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Conserved quantities of the gravitational field

in tetrad notation

M. FERRARIS – M. FRANCAVIGLIA – M. MOTTINI

Riassunto: I superpotenziali gravitazionali per la Lagrangiana del prim’ordine
che genera le equazioni di Einstein, dipendenti dalla scelta di un “background” e de-
terminati in un precedente lavoro, vengono qui riespressi nel formalismo delle tetradi.
Utilizzando risultati sulla controimmagine della forma di Poincaré-Cartan per Lagran-
giane del second’ordine, si dimostra che questi superpotenziali corrispondono a una
famiglia di Lagrangiane del prim’ordine nelle tetradi, invarianti sotto trasformazioni di
Lorentz.

Abstract: We reexpress in tetrad form the background dependent family of su-
perpotentials for the first-order Lagrangians which generate Einstein’s field equations,
found in an earlier paper. Using a result on the pull-back properties of the Poincaré-
Cartan forms for second-order Lagrangian field theories, we show that these superpoten-
tials are the superpotentials corresponding to a Lorentz invariant family of first-order
tetrad Lagrangians.

– Introduction

Among the intriguing problems still open in General Relativity there

is the issue of a coherent definition of mass for the solutions of Einstein

equations, and more generally the systematic theory of conserved quan-
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tities. In particular, for the mass of the gravitational field there exist

in literature a number of different formulae, which often give different

results when applied to families of space-times more general than the

asymptotically flat ones (for which is commonly agreed that the mass

should reduce to the ADM’s formula [1]).

In the framework of calculus of variations on fiber bundles there is

a general method to construct conserved quantities and Nöther currents

starting from the so-called Poincaré-Cartan form associated to a given

Lagrangian (see, e.g., [4] and [7]). This is based on the generation of a

(m − 1)-form E(w), where m is the dimension of the base manifold (usu-

ally m = 4 for relativistic field theories) and w is a vectorfield in the base.

It is known that E(w) reduces ‘on shell’, i.e. along critical sections of the

variational principle ensuing from the given Lagrangian, to the differen-

tial of a (m − 2)-form U(w), called the superpotential (see, e.g., [11]).

This method, applied to the standard Hilbert Lagrangian for the gravi-

tational field generates a classical superpotential, known as the Komar

superpotential [13]. However, it is also known that Komar’s superpo-

tential does not generate at once the mass and the angular momentum

of a rotating black hole, because of an extra factor 2. The superpotential

of Komar, in fact, has to be replaced by a more general superpotential

containing the previous one as a term, which apparently was the first

derived by Katz [12].

The earlier result of Katz found a complete explanation in the papers

[5] and [6] by two of us. In these papers it was shown that a whole

family of covariant first-order Lagrangians equivalent to the second-order

Hilbert Lagrangian exists, each one of them being parametrized by the

choice of an arbitrary linear connection which has no dynamical role.

This background connection may be fixed case by case on the basis of

possible physical requirements, such as a priori asymptotic conditions

(e.g., asymptotic flatness) or explicit perturbative expansions around a

given space-time (e.g., cosmological models based on FRW solutions).

To each one of these first-order Lagrangians there corresponds a new

superpotential, which is the sum of Komar’s term plus an extra term

depending of the background connection. Under the asymptotic flatness

condition one recovers the splitting by Katz.

This new class of superpotentials is stimulating not only because

it explains the anomalous factor 2 in Komar’s expression for the mass
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and angular momentum of a black hole, but also because it allows to

reproduce for the equivalent mass of a charged black hole a result which

can be obtained by applying the mass formula due to Penrose [16]. As

it was shown in [18], Penrose’s mass of a Reissner-Nordström solution

with mass parameter M and charge e is

EP (r) = M − e2

2r

which has a more convincing physical interpretation than the different

result

EK(r) = M − e2

r

obtained by a direct evaluation through the Komar superpotential.

Since Penrose’s formula and the new superpotential found in [5],

[6] reproduce the same result of charged black holes, it is interesting to

look for a way to compare the two expressions and seek their possible

relations. To this purpose, it seems to be more convenient to reexpress

in NP formalism [15] the metric dependent superpotentials generated by

the first-order Lagrangians. Hopefully, if not in general, one may try to

compare the relevant mass formulae in wide classes of space-times, e.g.

in the asymptotically flat cases or in some case of fixed symmetry (like

for instance spherical symmetry).

To this end, one needs first to reexpress all the result of [5], [6] in

the tetrad formalism, which is the basis for the NP formalism. In this

paper we shall thence reexpress in tetrad form the family of (covariant)

first-order metric Lagrangians and obtain a family of first-order tetrad

Lagrangians which are covariant and invariant under Lorentz transfor-

mations of the tetrad fields. Moreover, we show that the correspond-

ing superpotentials are the tetrad expressions of the relevant metric su-

perpotentials with background; these results were first obtained in the

Dissertation [14]. For the sake of simplicity and in order to let it be

easily understood by the physical audience, the calculations are here per-

formed in direct way; however, they rely on a fairly general result of

calculus of variations in fiber bundles, which roughly states the covari-

ance of Poincaré-Cartan forms under arbitrary bundle morphisms and,

as a consequence, the functoriality of the ensuing superpotentials.
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The application of these new tetrad superpotentials to the case of

spherically symmetric space-times gives rise to a new larger class of allow-

able asymptotic conditions, which will form the subject of a forthcoming

paper [8]. The transition from the tetrad version to the NP form of there

superpotentials and the comparison with Penrose’s mass will be further

investigated and we hope to obtain promising indications.

1 – Preliminaries and notation

In this section we shall specify the mathematical notation and recall

some of the objects which will be used in the rest of this paper. For a

more thorough discussion see [2] and [3].

Throughout this section M is a manifold of dimension m, with local

coordinates (xµ) µ = 0, . . . , m − 1; (B, M, π) is a fibered manifold, with

fibered coordinates (xµ, yi) i, j, k = 0, . . . , dim(B) − m − 1; JkB is the

kth-order jet prolongation of B, with fibered coordinates (xµ, yi, yi
α, . . . );

πk
h : JkB → JhB is the natural projection (k > h); we set J0B ≡ B.

For a generic manifold N : χ(N) is the space of all vectorfields on N ,

Ωp(N) is the space of all p-forms on N , F(N) is the space of all real

differentiable functions of N and we set Ω0(N) ≡ F . We denote by 9 the

interior product.

1.1 – Horizontal and vertical operators

A contact form in (B, M, π) is a form ω ∈ Ωp(JkB) satisfying the

property (jkσ)∗ω = 0 for every section σ of (B, M, π). Contact forms are

generated by exterior products of the base contact forms (or structural

forms) of B:

(1.1) ϑi
α1...αs

≡ dyi
α1...αs

− yi
α1...αsλdxλ .

A vertical vectorfield on B is a vectorfield V ∈ χ(B) which satisfies

Tπ ◦ V = 0. A horizontal form on B is a form ω ∈ Ωs(B) satisfying the

property

X9ω = 0 ,
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if X is a vertical vectorfield on B. Horizontal s-forms constitute a F(B)-

linear subspace Ωs
H(B) of Ωs(B). In coordinates, a horizontal form ω is

expressed by

(1.2) ω = ωα1...αsdxα1 ∧ . . . ∧ dxαs .

Every 1-form ω ∈ Ω1(B) can pulled-back to J1B and rewritten as

follows:

ω = ωµdxµ + ωidyi = ωµdxµ + ωi(dyi − yi
µdxµ + yi

µdxµ) =

= (ωµ + ωiy
i
µ)dxµ + ωiϑ

i

so that (π1
0)

∗ω can be decomposed into the sum of a contact form ωiϑ
i

and of a horizontal form

(1.3) Hor(ω) ≡ (ωµ + ωiy
i
µ)dxµ ∈ Ω1

H(J1B) ,

called the horizontal part of ω. The definition of horizontal part is ex-

tended to forms ω ∈ Ω1(JkB) by setting:

(1.4) Hor(ω)≡(ωµ+ωiy
i
µ+ωα

i yi
αµ+. . .+ω

α1...αk
i yi

α1...αkµ)dxµ ∈Ω1
H(Jk+1B) ,

for every 1-form

ω = ωµdxµ + ωidyi + ωα
i dyi

α + . . . + ω
α1...αk
i dyi

α1...αk
∈ Ω1(JkB)

on JkB.

Finally the definition of the operator Hor can be extended to p-forms

on JkB by setting

(1.5) Hor(f) = f

for f ∈ F(JkB) and requiring:

(1.6) Hor(ϕ ∧ ϑ) = Hor(ϕ) ∧ Hor(ϑ)

for generic forms ϕ and ϑ. In fact, this defines uniquely a linear operator

Hor : Ωp(JkB) → Ωp
H(Jk+1B)
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which coincides with the previous ones for p = 0 and p = 1 and satisfies

(1.6).

The horizontal differential dH of a horizontal p-form ω ∈ Ωp
H(JkB)

is defined by

(1.7) dHω = Hor(dω) .

The horizontal differential satisfies the property

(1.8) dH(ϕ ∧ ϑ) = dHϕ ∧ ϑ + (−1)pϕ ∧ dHϑ

where ϕ ∈ Ωp
H(JkB) and ϑ ∈ Ωq

H(JkB) are both horizontal. Defining the

formal derivative dµ ≡ d/dxµ by means of

df

dxµ
≡ ∂f

∂xµ
+

∂f

∂yi
α

yi
µ + . . . +

∂f

∂yi
α1...αk

yi
α1...αkµ ∈ F(Jk+1B)

where f ∈ F(JkB), we have that

(1.9) dHf ≡ Hor(df) = (dµf)dxµ .

In general, if ω = ωα1...αpdxα1 ∧ . . . ∧ dxαp is a horizontal p-form, we

have

(1.10) dHω = (dµωα1...αp)dxµ ∧ dxα1 ∧ . . . ∧ dxαp .

From dµdνf = dνdµf it follows easily dHdHω = 0 for every horizontal

form ω.

The definition of dH can now be extended to all p-forms by recalling

that p-forms can be expressed as linear combinations of exterior products

of horizontal forms and base contact forms. Setting in fact:

(1.11) dHϑi
µ... ≡ dϑi

µ... = −ϑi
µ...α ∧ dxα

for every base contact form ϑi
µ... and requiring dH to be linear and to

satisfy the property (1.8) for every pair of forms, an operator

dH : Ωp(JkB) → Ωp+1(Jk+1B)
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is uniquely defined and it satisfies the property

(1.12) dHdHϕ = 0

for every p-form ϕ ∈ Ωp(JkB).

The horizontal differential and the formal derivative satisfy also the

relations

(1.13)
(jk+1σ)∗dHϕ = (jkσ)∗dϕ = d

[
(jkσ)∗ϕ

]

(dµf) ◦ jk+1σ = ∂µ(f ◦ jkσ) ,

where ϕ ∈ Ωp(JkB), f ∈ F(JkB) and σ is a section of the fibered mani-

fold (B, M, π).

The vertical differential dV of a p-form ω ∈ Ωp(JkB) is defined as the

difference between the standard differential and the horizontal differen-

tial; namely:

(1.14) dV ω ≡ dω − dHω ∈ Ωp+1(Jk+1B) .

Vertical differentials of the base space coordinates xµ are always zero,

while vertical differentials of the coordinates yi, yi
µ . . . are the base contact

forms ϑi, ϑi
µ . . . . The vertical differential of any p-form is a contact form;

the horizontal part of a vertical differential is always zero. From the

properties of the standard differential and of the horizontal differential it

follows that the vertical differential is linear and satisfies

dV (ϕ ∧ ϑ) = dV ϕ ∧ ϑ + (−1)pϕ ∧ dV ϑ

where ϕ ∈ Ωp(JkB) and ϑ ∈ Ωq(JkB). Furthermore the vertical differ-

ential of a vertical differential is always zero, i.e.:

(1.15) dV dV ϕ = 0 .

There is a link between the vertical differential and the Lie derivative.

If (B, M, π) is a bundle of geometric objects with coordinates (xµ, yi),

X is a vectorfield on M and XB is its canonical lift to B, then the Lie

derivative £Xσ along X of a section σ of the bundle (see [9], [10]), defined

by

£Xσ = Tσ ◦ X − XB ◦ σ ,
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satisfies

(1.16) £Xσ = −[
(XJ1B9dV yi) ◦ j1σ

] ∂

∂yi
.

For the notions of Lagrangian L, of Poincaré-Cartan form Θ(L), of

energy-density flow Eλ(L, w)dsλ and of the corresponding superpotentials

we refer the reader to the previous papers [3], [4], [11]. We just recall

that the Poincaré-Cartan form associated with a Lagrangian L of order k

is an m-form Θ(L) ∈ Ωm(J2k−1B) (where m is the dimension of the base

space M of the bundle (B, M, π) of the theory) satisfying the following

characteristic properties:

(a) the interior product of Θ(L) with a vectorfield vertical with re-

spect to the projection π2k−1
k−1 of J2k−1B on Jk−1B is always zero

(i.e. Θ(L) does not contain dyi
µ1...µj

with j > k − 1);

(b) the interior product of Θ(L) with two vertical vectorfields is al-

ways zero (i.e. the contact part of Θ(L) can be written as a linear

combination of the exterior products of a contact 1-form and a

horizontal form);

(c) the horizontal part of Θ(L) is the Lagrangian L;

(d) the differential of Θ(L) generates the field equations; in fact the

critical sections σ (solutions of the field equations) satisfy

(j2k−1σ)∗[W 9dΘ(L)
]
= 0

where W is a vectorfield on J2k−1B.

It is known (see e.g. [4], [5] and ref.s quoted therein) that Poincaré-

Cartan forms always exist globally for any Lagrangian of any order.

Uniqueness is lost for Lagrangians of order higher than one, for which

an infinite family exists depending upon extra parameters. In any case,

for second-order Lagrangians (which is the case of interest in this paper)

there is a unique preferred form in the family, which shall be hereafter

called the “canonical Poincaré-Cartan form”; it is defined as the only form

of the family having symmetric coefficients (see later for an expression;

(2.3)).
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1.2 – Linear frames and their prolongations

Let us know take B = L(M), the bundle of linear frames in M .

We assume that M can be given a Lorentzian metric gµν , with sig-

nature (−,+, . . . ,+). In this case, Greek indices label coordinate bases

∂/∂xµ and dxµ in M ; while Latin lowercase indices a, b, c = 0, . . . , m − 1

label generic (usually orthonormal) bases ea and θa.

Denoting by ηab the Minkowski metric, an orthonormal basis ea with

its dual θa are given by the orthonormality condition

gµνe
µ
aeν

b = ηab ,

which implies

(1.17) gµν = ηabθ
a
µθb

ν .

Indices with respect to an orthonormal basis will be raised and low-

ered using ηab and ηab.

Starting from an orthonormal basis we introduce the volume element

(1.18) ξ ≡ θ0 ∧ . . . ∧ θm−1 =
√

gds

where g ≡
∣∣ det(gµν)

∣∣ and ds ≡ dx0 ∧ . . . ∧ dxm−1. We define also the

forms

(1.19)

ξa ≡ ea9ξ =
√

geµ
adsµ

ξab ≡ eb9ξa =
√

geµ
aeν

bdsµν

ξabc ≡ ec9ξab =
√

geµ
aeν

be
ρ
cdsµνρ

where

dsµ ≡ ∂

∂xµ
9ds , dsµν ≡ ∂

∂xν
9dsµ , dsµνρ ≡ ∂

∂xρ
9dsµν .

Setting locally ea = eα
a∂α and θa = θa

µdxµ, (xα, eα
a ) are natural

(fibered) coordinates for L(M).

If Γα
βµ is any symmetric connection then we define the connection

forms ω̂c
a ∈ Ω1

(
L(M)

)
associated to Γα

βµ by means of

(1.20) ω̂c
a ≡ θc

α(deα
a + Γα

βµeβ
adxµ) ∈ Ω1

(
L(M)

)
.
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We denote by ωc
a ≡ ωc

aµdxµ ∈ Ω1
H

(
J1L(M)

)
the horizontal parts of

the connection forms ω̂c
a, namely

(1.21) ωc
a ≡ Hor(ω̂c

a) = θc
a(e

α
a,µ + Γα

βµeβ
a)dxµ

where (xα, eα
a , eα

a,µ) are natural coordinates in J1L(M). If σ : M → L(M)

is any section, then

(1.22) (j1σ)∗ωc
a = θc

α(∇µeα
a )dxµ ,

where ∇µ is the covariant derivative associated to the connection.

We remark that often in the literature the objects ωc
a are called con-

nection forms instead of the objects ω̂c
a.

The horizontal parts of the connection forms can be expressed as

follows:

ωc
a = ωc

amθm ,

where the coefficients ωc
am are given by ωc

am ≡ ωc
aµeµ

m.

The ‘contact part’ of the connection forms is:

(1.23) ω̂c
a − ωc

a = θc
adV eα

a = θc
α(deα

a − eα
a,µdxµ) .

Using the symmetry of the connection, which implies that Γα
βµdxβ ∧

dxµ = 0, we get

dθa = −ω̂a
b ∧ θb .

Taking the horizontal part of this relation we obtain

dHθa = −ωa
b ∧ θb = ωa

bmθb ∧ θm .

If w ∈ χ(M) is a vectorfield and we set ∇aw
c ≡ eµ

aθc
ν∇µwν , we get

(1.24) ∇aw
c = ea(w

c) + ωc
maw

m

where ea(w
c) ≡ eµ

a∂µ(θc
νw

ν).

If the basis ea is orthonormal for the metric gµν , then the connection

forms associated to the Levi-Civita connection of the metric gµν satisfy

(1.25) ωba = −ωab
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where ωba ≡ ηbcω
c
a.

The following properties of the connection forms are valid only for

Levi-Civita connections and orthonormal bases:

i) Being the horizontal parts of the connection forms skew-symmetric,

the symmetric parts of the connection forms are contact forms, namely

(1.26) ω̂ca + ω̂ac = θcαdV eα
a + θaαdV eα

c

where θcα ≡ ηcbθ
b
α.

ii) The horizontal differentials of the forms (1.19) are

(1.27)

dHξa = ωb
a ∧ ξb

dHξab = ωc
a ∧ ξcb + ωc

b ∧ ξac

dHξabc = ωd
a ∧ ξdbc + ωd

b ∧ ξadc + ωd
c ∧ ξabd ,

and

(1.28) dHξa
b = −ωa

c ∧ ξc
b + ωc

b ∧ ξa
c .

iii) Being dξab = −ξabm ∧ ω̂m
d ∧ θd we obtain

(1.29) dξab − ω̂m
a ∧ ξmb − ω̂m

b ∧ ξam = −ω̂m
m ∧ ξab .

For the differential of ξa
b we get thence

(1.30) dξa
b + ω̂a

n ∧ ξn
b − ω̂n

b ∧ ξa
n = ω̂(mn) ∧ (−ηmnξa

b + δa
mξnb + δa

nξmb) ,

where (. . . ) denotes symmetrization.

We define the curvature forms Ω̂c
a ∈ Ω2

(
L(M)

)
associated with any

given connection by means of

(1.31) Ω̂c
a = dω̂c

a + ω̂c
b ∧ ω̂b

a ;

moreover we define the horizontal parts Ωc
a of these forms by

Ωc
a ≡ Hor(Ω̂c

a) ∈ Ω2
(
J1L(M)

)
.
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Denoting the 1-forms Γα
βµdxµ by Γα

β , we have

(1.32) Ω̂c
a = θc

α(dΓα
β + Γα

µ ∧ Γµ
β)eβ

a

so that

(1.33) Ωc
a = θc

α(dHΓα
β + Γα

µ ∧ Γµ
β)eβ

a =
1

2
θc

αeβ
aRα

βµνdxµ ∧ dxν

where Rα
βµν is the Riemann tensor associated with the connection. The

contact parts of curvature forms are

(1.34) Ω̂c
a − Ωc

a = θc
αdV Γα

βeβ
a ,

while the horizontal parts Ωc
a of the curvature forms satisfy the property

Ωca = −Ωac where Ωca ≡ ηcbΩ
b
a.

2 – Change of field variables and Poincaré-Cartan form

In this section we prove a result about the behaviour of the Poincaré-

Cartan form of a second-order field theory when the field variables are

changed in an arbitrary way. The proof of this result was first given in

the thesis [14]. This result will be useful in General Relativity in order

to change variables from metrics to tetrads.

The result is the following: Let (B′, M, π′) and (B, M, π) be two

fibered manifolds with the same base space M . A second-order field the-

ory with Lagrangian L is given on (B, M, π); the change of variables is

specified by a fibered morphism

F : B′ → B ,

over a diffeomorphism f of M . On B we have the canonical Poincaré-

Cartan form Θ(L); on B′ we have the pull-back Lagrangian F ∗L, depend-

ing on the new field variables, and the canonical Poincaré-Cartan form

Θ(F ∗L). Then we have:

(2.1) Θ(F ∗L) = F ∗Θ(L) .
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Proof. Let (xµ, yi) be coordinates of B and (tα, zA) be coordinates

of B′ (lowercase Latin indices label coordinates in B, uppercase Latin

indices label coordinates in B′ and Greek indices label coordinates in

M); the morphism F is denoted by

{
yi = yi(zA, tα)

xµ = xµ(tα) .

Furthermore let (xµ, yi, yi
µ, yi

µν) be coordinates of J2B and (tα, zA, zA
α , zA

αβ)

be coordinates of J2B′.

We have:

yi
µ =

(
∂yi

∂zA
zA

α +
∂yi

∂tα

)
Xα

µ

yi
µν =

(
∂yi

∂zA
zA

α +
∂yi

∂tα

)
Xα

µν +

(
∂2yi

∂zA∂zB
zA

α zB
β + 2

∂2yi

∂zA∂tβ
zA

α +

+
∂yi

∂zA
zA

αβ +
∂2yi

∂tα∂tβ

)
Xα

µ Xβ
ν ,

where

Xα
µ =

∂tα

∂xµ

, Xα
µν =

∂2tα

∂xν∂xµ
.

From these relations it follows that

(2.2)

∂yi
µ

∂zA
α

=
∂yi

∂zA
Xα

µ ,
∂yi

µ

∂zA
=

(
∂2yi

∂zA∂zB
zB

α +
∂2yi

∂zA∂tα

)
Xα

µ

∂yi
µν

∂zA
αβ

=
∂yi

∂zA
Xα

µ Xβ
ν ,

∂yi
µν

∂zA
β

=
∂yi

∂zA
Xβ

µν+

+ 2

(
∂2yi

∂zA∂zB
zB

α +
∂2yi

∂zA∂tα

)
Xβ

µXα
ν .

The canonical Poincaré-Cartan form associated to L = Lds is

(2.3) Θ(L) = Lds + (fν
i dV yi + fνµ

i dV yi
µ) ∧ dsν

where

fν
i ≡ ∂L

∂yi
ν

− d

dxµ

∂L

∂yi
µν

, fνµ
i ≡ ∂L

∂yi
νµ

.
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Now we have

F ∗(dV yi) =
∂yi

∂zA
dV zA , F ∗(dV yi

µ) =
∂yi

µ

∂zA
dV zA +

∂yi
µ

∂zA
α

dV zA
α

and

F ∗(ds) =
1

X
dr , F ∗(dsν) = Xα

ν

1

X
drα

where X = det(Xα
µ ) and

dr = dt0 ∧ . . . ∧ dtm−1 , drα =
∂

∂tα
9dr .

Using these relations we can compute the pull-back of the Poincaré-

Cartan form, which is:

(2.4)

F ∗Θ(L) = F ∗L +

[
1

X

(
fν

i

∂yi

∂zA
+ fµν

i

∂yi
µ

∂zA

)
Xβ

ν dV zA+

+
1

X
fµν

i

∂yi
µ

∂zA
α

Xβ
ν dV zA

α

]
∧ drβ .

For the Lagrangian F ∗L = L′dr we get

F ∗L = F ∗(Lds) =
L

X
dr ,

so that L′ = L/X. The Poincaré-Cartan form associated to F ∗L is

Θ(F ∗L) = L′dr + (f
′β
A dV zA + f

′βα
A dV zA

α ) ∧ drβ

where

f
′β
A =

∂L′

∂zA
β

− d

dtα

∂L′

∂zA
αβ

, f
′αβ
A =

∂L′

∂zA
αβ

.

Using the formulae (2.2), we get finally

f
′β
A =

1

X

[
∂L

∂yi
µν

∂yi
µν

∂zA
β

+
∂L

∂yi
µ

∂yi
µ

∂zA
β

− Xα
µ Xβ

ν

d

dtα

(
fµν

i

∂yi

∂zA

)]
=

=
1

X

(
fν

i

∂yi

∂zA
+ fµν

i

∂yi
µ

∂zA

)
Xβ

ν

f
′αβ
A =

1

X
fµν

i

∂yi
µν

∂zA
αβ

=
1

X

∂yi
µ

∂zA
α

Xβ
ν .
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Thus (2.1) follows as claimed.

3 – Energy-density and superpotentials from the Hilbert La-

grangian

In this section, starting from the tetrad version of the usual Hilbert

Lagrangian for the gravitational field and applying the method based on

the Poincaré-Cartan form as in [5] and [6], we deduce the formula for

the superpotential associated to a generic vectorfield. Throughout this

section and the following one M will be four dimensional.

The bundle of the fields is therefore L(M), the bundle of linear

frames, instead of Lor(M), the bundle of all the metrics of signature

(−,+,+,+). Between these bundles there is a morphism

(3.1) F : L(M) → Lor(M)

given by

F (θa) = ηabθ
a ⊗ θb .

This morphism, which is surjective but not injective, specifies the

change of variables that we are performing.

The Hilbert Lagrangian expressed using the metric is

(3.2) LHds =
c4

16πG

√
gR ds =

c4

16πG

√
ggµνRµνds .

For the sake of simplicity in this section and in the next one we rescale

the volume form ξ as (c4/16πG)θ0 ∧ . . . ∧ θ3, so that the factor c4/16πG

that appears in (3.2) remains hidden in the forms ξa
c . The pull-back of

LHds under the morphism F is thence

(3.3) LH = −ξa
c ∧ Ωc

a ,

which is the standard Hilbert Lagrangian in tetrad form (cfr. [17]).

We compute the variation of LH using (1.28), and we find:

(3.4) δLH = −δθb ∧ ξa
cb ∧ Ωc

a − dH(ξa
c ∧ δωc

a) .
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Accordingly, the field equations for the tetrad are (cfr. [17])

(3.5) ξa
cb ∧ Ωc

a = 0 .

Since the tetrad Lagrangian (3.3) is the pull-back of the metric La-

grangian (3.2), we can apply the theorem of section 2 to conclude that

the Poincaré-Cartan form dependent on the tetrad must be the pull-back

of the Poincaré-Cartan form dependent on the metric, which (cfr. [5] and

[6]) is known to be:

(3.6) Θ(LH) = LHds + πµνdV uα
µν ∧ dsα

where πµν ≡ (c4/16πG)
√

ggµν and

uα
µν ≡ Γα

µν − 1

2
(δα

µΓσ
σν + δα

ν Γσ
σµ) ,

Γα
µν being the Levi-Civita connection of the space-time metric gµν .

The Poincaré-Cartan form dependent on the tetrad is thence

(3.7) Θ(LH) = −ξa
c ∧ Ω̂c

a .

In fact, rewriting this form in coordinates one finds:

(3.8) Θ(LH) = −ξa
c ∧ Ωc

a − ξa
c ∧ (Ω̂c

a − Ωc
a) = LH − ξa

c ∧ θc
αeβ

adV Γα
βµ ∧ dxµ

so that

Θ(LH) = LHds + πβρdV uα
βρ ∧ dsα ;

Θ(LH) is thence the pull-back of Θ(LH).

The expression given for Θ(LH) can be justified also verifying that it

satisfies the characteristic properties of the Poincaré-Cartan form recalled

in section 1. In fact, Θ(L) satisfies trivially the first three properties: ξa
c

is a horizontal 2-form, Ω̂c
a is a 2-form containing differentials of eµ

a and

eµ
a,α, so that Θ(LH) is a 4-form satisfying the property (a); (b) holds true

since the contact part

−ξa
c ∧ (Ω̂c

a − Ωc
a) = −ξa

c ∧ θc
αeβ

a(dV Γα
βµ) ∧ dxµ



[17] Conserved quantities of the gravitational field etc. 473

is the exterior product of a contact 1-form with a horizontal form; the

horizontal part of Θ(LH) is −ξa
c ∧ Ωc

a, which implies (c). It is possible to

show that also condition (d) is fulfilled. In fact, computing dΘ(LH) with

the aid of the definition of Ωc
a and the formula (1.30) we obtain:

(3.9) dΘ(LH)=−dξa
c ∧Ω̂c

a−ξa
c ∧dΩ̂c

a =−ω̂(mn) ∧ (−ηmnξa
c +δa

mξnc+δa
nξmc)∧Ω̂c

a .

As explained in section 1, ω̂(mn) is a contact form; rewriting Ω̂c
a as

the sum of Ωc
a and of a contact form, we can hence write

(3.10)
dΘ(LH) = −ω̂(mn) ∧ (−ηmnξa

c + δa
mξnc + δa

nξmc) ∧ Ωc
a+

− ω̂(mn) ∧ (−ηmnξa
c + δa

mξnc + δa
nξmc) ∧ (Ω̂c

a − Ωc
a) ,

where the second addendum is a contact form of order two, i.e. the

exterior product of two contact 1-forms with a horizontal form. Using

now the skewsymmetry of Ωca we have

(3.11)
dΘ(LH) = −ηmsω̂

(mn) ∧ ξa
cn ∧ Ωc

a ∧ θs − ω̂(mn) ∧ (−ηmnξa
c +

+ δa
mξnc + δa

nξmc) ∧ (Ω̂c
a − Ωc

a) .

Starting from this last expression of dΘ(LH) and recalling that the

pull-back of a contact form along a section is zero, we obtain

(j3σ)∗[W 9dΘ(LH)
]
= −ηmsλ

mnξa
cn ∧ Ωc

a ∧ θs

where σ is a section of L(M), W is a vectorfield on J1
(
L(M)

)
and

λmn = (j3σ)∗(W 9ω̂(mn)). Then the differential of Θ(LH) gives the field

equations, so that Θ(LH) satisfies the last characteristic property of a

Poincaré-Cartan form.

From the expression of the Poincaré-Cartan form for the Hilbert La-

grangian, one immediately obtains the formula for the conserved quantity

associated to a vectorfield in space-time. If w is a vectorfield and ŵ is its

canonical lift to the bundle of field variables, in this case J1L(M), then

the associated conserved quantity is

E(LH , w) = − Hor
[
ŵ9Θ(LH)

]
,
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namely

(3.12)
E(LH , w) = −Hor(ŵ9LH) + Hor

[
ŵ9(ξa

c ∧ θc
αeβ

adV Γα
βµ ∧ dxµ)

]
=

= −w9LH − ξa
c ∧ θc

αeβ
a£wΓα

βµdxµ

where we have used equations (1.16) and (3.8) and the relation Hor(ϕ ∧
dV ϑ) = 0, which holds for every pair of forms ϕ and ϑ. Using (3.3) and

the formula for the Lie derivative of a symmetric connection:

£wΓα
βµ = ∇µ∇βwα − Rα

βµσwσ

we obtain

(3.13)
E(LH , w) = w9(ξa

c ∧ Ωc
a(−ξa

c ∧ θc
αeβ

a(∇µ∇βwα−Rα
βµσwσ) ∧ dxµ =

= wbξa
cb ∧ Ωc

a − dH(∇aw
cξa

c ) ,

where wb ≡ θb
νw

ν and ∇aw
c ≡ eµ

aθc
ν∇µwν .

Therefore, we see that the expression of E(LH , w) is the sum of two

terms. The first one contains field equations while the second is the

horizontal differential of the 2-form

(3.14) U(LH , w) = −∇aw
cξa

c

which is the superpotential for the tetrad version of Einstein’s gravita-

tional theory. Then, the horizontal differential of E(LH , w) is zero when

evaluated on the solutions of the field equations, being the horizontal

differential of a horizontal differential. This property justifies the name

“conserved quantity” for E(LH , w).

The interpretation of E(LH , w) as a physical quantity depends of

course on the vectorfield w: if w is time-like then E(LH , w) will be the

energy-density; if w is space-like and his flow is a spatial translation, then

E(LH , w) is the momentum density in the direction of the translation,

while if w is space-like and his flow is a rotation around an axis, then

E(LH , w) is the density of angular momentum with respect to the axis

of rotation.

The coordinate expression of the superpotential U(LH , w) is

U(LH , w) = −∇aw
cξa

c = − c4

16πG
eµ

aθc
ν∇µwν√gηabeρ

be
σ
c dsρσ =

= − c4

16πG

√
g∇µwνdsµν
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which is the superpotential one finds starting from the metric Lagrangian

(3.2) of Hilbert (see, e.g. [5]); i.e., half of the well known Komar super-

potential (see [13]):

UK = − c4

8πG

√
g∇µwνdsµν .

4 – Energy-density and superpotentials from first-order Lagran-

gians

In this section we finally show that invariant first-order Lagrangians

for general relativity can be written in tetrad form, in full analogy with

the result of [5] and [6] for the metric case.

From these first-order Lagrangians we compute conserved quantities

and the corresponding superpotentials.

Using the expression

(4.1) Ωc
a = dHωc

a + ωc
d ∧ ωd

a

and (1.28), the Hilbert Lagrangian can be written as follows:

(4.2) LH = −ξa
c ∧ Ωc

a = −dH(ξa
c ∧ ωc

a) − ξd
c ∧ ωa

d ∧ ωc
a .

The second term depends only on first derivatives of the field vari-

ables and differs from the Hilbert Lagrangian for a horizontal differential,

so that it might be considered as a first-order Lagrangian equivalent to

Hilbert’s one. However, this first-order Lagrangian is not invariant under

a tetrad change, because ωc
a is not invariant. In fact, if we perform the

tetrad change

aa′ = Aa
a′ea , θa′

= Ba′
a θa (Ba′

c Ac
b′ = δa′

b′ )

where p =→ Aa
a′(p) is a smooth family of Lorentz transformations, we have

ωa′
b′ ≡ θa′

α (∂βeα
b′dxβ + Γα

βσeσ
b′dxβ) = Ba′

a θa
α

[
∂β(Ab

b′eα
b )dxβ+

+ Γα
βσAb

b′eσ
b dxβ

]
= Ba′

a Ab
b′ωa

b + Ba′
b dAb

b′
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and the last term in general is not zero because Ab
b′ depends on position.

(Note that, because Ab
b′ depends only on position, we have ∂βAb

b′dxβ =

dHAb
b′ = dAb

b′).

Applying to this first-order Lagrangian the procedure of section 3 to

obtain conserved quantities would give results dependent on the choice of

a tetrad. This situation is not acceptable for quantities that must have a

physical meaning; in fact, tetrads connected by a Lorentz transformation

describe the same physical situation, so that all physical quantities must

be equal whichever ‘equivalent’ tetrad one chooses.

We shall hence proceed in analogy with [6]. We introduce a fixed

symmetric connection Γα
µν(x), the background connection, together with

the corresponding horizontal parts of the connection forms

ω̄a
b ≡ θa

α

(
eα

b,β + Γα
βσ(x)eσ

b

)
dxβ .

Hence we can write

(4.3)

LH = −dH(ξa
c ∧ ωc

a) − ξd
c ∧ ωa

d ∧ ωc
a =

= −dH

[
ξa

c ∧ (ωc
a − ω̄c

a)
] − dH(ξa

c ∧ ω̄c
a) − ξd

c ∧ ωa
d ∧ ωc

a =

= −dH

[
ξa

c ∧ (ωc
a − ω̄c

a)
] − ξa

c ∧ [
Ω

c

a + (ωd
a − ω̄d

a) ∧ (ωc
d − ω̄c

d)
]

where Ω
c

a are the horizontal parts of the curvature forms associated with

the background connection. Defining

(4.4) Qc
a ≡ ωc

a − ω̄c
a

we obtain for the Hilbert Lagrangian the expression

(4.5) LH = −dH(ξa
c ∧ Qc

a) − ξa
c ∧ [Ω

c

a + Qd
a ∧ Qc

d] ,

which gives a family of first-order equivalent Lagrangians:

(4.6) LB = −ξa
c ∧ [Ω

c

a + Qd
a ∧ Qc

d] .

Each one of these first-order Lagrangians is invariant under arbitrary

changes of tetrad. In fact, if we consider the same tetrad change as before

we have:

ωa′
b′ = Ba′

a Ab
b′ωa

b + Ba′
b dAb

b′ , ω̄a′
b′ = Ba′

a Ab
b′ω̄a

b + Ba′
b dAb

b′



[21] Conserved quantities of the gravitational field etc. 477

and

Qa′
b′ ≡ ωa′

b′ − ω̄a′
b′ = Ba′

a Ab
b′Qa

b .

For the curvature forms we have

Ω
a′

b′ = dH ω̄a′
b′ + ω̄a′

c′ ∧ ω̄c′
b′ = Ba′

a Ab
b′Ω

a

b ,

where we used the relations Aa
c′Bc′

c = δa
c and Ba′

a dAa
c′ = −Aa

c′dBa′
a . Fi-

nally, we have

ξ′ = θ0′ ∧ θ1′ ∧ θ2′ ∧ θ3′
= det(B)ξ = ξ

ξa′
b′ = ηa′c′

eb′9(ec′9ξ′) = Ba′
a Ab

b′ξa
b ,

where we assumed det(B) = 1, which holds for Lorentz transformations

which do not modify the spatial orientation. Therefore, the Lagrangian

LB satisfies the following transformation rule

L′
B = −ξa′

c′ ∧ [Ω
c′

a′ + Qd′
a′ ∧ Qc′

d′ ] = −Ba′
a Ac

c′ξa
c ∧ [Bc′

d Ae
a′Ω

d

e+

+ Bd′
e Af

a′Q
e
f ∧ Bc′

g Ah
d′Q

g
h] = LB ,

which shows that LB is invariant.

The variation of LB with respect to the tetrad field is:

(4.7)
δLB = δLH + dH(δξa

c ∧ Qc
a) + dH(ξa

c ∧ δQc
a) =

= −δθb ∧ Ωc
a + dH(δξa

c ∧ Qc
a − ξa

c ∧ δω̄c
a) .

The variation of LB with respect to the background (indicated here

with δB) is instead:

δBLB = −dH(ξa
c ∧ δω̄c

a) ,

where we used δBξa
c = 0 and δBωc

a = 0. Since the variation with respect

to the background is a boundary term, there are no field equations for

the background, which accordingly has no dynamics. This is in com-

plete agreement with the analogous property of the family of first-order

Lagrangians considered in [5] and [6].

The Poincaré-Cartan form associated to LB is

(4.8) Θ(LB) = LB + [dV ξa
c − ξa

m ∧ ω̌m
c + ξm

c ∧ ω̌a
m] ∧ Qc

a ,
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where ω̌a
c are the contact parts of the connection forms, namely

ω̌a
c ≡ ω̂a

c − ωa
c = θa

αdV eα
c .

The form Θ(LB) so defined satisfies the characteristic properties of

a Poincaré-Cartan form. In fact:

Θ(LB) is obviously a 4-form on J1L(M). The second term contains

only differentials of the θc
α (or of the eβ

a) along with horizontal parts, so

that property (a) is fulfilled.

The horizontal part of Θ(LB) is the Lagrangian LB, since the second

term is a contact form, being ω̌a
c and dV ξa

c contact forms; the contact

part is of order one. This proves (b) and (c).

To show that the differential of Θ(LB) generates the field equations,

we show that Θ(LB) differs from Θ(LH) by an exact differential, so that

dΘ(LB) = dΘ(LH). We have in fact:

(4.9)
Θ(LB) = LH + d(ξa

c ∧ Qc
a) − ξa

c ∧ θa
αeβ

adV Γα
βµ ∧ dxµ+

− ξa
c ∧ dV (θc

αeβ
a)qα

βµ ∧ dxµ + [−ξa
m ∧ ω̌m

c + ξm
c ∧ ω̌a

m] ∧ Qc
a

where

qα
βµ ≡ Γα

βµ − Γα
βµ(x) , Qc

a = θc
αeβ

aqα
βµdxµ

and we used the relation dV Γα
βµ(x) = 0 (which holds because the back-

ground connection depends only on the position and not on fields). Using

now the expression (3.8) of the Poincaré-Cartan form for the Hilbert La-

grangian and the formula

dV (θc
αeβ

a)qα
βµ ∧ dxµ = ω̌m

a ∧ Qc
m − ω̌c

m ∧ Qm
a

we get

(4.10) Θ(LB) = Θ(LH) + d(ξa
c ∧ Qc

a) .

We can now compute the formula for the conserved quantities associ-

ated to LB starting from Θ(LB). Keeping into account the link between

the vertical differential and the Lie derivative, expressed by

Hor(ŵ9dV eα
a ) = −£weα

a ,
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we obtain

(4.11) Hor(ŵ9ω̌c
a) = −θc

α£weα
a

and

(4.12) Hor(ŵ9dV ξa
c ) = −£wξa

c .

Using these relations, we get for the conserved quantities

(4.13)

E(LB, w) ≡ −Hor
(
ŵ9Θ(LB)

)
=

= −w9LH − w9dH(ξa
c ∧ Qc

a) − ξa
c ∧ £w(θc

αeβ
a)qα

βµdxµ+

− ξa
c ∧ θc

αeβ
a£wΓα

βµdxµ + ξa
c eβ

a£wΓα
βµ(x)dxµ + £w(ξa

c ∧ Qc
a)+

+ [−ξa
mθm

α £weα
c + ξm

c θa
α£weα

m] ∧ Qc
a ,

where we used Hor(ω̌c
a) = 0. In the expression found for E(LB, w) the

sum of the first and the fourth terms gives E(LH , w). Furthermore, we

have

(4.14) ξa
c ∧ £w(θc

αeβ
a)qα

βµdxµ = [ξm
c θa

α£weα
m − ξa

mθm
α £weα

c ] ∧ Qc
a .

Hence

(4.15)

E(LB, w) = E(LH , w) − w9dH(ξa
c ∧ Qc

a) + £w(ξa
c ∧ Qc

a)+

+ ξa
c ∧ θc

αeβ
a£wΓα

βµ(x)dxµ = E(LH , w)+

+ dH

[
w9(ξa

c ∧ Qc
a)

]
+ ξa

c ∧ θc
αeβ

a£wΓα
βµ(x)dxµ

where the Lie derivative is computed using the formula

£w(ξa
c ∧ Qc

a) = w9dH(ξa
c ∧ Qc

a) + dH

[
w9(ξa

c ∧ Qc
a)

]
.

Substituting in the expression of E(LB, w) the value of E(LH , w)

already calculated in section 3 we finally obtain

(4.16)
E(LB, w) = wbξa

cb ∧ Ωc
a + dH

[ − ξa
c ∇aw

c + w9(ξa
c ∧ Qc

a)
]
+

+ ξa
c ∧ θc

αeβ
a£wΓα

βµ(x)dxµ .
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The conserved quantities associated to LB are composed of three

terms: field equations, the differential of a 2-form (the superpotential,

which depends now on the background) and the term containing the Lie

derivative £wΓα
βµ(x) of the background itself. The third term is zero if we

choose the vectorfield w to be a symmetry of the background connection,

i.e. a vectorfield which satisfies £wΓα
βµ(x) = 0. In this case E(LB, w)

assumes an expression similar to (3.13). The superpotential is hence

given by:

(4.17) U(LB, w) = −ξa
c ∇aw

c + w9(ξa
c ∧ Qc

a)

and the horizontal differential of E(LB, w), with w a ‘Killing field’ for the

background, is zero on solutions of field equations. It is easy to show that

the superpotential U(LB, w) is the tetrad expression of the superpotential

found in [5] and [6] for the metric version of the family (4.6) of first-order

Lagrangians.
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