QY A Q5] = —BY ASEL A [BS AL+
+ B ALQ; A B ALQI) = L,

which shows that £ is invariant.
The variation of Lp with respect to the tetrad field is:

(4.7) 0Lp = 0Ly +du (062 AN Q7) +du(§2 N OQ7) =
' = —80" A QE 4+ dp (665 N QE — €% N SWE).
The variation of Lz with respect to the background (indicated here
with dp) is instead:
5B£B == _dH(fg A 5(:)2) ,

where we used 65£¢ = 0 and dpwS = 0. Since the variation with respect
to the background is a boundary term, there are no field equations for
the background, which accordingly has no dynamics. This is in com-
plete agreement with the analogous property of the family of first-order
Lagrangians considered in [5] and [6].

The Poincaré-Cartan form associated to Lp is

(4.8) O(Lp) = L+ [dvl — &, A0 +E8 Aap | A QG



478 M. FERRARIS — M. FRANCAVIGLIA — M. MOTTINI [22]

where w¢ are the contact parts of the connection forms, namely

Wl =08 —ws = 0%dyes .

The form O(Lp) so defined satisfies the characteristic properties of
a Poincaré-Cartan form. In fact:

©(Lp) is obviously a 4-form on J'L(M). The second term contains
only differentials of the ¢ (or of the e?) along with horizontal parts, so
that property (a) is fulfilled.

The horizontal part of ©(Lp) is the Lagrangian Lp, since the second
term is a contact form, being W? and dy&? contact forms; the contact
part is of order one. This proves (b) and (c).

To show that the differential of ©(Lp) generates the field equations,
we show that ©(Lp) differs from ©(Ly) by an exact differential, so that

dO(Lp) = dO(Lyg). We have in fact:

O(Lp) =Ly +d(§NQ5) — £ NOLeldyTs, A dat+
(4.9)
— &N dy(05e5) g5, N dat + [0 AT+ &8 AR A QS

where

G =T5, —Thu(@), Qi =0aelqs,dz"
and we used the relation dyI'§,(7) = 0 (which holds because the back-
ground connection depends only on the position and not on fields). Using

now the expression (3.8) of the Poincaré-Cartan form for the Hilbert La-
grangian and the formula

dy (05€2)q5, N da = @7 A QS — o, A QL
we get
(4.10) O(Lp) = O(Ln) +d(& N Q7)) -

We can now compute the formula for the conserved quantities associ-
ated to Lp starting from ©(Lp). Keeping into account the link between
the vertical differential and the Lie derivative, expressed by

Hor(w |dyel) = —£,e2

a ’
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we obtain

(4.11) Hor(w |wS) = =05 £ €2
and

(4.12) Hor(w]|dy &) = —£,82 .

Using these relations, we get for the conserved quantities

E(;CB,’U)) = — Hor (QZ)J@(EB)) =

= —w|Ly —w]du (& NQ5) — & A L4,(05e7)q5,dz"+
(4.13)
— &N Ggef.,Engudx“ + £jef£w1“gu(x)dx“ + £, NQ)+
+ =600 Lwed + &0 Luen ] AN QG

where we used Hor(@S) = 0. In the expression found for E(Lp,w) the
sum of the first and the fourth terms gives F(Ly,w). Furthermore, we
have

(4.14) E8N L,(05e7)q5,do" = (€108 Loep, — E3,00 Luel] A Qs
Hence
E(Lp,w) =E(Ly,w) —wldy(§ NQ5) + £,(§0 AN Qg)+
(4.15) + &8 NOel £,15, (z)de" = BE(Ly,w)+
+dy [w] (€2 A Q)] + €1 N0l £,T5, (x)dat

where the Lie derivative is computed using the formula

£,(6 N Q) = wldp (€ A Q7) + dir[w] (€2 A Q7)] -

Substituting in the expression of E(Lp,w) the value of E(Ly,w)
already calculated in section 3 we finally obtain

E(Lp,w) = w'ey, A +di[ — &V +w] (& A Q7]+

(4.16)
+ &8Nl £,105, (z)dat .
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The conserved quantities associated to Lp are composed of three
terms: field equations, the differential of a 2-form (the superpotential,
which depends now on the background) and the term containing the Lie
derivative £, I'§, () of the background itself. The third term is zero if we
choose the vectorfield w to be a symmetry of the background connection,
i.e. a vectorfield which satisfies £,I'§,(z) = 0. In this case F(Lp,w)
assumes an expression similar to (3.13). The superpotential is hence
given by:

(4.17) U(Lp,w) = =& Vaw +w|(§ N Q7)

and the horizontal differential of E(Lp,w), with w a ‘Killing field’ for the
background, is zero on solutions of field equations. It is easy to show that
the superpotential U(Lpg, w) is the tetrad expression of the superpotential
found in [5] and [6] for the metric version of the family (4.6) of first-order
Lagrangians.

REFERENCES

[1] R. ARNOWITT — S. DESER — C.W. MISNER: The Dynamics of General Relativity,
In ‘Gravitation: an introduction to current research’ L. Witten ed. Wiley, New
York, (1962), 227-265.

[2] M. FRANCAVIGLIA: Elements of Differential and Riemannian Geometry, Bibliopo-
lis Napoli, (1988).

[3] M. FRANCAVIGLIA: Relativistic Theories (the Variational Structure), Lectures at

the 13*® Summer School in Mathematical Physics Ravello, (1988). Quaderni del
CNR GNFM (1991), 1-144.

[4] M. FERRARIS — M. FRANCAVIGLIA: Energy-momentum Tensors and Stress Ten-
sors in Geometric Field Theories, J. Math. Phys., 11 (6), (1985), 1243.

[5] M. FERRARIS — M. FRANCAVIGLIA: Covariant First-order Lagrangians, Energy-
density and Superpotentials in General Relativity, Journal of General Relativity
and Gravitation, 22 (9), (1990), 965-985.

[6] M. FERRARIS — M. FRANCAVIGLIA: Remarks on the Energy of the Gravitational
Field, In 8" italian conference on General Relativity and Gravitational Physics,
M. Cerdonio, R. Cianci, M. Francaviglia, M. Toller ed. World Scientific, Singapore,
(1988), 183-196.



[25] Conserved quantities of the gravitational field etc. 481

[7] M. FERRARIS — M. FRANCAVIGLIA: The Lagrangian approach to Conserved Quan-
tities in General Relativity, In ‘Mechanics, Analysis and Geometry: 200 years after
Lagrange’, M. Francaviglia, ed. North Holland, Amsterdam, (1991), 451-488.

[8] M. FERRARIS — M. FRANCAVIGLIA — M. MOTTINI: On the energy of the Gravi-
tational Field for Spherically Symmetric Space-times, Atti Accademia Peloritana
dei Pericolanti di Messina (in print).

[9] M. FERRARIS — M. FRANCAVIGLIA — C. REINA: A Costructive Approach to Bun-
dles of Geometric Objects on a Differentiable Manifold, J. Math. Phys., 24 (1),
(1983), 120-124.

[10] M. FERRARIS — M. FRANCAVIGLIA — C. REINA: Sur les Fibrés d’Objets Géomé-
triques et leurs Applications Physiques, Ann. Inst. H. Poincaré, 38 (4), (1983),
371-383.

[11] M. FERRARIS — M. FRANCAVIGLIA — O. ROBUTTL: Energy and Superpotentials in
Gravitational Theories, In ‘Atti del VI Convegno Nazionale di Relativita Generale
e Fisica della Gravitazione’, M. Modugno ed. Pitagora Editrice, Bologna, (1986),
137-150.

[12] J. KATzZ: A note on Komar’s anomalous factor, Class. Quantum Grav., 2 (1985),
423.

[13] A. KOMAR: Covariant Conservation Laws in General Relativity, Phys. Rev., 113
(1959), 934-936.

[14] M. MOTTINI: Energia del campo gravitazionale e quantita conservate in relativita
generale, Thesis Milano, March (1990).

[15] E. NEWMAN — R. PENROSE: An approach to Gravitational Radiation by a Method
of Spin Coefficients, J. Math. Phys., 3 (3), (1962), 566-578.

[16] R. PENROSE: Quasi-local Mass and Angular Momentum in General Relativity,
Proc. Roy. Soc. London, A381, (1982), 53-62.

[17] W. THIRRING: Classical Field Theory, Springer-Verlag Berlin (1979).

[18] K.P.ToD: Some examples of Penrose’s Quasi-local Mass Construction, Proc.
Roy. Soc. London, A388, (1983), 457-477.

Lavoro pervenuto alla redazione il 22 settembre 1993
ed accettato per la pubblicazione il 19 gennaio 1994

INDIRIZZO DEGLI AUTORI:

Marco Ferraris — Mauro Francaviglia — Michele Mottini — Istituto di Fisica Matematica
‘J.-L. Lagrange’ — Universita di Torino — Via Carlo Alberto, 10 — 10123 Torino, Italy



