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Embedding dual nets in affine and

projective spaces

N.L. JOHNSON – K.S. LIN

Riassunto: Si determina la struttura delle reti finite o infinite le cui duali possono
essere immerse in uno spazio proiettivo o in uno spazio affine. Le reti le cui duali
possono essere immerse in uno spazio proiettivo sono reti di pseudo-regoli; le reti le
cui duali possono essere immerse in uno spazio affine sono quelle estendibili a reti di
pseudo-regoli.

Abstract: This article determines the structure of arbitrary nets (finite or infi-
nite) whose duals may be embedded into affine or projective space. The main results
are that nets whose duals may be embedded into projective space are pseudo-regulus nets
and nets whose duals may be embedded into affine space are 1-parallel class retractions
of pseudo-regulus nets.

1 – Introduction

In the 60’s, T.G. Ostrom conceived of and developed the theory of

finite derivable affine planes. These are finite planes of order q2 which

contain a distinguished set D of parallel classes of cardinality q +1 which

can be covered by a set of q2(q+1) affine subplanes of order q so that given

any two distinct points which lie on a line of D then there is a unique
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subplane of order q with lines in D which contains these points. Such

a set D together with the points of the affine plane is called a derivable

net.

Given a derivable net D in a finite affine plane, then Ostrom proved

that by replacing the lines of D by the subplanes of D then a new affine

plane is constructed called the derived plane.

More generally, it is possible to consider derivable nets without the

superstructure of an affine plane containing the net. Furthermore, it

is also possible to consider infinite derivable affine planes and infinite

derivable nets.

Using certain ideas of Cofman, one of the authors completely char-

acterized arbitrary derivable nets (see Johnson [8], [9]). It turns out

that there is always a corresponding projective space S of dimension 3

with a designated line N so that the lines skew to N , points of S − N ,

planes of S that intersect N is a point, and planes of S that contain N

are the points, lines, Baer subplanes, and parallel classes of the derivable

net. Using this structure, it is possible to show that a finite derivable net

is always a regulus net; corresponds to a regulus in some corresponding

finite 3-dimensional projective space.

More generally, considering arbitrary nets which are covered by sub-

planes which are not necessarily Baer, we may ask whether similar results

are valid for such subplane covered nets.

A finite dual subplane covered net is a partial geometry which satisfies

the axiom of Pasch. Using characterization results of Thas and De

Clerck [16] on such partial geometries, De Clerck and Johnson [3]

recently characterized subplane covered nets in the finite case.

Theorem (De Clerck, Johnson [3]). Every finite subplane cov-

ered net order qn and degree q + 1 is a (n − 1)-regulus net.

It is an open question whether there are similar characterizations for

infinite subplane covered nets other than the derivable nets.

Cofman [1] actually connects an arbitrary derivable net to a 3-

dimensional affine space and used this structure to show that the Baer

subplanes of the net are Desarguesian extending Prohaska [14] who

showed the same result under the assumption of finiteness. Actually, the

affine 3-space corresponds to a derivable net minus a parallel class. Hence,

in this way, there are nets whose duals can be embedded into affine space.
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De Clerck and Thas [4] also characterize those partial geometries

which can be embedded into projective space. There are also various

results on the embedding of partial and semi-partial geometries into affine

space but here the results are less complete. The reader may want to

read the known results in this direction in Thas and Hirschfeld [17]

(see chapter 26). In particular, we note here a slight improvement of a

result of Thas who completely determined the affine embeddable partial

geometries.

Note that in a finite derivable net, the points and subplanes deter-

mine a semi-partial geometry which satisfies the diagonal axiom (dual

of Pasch). Debroey [2] has classified the semi-partial geometries which

satisfy the diagonal axiom. Further, Wilbrink and Brouwer [18] clas-

sify certain semi-partial geometries which are not partial geometries by

their parameters.

Consider PG(n + 1, q) = S with distinguished codimension two sub-

space N = PG(n−1, q). Then using Thas and De Clerck [16] (and/or

De Clerck and Johnson [3]), the points and lines of any finite sub-

plane covered net as a dual partial geometry may be viewed as the sets

of lines skew to N and points of S − N respectively. And, the points and

subplanes of the subplane covered net as a semi-partial geometry may be

seen as the lines of S skew to N subplanes of S which intersect N in a

point respectively.

Roughly speaking, once a semi-partial geometry is known to have pa-

rameters which one can determine from the above example of lines planes,

it is shown by Wilbrink and Brouwer that the semi-partial geometry is

exactly this example. This is proven by showing that the diagonal axiom

becomes valid and then appealing to Debroey.

Since the arguments and methods of study of partial and semi-partial

geometries are expressly finite, it is not clear whether similar results on

infinite structures resembling semi-partial or partial geometries continue

to be valid.

In particular, we mention the following problems:

Determined the structure of an arbitrary subplane covered net .

Determine the arbitrary nets whose duals can be embedded in a pro-

jective space.

Determine the arbitrary nets whose duals can be embedded into an

affine space.



486 N.L. JOHNSON – K.S. LIN [4]

We show that any net whose dual may be embedded in an affine or

projective space leads to the following structure: Let Σ be a projective

space of dimension at least two and let N be a projective subspace of

codimension two (a point if the dimension is two). Then the lines skew

to N and points of Σ − N form a subplane covered net (see section 3)

which we call a “projective - codimension two net” (see (3.1)). If Σ is

3-dimensional the corresponding net is derivable. In this case, John-

son [9] determined the abstract structure of this net which in the finite

case becomes a regulus net. In the more general setting and represented

vectorially, we call such a net a pseudo-regulus (see definition (3.3)).

Our main results are as follows:

Theorem I. Let R be a projective - codimension two net. Then

there exists a left vector space W over a skewfield K such that the points

of the net may be identified with W ⊕ W , and the lines of the net may

be represented in the form
{
(0, y)

}
,

{
(x, y)|y = δx

} ≡ (y = δx) where x

and y are vectors of W , for all δ ∈ K and where δx = (δxi) where x is

represented as the tuple (xi) for i ∈ λ; that is, a projective - codimension

two net is a pseudo-regulus net.

A projective - codimension two net is a regulus net if and only if the

associated skewfield is commutative.

Theorem II. The dual of an arbitrary net can be embedded into a

projective space if and only if it is a pseudo-regulus net.

Theorem III. The dual of an arbitrary net can be embedded into

an affine space if and only if there is a one parallel class extension of the

net to a pseudo-regulus net.

Before proceeding to the main results, we recall the definition of the

various embeddings.

Definition 1.1. Let R = (P, L, C, I) be a net where P denotes

the set of points, L denotes the set of lines, C denotes the set of parallel

classes, and I denotes the incidence relation. We shall say that the dual

of R may be embedded into an affine or projective space Σ if and only if

each element of L is a point of Σ, each element of P is a line of Σ and
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we assume that each point of a line of Σ corresponding to an element of

P then corresponds to an element of L.

We also recall the definition of the diagonal axiom (see also Thas

and De Clerck [16] or [3] in the finite case).

Definition 1.2. Let M may be any incidence structure finite of

infinite of points and lines where each pair of distinct points are incidence

with at most one line and each pair of distinct lines are incidence with at

most one point. We shall say that M satisfies the diagonal axiom if and

only if for distinct collinear points x and y and points z and w which are

collinear to both x and y then it is necessarily the case that z and w are

collinear.

Proposition 1.3. (i) A subplane covered net satisfies the diagonal

axiom and conversely any net which satisfies the diagonal axiom is a

subplane covered net.

(ii) Any net whose dual can be embedded into a projective space sat-

isfies the diagonal axiom.

Proof. (i) Let x and y be distinct collinear points of the net. Assume

the net is subplane covered. Then there is a subplane πP,Q containing P

and Q. Moreover, since the subplane has all of the parallel classes as

infinite points we must have Pα and Qβ as lines of the subplane where

Pα is the unique line thru P of the parallel class α. If α and β are

distinct parallel classes then Pα ∩ Qβ is a point of the subplane. Let R

be any point of the subplane which is not on the line PQ. Then we may

form PR and QR. If PR is a line of the parallel class γ and QR is a

line of the parallel class ρ then R = Pγ ∩ Qρ. Similarly, taking any such

intersection point of the subplane to take the place of P in the argument

then any point of the subplane may be formed by taking intersections as

above. That is, there is a unique subplane containing P and Q. Hence,

if Z and W are points that are collinear to both P and Q then Z and W

are points of subplanes πP,Q and hence are collinear.

Now assume that we have a net which satisfies the diagonal axiom.

Let X and Y be any two distinct collinear points. Assume that Z and

W are points that are collinear to both X and Y so that Z and W are
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collinear. We assert that all such points belong to an affine subplane

which has all of the parallel classes as its infinite points.

The lines of the structure are defined to be the lines of the net which

are incident with at least two points of 〈X, Y 〉. For example, given a

point Z of 〈X, Y 〉 which is not incident with the line XY then there is at

most one line thru Z which is parallel to XY . Consider the line of the net

Zα incident with Z (if XY is in α) and form the intersection with Xβ

where a and β are distinct parallel classes to form the point W . Then W

and Y are mutually collinear to Z and X so that by the diagonal axiom

W and Y are collinear. Hence, any line of the net which is incident with

a point of 〈X, Y 〉 is a line of the structure.

Note that the structures 〈X, Y 〉 are the diagonal cliques in Thas and

De Clerck [16] in the finite case.

To prove (ii), let X and Y be two concurrent lines in a projective

space Σ and let Z and W be lines which are concurrent to both X and

Y but not concurrent with X ∩ Y .

Then clearly Z and W intersect as this forces the intersections into

a projective subplane. The dual of this statement (called the axiom of

Pasch) becomes the diagonal axiom and is hence satisfied in a net whose

dual can be embedded into a projective space.

Initially, we shall be concerned with nets whose duals may be em-

bedded into affine space. Clearly such nets are not subplane covered as

they do not satisfy the diagonal axiom.

2 – Embedding dual nets in affine spaces

In the following let R = (P, L, C, I) be an arbitrary net whose dual

can be embedded into an affine space Σ.

Lemma 2.1. Let α and β be distinct parallel classes of the net and

for P in α and Q in β considered as points in Σ, let PQ denote the line

in Σ joining P and Q. Then the points of PQ intersect each set γ in C

(as a set of points in Σ) in a unique point and PQ ⊂ ⋃
C

ρ.
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Proof. P and Q are lines of the net in distinct parallel classes so

that PQ in the affine space is P ∩ Q in the net. Since each point is on

exactly one line of each parallel class and by assumption the points on

the line PQ in Σ are all lines of the net, (2.1) follows immediately.

Lemma 2.2. Let α be any parallel class considered as a set of points

in Σ. Given any pair of distinct Pα, Qα ∈ α then all points on the line

PαQα are in α.

Proof. Let T be any point of PαQα and assume that T /∈ α. Let

PαQα . . . α, Pδ ∈ δ *= α. Form the affine plane π0 generated by the points

Pδ, Pα, Qα noting that these cannot all be collinear. Let
⋃

ρ∈C
ρ = Σ∗. If

the line PδT ∩ Σ∗ contains a point R say in β *= δ then this forces T to

be in Σ∗.

If T is in γ *= α then Pα T is incident with a unique point of α by

(2.1) which is a contradiction since Pα and Qα are incident with this line.

Thus, PδT ∩ Σ∗ ⊂ δ.

Let Pβ = PδPα ∩β and Qβ = PδQα ∩β. Consider PβT and note that

PβT cannot be parallel to both PαQβ and QβQα. Since any intersection

must in β by the above argument as it is in Σ∗, it follows that PβT inter-

sects PαQβ or QαQβ in a point of β and by uniqueness this intersection

must be Qβ. Now let u be the line in π0 which is parallel to PβT and

is incident with Pα. Now since u is parallel to PβT then u must inter-

sect QαQβ as otherwise QαQβ would be parallel to PβT which by above

contains Qβ. Note that Pα is not incident with QαQβ so if u intersects

QαQβ in Qα then T is a point of u. Hence, u intersects QαQβ in a point

of Σ∗ not in α. Since Pα is also on this line, it follows that u intersects

β in a point Rβ. Now since 〈Rβ, Pα, Qα〉 = π0, we may repeat the above

argument with Rβ in place of Pβ to obtain Rβ, T and Qβ collinear and

hence that Pβ, Rβ, T and Qβ are collinear which is a contradiction as Rβ

is on a line parallel to and distinct from PβT . This completes the proof

of (2.2).

Proposition 2.3. (i) For any parallel class α ∈ C of the net, α is

an affine subspace of Σ.

(ii)
⋃

ρ∈C
ρ = Σ∗ is an affine subspace of Σ.
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Proof. To prove (i), we note that since given any two points P and

Q of α, the line joining these points PQ contains only points of α by

(2.2) so that α is closed under joining by points and hence α is an affine

subspace of Σ.

Let P and R be points of Σ∗. If both are in some class β then (i)

applies to show that the points on PR are in Σ∗. If both are not in the

same class then since they are each in some class, it follows from (2.1)

that the points on PR are in Σ∗ (actually this is an assumption). Hence,

Σ∗ is an affine space.

For the formal definition of projective - codimension two net see (3.1).

Theorem 2.4. Let R be an arbitrary net whose dual may be em-

bedded in an affine space Σ. Then R may be extended to a projective -

codimension two net R+ by the addition of one parallel class and the dual

of R+ may be embedded into the projective extension of Σ.

Proof. Let Π∗ denote the projective extension of the affine space

Σ∗ =
⋃

ρ∈C
ρ and let H denote the hyperplane at infinity extending Σ∗.

We note that in Σ∗ the affine space α is parallel to the affine space

β.

Pf: Let Pα, Qα be distinct points on a line u in α. Let Pδ ∈ δ where

δ is distinct from α or β. Then on PαPδ and QαPδ are distinct points Pβ

and Qβ of β respectively. Form the affine plane 〈Pδ, Qα, Pα〉. We know

that PαQα and PβQβ are disjoint since α and β are disjoint (see (2.1)).

Hence, PαQα‖PβQβ so that α is parallel to β.

Extend α to a projective subspace α+ in Π∗ and let Nα denote the

hyperplane at infinity of α+ in H. Note that Nα = Nβ = N for all β ∈ C

since α is parallel to β.

Now let (∞) = H. Note that every line of Σ∗ either is parallel to

a line of α or intersects α. Hence, α+ is a hyperplane of Π∗ and N is

a projective subspace of codimension two (a hyperplane of a hyperplane

of Π∗). Thus,
{
α+, (∞)|α ∈ C

}
is the set of hyperplanes of Π∗ which

contains the codimension two subspace N . We will note in section 3 that

it is possible to construct a net with “points”, “lines”, “parallel classes”

as the lines skew to N , points of Π∗ − N , and hyperplanes containing

N respectively. We also note that this is a subplane covered net and

provided an algebraic characterization. Since, this constructed net is a
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one parallel class extension of the net in question and is what we call a

projective - codimension two net, we have the proof to the the theorem.

The proof of this result has an application to a result of Thas [15]

who classifies the partial geometries which can be embedded in a finite

affine space. We shall consider only dimension d ≥ 4.

First we recall the result of Thas:

Theorem (Thas [15] p. 7). Suppose that the partial geometry

S = (P, B, I) with parameters s, t, α (α > 1) is embedded in AG(d, s+1),

where d ≥ 4 and that P is not contained in an AG(d′, s + 1) with d′ < d

then the following cases can occur.

(a) s = 1, α = 2, t ∈ {d−1, d, . . . , 2d} and that S is a 2− (t+2, 2, 1)

design (P is an arbitrary pointset of AG(d, 2) which is not contained in

an AG(d′, 2), d′ < d).

(b) S is the design of points and lines of AG(d, s + 1).

(c) P is the pointset of AG(d, s + 1), and B is the set of all lines

of AG(d, s + 1) whose points at infinity constitute the complement of a

hyperplane PG(d − 2, s + 1) of the space at infinity of AG(d, s + 1).

Note that (2.4) applies to characterize case (c). We combine (2.4)

with section 3 to obtain:

Corollary 2.5. If a partial geometry with parameters s, t, α is

embedded into a finite affine geometry of dimension 4 and α > 2 then

either the partial geometry is the design of points and lines of a finite

affine space or is the dual of a net which has a one parallel class extension

to a regulus net.

Proof. We prove in section 3 that a projective - codimension two

net is a regulus net in the case where the associated skewfield is a field.

Also, this corollary may be proved similarly by appealing to the work of

De Clerck and Johnson [3] since we are now dealing with a finite case.

A similar argument to that of the above shows that any dual net

which may be embedded in a projective space is also a projective - codi-

mension two net.

Theorem 2.6. Let M be an arbitrary net whose dual can be em-

bedded into a projective space. Then M is a projective - codimension two

net.
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Proof. Let Pα, Qα ∈ α and let Pδ ∈ δ *= α where α and δ are

parallel class of the net. Let π0 denote the projective plane generated by

Pα, Qα, and Pδ. Let T by any point of Pα, Qα −α. We may use the exact

argument as given in the affine case to show that PδT ∩
( ⋃

ρ∈C
ρ = Σ∗

)

is contained in δ where C denotes the set of parallel classes of the net.

Let Pβ, Qβ ∈ β and incident with PδPα and PδQα respectively (note the

analogue of (2.1) for embeddings into projective spaces).

Similarly, PβT ∩ Σ∗ ⊂ β. Hence, PβT ∩ QαQβ must be Qβ so that

Pβ, T and Qβ are collinear. Suppose there is a point S of PαQα −α∪{T}.

Form PδS and argue as above to note that Pβ, S and Qβ must be collinear

so that ST = PαQα = PβQβ which is a contradiction since when there are

points of differential parallel classes of the net on a line of the projective

space there is a unique point from each parallel class on this line.

Thus, there exists at most one point of PαQα which is not in α. Note

that PβQβ ∩ PαQα is a point R which cannot be in β or α since if it is

in α then RPβ contains a unique point on α. Hence, there exists exactly

one point on PαQα which is not in α. And, it follows that this point is in

the intersection of lines PβQβ for all β ∈ C for certain points PβQβ of β.

Let 〈α〉 denote the projective subspace generated by α. Note that

we have proved that every line of 〈α〉 contains exactly one point not in α

and this point is in ∩〈α〉 = N .

We assert that any plane π0 = 〈Pδ, Pα, Qα〉 as above is “punctured”

by N ; contains exactly point of N . To see this, we note that PβQβ is

the only line of π0 in 〈β〉. If there were two lines of π0 in β then π0 is a

subspace of 〈β〉 and we have seen that lines of 〈β〉 contain at most one

point which is not in β where as PδQα contains points of each parallel

class of the net. Two lines of π0 intersect within Σ∗ unless one is the

unique such line in say 〈α〉 and the other is is a different parallel class

β space 〈β〉 and hence there is a unique point of intersection of all such

lines. Hence, π0 is punctured by N .

So, any line joining two points of α intersects N and any line joining

two points of N lies in N so that N is a hyperplane of 〈α〉.
Note that α ∩ N = ∅ since any point of N may be obtained as the

intersection of lines say PαQα and PβQβ. Clearly, the intersection point

cannot be in α.

Hence, 〈α〉 = α ∪ N .
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Now form
⋃

α∈C
〈α〉 =

⋃
α∈C

α ∪ N = Σ∗ ∪ N . We assert that this is a

projective subspace. We note that given two points P and Q of this set if

P and Q are both in Σ∗ then the preceding shows that the points of PQ

are in Σ∗ ∪ N . If P is in α and Q is N then PQ is a line of 〈α〉 = α ∪ N .

Hence, Σ∗ ∪ N is a projective space and note that 〈α〉 is a hyperplane of

the projective space since every lines intersects 〈α〉 nontrivially. And, N

is a codimension two subspace.

Hence, we have shown that the points of the net are the lines of

a projective space which are skew to a codimension two subspace and

the lines of the net are the points of the projective space which do not

lie on the codimension two subspace. Hence, the net is a projective -

codimension two net. This completes the proof of (2.6).

3 – Projective - codimension two nets are pseudo-regulus nets

In [9], Johnson determined the structure of a derivable net by em-

bedding the dual net into a projective space as in section 2. Then it is

possible to use the structure of the projective space and its collineation

groups to show that the net is a translation net which has a particular

representation. In the finite case, it may be seen that the net is a regulus

net. More generally, if the projective space is Pappian then the derivable

net is a regulus net.

In this section, we see that it is possible to modify the arguments

of Johnson [9] to establish similar results for arbitrary pseudo regulus

nets. Recall, it is noted in De Clerck and Johnson [3] that finite

projective - codimension two nets (those obtained via a projective space

and a codimension two subspace as above) are regulus nets by appealing

to some work of Debroey [2] on semi-partial geometries. Here, we do

not use finiteness so we cannot be certain that similar results are valid in

the infinite or arbitrary cases.

In this section, we consider the so-called pseudo-regulus nets and

establish justifications for the terminology. First we note that projective

- codimension two nets are subplane covered nets.

Definition 3.1. Let Σ be any projective space and let N be any

fixed projective subspace of codimension two. Define a structure R =
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(P, L, B, C, I) of points P , lines L, subplanes B, parallel classes C, and

incidence I as follows:

P is the set of lines of Σ skew to N ,

L is the set of points of Σ − N ,

B is the set of planes of Σ which intersects N is a point,

C is the set of hyperplanes of Σ which contains N , and

I is the incidence induced from Σ.

It is well-known in the finite case that (P, L, I) is a net but this may

be established in the arbitrary order situation as below. Note that if the

provided (P, L, I) is a net then by (1.3), it satisfies the diagonal axiom

so that it is a subplane covered net. In fact, the subplanes in question

correspond to the set B above. We shall call such a subplane covered net

a projective - codimension two net.

Note 3.2. The structure constructed in (3.1) is a subplane covered

net.

Proof. Let P be a point of R which is then a line of Σ skew to

N . Then there is a unique intersection with a given hyperplane H that

contains N in a point of Σ − N . The lines of the net are the points of

Σ − N so this translates to the following statements:

(i) there is a partition of the lines of the net into disjoint equivalence

classes (two lines are equivalent if and only if they are points of the same

hyperplane in Σ in Σ − N),

(ii) each point of the net is indicent with a unique line of each equiv-

alent class.

Note also that two points of the net are incident with at most one

line at two lines skew to N intersect in at most one point of Σ − N .

It now follows that R is a net and hence a subplane covered net.

Definition 3.3. Let W be a left vector space over a skewfield

K. Let V = W ⊕ W . Let (x = 0) ≡ {
(0, y)|y ∈ W

}
and (y = δx) ≡{

(x, δx)|y ∈ W and δ a fixed element of K
}
. Note that y = δx is a

left Z(K) (center of K)-subspace. Then V defines a translation subplane

covered net with points the vectors of V and lines the translates of x = 0,

y = δx for all δ ∈ K. The subplanes are the translates of the K-subspaces{
(αw, βw) ∈ K for w fixed in W − {0}}

.
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This net is called a pseudo-regulus net.

In order to obtain an algebraic representation for a projective - codi-

mension two net, we consider the underlying left vector space V over a

skewfield K such that the associated projective space Σ is the lattice of

(left) vector subspaces. Since N is a projective subspace of codimension

two, there is a basis W for N which extends to a basis W ∪ {e1, e2}
for V so that representing V with respect to this basis, we have V =

M0 ⊕ N =
{(

(x1, x2), (yi)
)|xi ∈ K for i = 1, 2, N =

{
(yi)|yi ∈ K where

i ∈ λ
}}

where M0 is a complement of N . Note that we are consider-

ing scalar multiplication on the left so for v a vector with representation(
(x1, x2), (yi)

)
then α v for α ∈ K is simply

(
(αx1, αx2), (αyi)

)
.

Since we will be considering the lines skew to N as points of the

projective - codimension two net, which will turn out to be a translation

net, we want to determine a setting wherein these lines are vectors of

an appropriate vector space. For this, we begin by a determination of a

unique representation for a basis of a line of Σ skew to N .

Lemma 3.4. Any line of Σ skew to N has a unique basis of the

form {e1 + v1, e2 + v2} where v1 and v2 are vectors of N .

Proof. Suppose the line M as a 2-dimensional subspace has basis

{ae1 + be2 + w1, ce1 + de2 + w2} where a, b, c, d are in K and w1 and w2

are vectors in N . Note that none of the pairs (a, b), (a, c), (c, d) of (b, d)

can be (0, 0). For example, suppose (a, b) = (0, 0) then w1 must be 0

so that one of the basis vectors is zero. Similarly, (c, d) is not (0, 0). If

(b, d) = (0, 0) then there exists a nonzero vector w1 or w2 in the subspace.

Now M must intersect the subspace N ⊕〈e1〉 in a nonzero vector say

α(ae1 + be2 + w1) − β(ce1 + de2 + w2) = (αa − βc)e1 + (αw1 − βw2) for

some nonzero elements α and β of K so that αb = βd. Now αa − βc *= 0

for otherwise, αw1 − βw2 = 0 since M does not nontrivially intersect N

which contradicts the fact that the vector is nonzero.

Hence, there is a point of the form e2 + w̄2 in M where w̄2 ∈ N and

similarly, there is a point of the form e1 + w̄1 in M which are clearly

linearly independent.

To show uniqueness, let 〈e1 + w1, e2 + w2〉 = 〈e1 + v1, e2 + v2〉 where

wi, vi ∈ N for i = 1, 2. Let e1 + w1 = ρ(e1 + v1) + γ(e2 + v2) where
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ρ, γ ∈ K. Then (ρ − 1)e1 + γe2 ∈ N so that it must be that ρ = 1 and

γ = 0 so that w1 = v1. Similarly, v2 = w2.

Notation 3.5. If M is a line of Σ skew to N with unique basis of the

form {e1 +v1, e2 +v2} we denote M by the tuple (v1, v2) where v1, v2 ∈ N .

We now find a suitable vector space associated with the projective space

containing such tuples.

We first note the following proposition:

Proposition 3.6. Any projective - codimension two net of Σ as-

sociated to a vector space over a skewfield K with fixed codimension two

subspace N admits PΓL(V, K)N as a collineation group.

Proof. Simply note that the stabilizer of N leaves invariant the set

of lines skew to N , the set of parallel classes with contain N , the set of

points of Σ − N , and the set of planes which intersect N in a point.

At this point, it might be noted that Hiramine and Johnson [6]

have shown that any finite net of order qn and degree q + 1 is a (n − 1)-

regulus net if and only if the net admits PSL(n+1, q)N as a collineation

group where N is a (n − 1)-dimensional projective subspace.

The proof heavily relies on finite group theory and in particular the

minimal degrees of certain finite simple groups. However, it is still possi-

ble to at least consider the following question: If an arbitrary net admits

a collineation group isomorphic to PSL(V, K)N where V is a vector space

over a skewfield K and N is a codimension two projective subspace of the

corresponding lattice of (left) K-subspaces, is the net a pseudo-regulus

net?

Definition 3.7. An element τ of ΓL(V,K) is a transvection if and

only if there is a hyperplane H such that τ |H = 1H and τ(v) − vε〈d〉 for

some fixed vector d ∈ H. We call the hyperplane H, the axis of τ and the

vector d the direction of τ .

Proposition 3.7. The subgroup T of GL(V, K)N which is gener-

ated by the transvections with axis a hyperplane containing N and in the

directions d in N may be represented as follows: T = 〈τ |τ(x1, x2, (yi)) =

(x1, x2, (yi) + x1(di) + x2(gi))〉 for all (di), (gi) ∈ N . Note that not every
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element in T is a transvection; in order that τ be a transvection, it must

be that (di) and (gi) generate the same 1-dimensional K-space. Note

that T induces an isomorphic subgroup in PGL(V, K)N as there are no

nontrivial elements in T which fix all 1-dimensional K-subspaces.

Proof. First consider the transvection τ with axis N ⊕ 〈e1〉 with

direction (di) on N . If τ maps e2 onto e2 + a(di) for a ∈ K then

τ
(
x1, x2, (yi)

)
=

(
x1, x2, (yi) + x2a(di)

)
.

Similarly, the transvections τ with axis N ⊕ 〈e2〉 and direction (gi)

have the form τ
(
x1, x2, (yi)

)
=

(
x1, x2, (yi) + x1β(gi)

)
. Let T1, T2 denote

the two groups of transvections listed above with axes N ⊕ 〈e1〉 and

N ⊕ 〈e2〉 respectively. We shall show that the full transvection group is

T1T2.

Let ρ be any transvection with the axis a hyperplane H = N ⊕
〈ae1 + be2〉 containing N and direction (di) ∈ N . Then if ρ maps e1 onto

e1 +(adi) and maps e2 onto e2 +(βdi) then ρ
(
x1, x2, (yi)

)
=

(
x1, x2, (yi)+

x1(adi) + x2(βdi)
)

and is in T1T2 = T . Hence, we also have that an

arbitrary element τ of T is a transvection if and only if (di) and (gi)

generate the same 1-dimensional K-space.

As a direct application, we obtain:

Corollary 3.9. If M is a line of Σ skew to N with basis {e1 +

w1, e2 + w2} considered as a vector subspace where w1, w2 are vectors

in N considered as a vector subspace then the group T of (3.8) maps

{e1 + w1, e2 + w2} onto the set of all lines with bases of the form {e1 +

w1 + v1, e2 + w2 + v2} for all v1, v2 ∈ N .

With the notation adopted above where the lines of the projective

space skew to N with basis represented by {e1 + w1, e2 + w2}, we obtain

the following:

We consider the points of the net represented as ordered pairs of

elements of N . That is, the points set of the net is N⊕N . This set admits

a “translation group” T which is the group generated by the transvection

with axes the hyperplanes of Σ containing N . T acts on N ⊕ N in the

standard manner, (x, y) → (x + a, y + b) where all entries are in N .

It is easy to check out that the scalar mappings z → kz of ΓL(V, K)

are semi-linear mappings and are exactly the semi-linear mappings that

fix each 1-dimensional K subspace.
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Hence, any semi-linear mapping τ which fixes M0 = 〈e1, e2〉 pointwise

(as a projective space) must have the form z → kz for some k ∈ K acting

on M0. Similarly, if τ fixes N pointwise as a projective space then τ |N as

a vector space must have the form z → s v for some s ∈ K. Considering

the associated vector space as M0 ⊕ N then τ(x, y) = (ky, sy). However,

in order that τ be semi-linear, it must be that k−1s is in the center Z(K)

of K (see the proof of (2.16) [9]).

Hence we obtain:

Proposition 3.10 (compare with (2.16) and (3.7) of [9]). The

subgroup of PΓL(V, K)N which fixes the line M0 and the codimension

two subspace N pointwise is isomorphic to the subgroup of ΓL(V, K)N

represented as follows:
〈
τδ|τδ(x, y) = (δx, δy) where V = M0⊕N , x ∈ M0,

y ∈ N and δ ∈ Z(K) − {0}〉
. The representation 〈τ ∗

δ 〉 of this group on

the points of the net is as follows:
〈
τ ∗

δ (w1, w2) = (δ−1w1, δ
−1w2)

〉
.

Proof. Note that a line of Σ skew to N with vector basis {e1 +

w1, e2 + w2} is mapped to {δe1 + w1, δe2 + w2} under τδ so that the point

of the net (w1, w2) is mapped to (δ−1w1, δ
−1w2) under τ ∗

δ .

We now define a vector space over Z(K) where the points are N ⊕N ,

where vector addition is defined via the group of translations or rather

the group generated by the transvections in the direction of N and scalar

multiplication is defined via the subgroup of PΓL(V, K)N , which fixes

a given line M0 and the subspace N pointwise and is then defined by

δ(w1, w2) = τ ∗
δ−1(w1, w2) = (δw1, δw2).

The following result follows immediately:

Theorem 3.11. Let Σ be a projective space and N a projective

subspace of codimension two. Let V denote the corresponding vector space

over a skewfield K such that Σ is the lattice of (left) vector K-subspaces.

Let M0 be a fixed line of Σ which is skew to N .

Then the set of lines skew to N can be made into a vector space over

the center of K, Z(K). Furthermore, if Q is any fixed point of M0 then

the set of lines of Σ skew to N which contain Q is a Z(K)-subspace.
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Proof. It only remains to prove that the indicated set forms a Z(K)-

subspace.

Let Q = 〈re1 + se2〉 for some fixed r, s ∈ K. A line with basis

{e1 + w1, e2 + w2} that contains Q must satisfy rw1 + sw2 = 0 since

re1+se2 = α(e1+w1)+β(e2+w2) forces r = α, β = s, and αw1+βw2 = 0.

But, rw1 + sw2 = 0 if and only if δ(rw1 + sw2) = rδw1 + sδw2 = 0 where

δ ∈ Z(K) so that we have the proof of the theorem.

We now may state our main characterization result:

Theorem 3.12. Let R = (P, L, B, C, I) be any projective - codi-

mension two net with distinguished codimension two subspace N .

Then R is a translation subplane covered net.

(i) The points P of R may be identified with the vectors of a vector

space V = N ⊕ N over a skew-field K. The lines of L which are incident

with the zero vector are Z(K)-subspaces. The subplanes of B which are

incident with the zero vector are K-subspaces.

(ii) There is a representation for the projective - codimension two net

so that the lines incident with the zero vector may be represented in the

form
{
(0, y)

} ≡ (x = 0),
{
(x, y)|y = δx

} ≡ (y = δx) for all x, y ∈ N and

δ ∈ K. The subplanes incident with the zero vector may be represented

in the form
{
(αw1, βw1)|α, β ∈ K

}
for fixed w1 ∈ N − {0}; a projective -

codimension two net is a pseudo-regulus net.

Proof. We let the line M0 in (3.10) be the zero vector in question

identified with a particular point of the net. In the proof of (3.10) where

Q = 〈re1 + se2〉, let (r, s) = (1, 0) then the lines with bases {e1 + w1, e2 +

w2} containing Q satisfy w1 = 0. If r = δ and s = −1 then the lines

with bases {e1 + w1, e2 + w2} containing Q satisfy w2 = δw1. Using the

notation established above, we have the representation for the lines of the

net which are incident with the zero vector.

The subplanes of the net in question are the planes of the projective

space which intersect N in a point. Any such plane M0 ⊕ 〈w1〉 which

contains M0 (the zero vector as a point of the net) must have a basis of

the form {e1, e2, w1} for some w1 ∈ N . The intersections of this plane

with the hyperplanes N ⊕ 〈e1〉 and N ⊕ 〈e2〉 are the subspaces 〈e1, w1〉
and 〈e2, w1〉 respectively. The lines joining a point from each of the two

subspaces have bases of the form 〈αe1 + βw1, δe2 + γw1〉 for all α, β, δ, γ
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in K. In order that such a line be skew to N , we require αδ *= 0. Hence,

the set of such lines skew to N have bases {e1 + αw1, e2 + βw1} for all

α, β ∈ K. This translates to the set of points of the net having the form{
(αw1, βw1)|α, β ∈ K

}
for fixed w1 ∈ N . Note that clearly this set is a

left K-subspace. This completes the proof of (3.12).

Definition 3.13. Let Π be a projective space with underlying vector

space V over a skew field L such that there is a L subspace W of V such

that V is isomorphic to W ⊕ W . A regulus R of Π is a set of mutually

disjoint subspaces L-isomorphic to W which pairwise span Π such that if

there is a line u of Π which intersects three mutually distinct subspaces

of R then the line intersects all of the elements of R and the points of u

lie within these subspaces (see Grundhöfer [5] for a slight variation of

the definition of regulus).

Note 3.14 (also see Grundhöfer [5]). A regulus exists in a

projective space whose corresponding vector space V = W ⊕ W if and

only if the corresponding skewfield K is a field. Any regulus defines a

regulus net in V with lines translates of vector subspaces of the form

x = 0, y = δx for all δ ∈ K and subplanes translates of the subspaces of

the form
{
(αw1, βw1)|α, β ∈ K

}
for w1 a fixed vector of W − {0}.

Proof. The assumptions imply that a regulus R produces a partial

spread in V . The lines of the projective space become two dimensional

affine subplanes of the corresponding translation net obtained by taking

lines as translates of the regulus spaces. Choose any two such subspaces

and decompose the vector space with these subspaces and identify both

with W . Then with V =
{
(x, y)|x, y ∈ W

}
we obtain x = 0 and y = 0 as

equations of the two given subspaces. We may choose a third subspace to

have the form y = x and the remaining to be of the form y = σ(x) where

σ is a nonsingular L-linear mapping. It remains to show that σ(x) = δx

for some δ ∈ L. Note that if this is possible and since σ is linear then

Z(L) = L so that L is a field.

Consider the 2-dimensional L-subspaces
{
(αw1, βw1)|α, β ∈ L

}
for

fixed but various w1 ∈ W . Clearly, each such subspace corresponds to

a line of the projective space and since the subspace intersects x = 0,

y = 0 and y = x nontrivially, it follows that the subspaces intersect each

subspace of the regulus nontrivially. Thus, if y = σ(x) is a subspace of
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the regulus then the 2-dimension L subspace above nontrivially intersects

y = σ(x) if and only if σ(w1) = δw1 for some δ ∈ L. And, given an

element ρ ∈ L, there is a regulus subspace y = τ(x) such that τ(w1) = ρw1

since the subspace (line) is covered. If δ *= ρ then τ *= σ for otherwise,

the 2-dimensional subspace would be contained in the regulus subspace.

Hence, there is a 1 − 1 correspondence between the regulus subspaces

different from x = 0 and the elements of L. Moreover, it follows that if

y = σ(x) and y = τ(x) are regulus subspaces so that, σ, τ ∈ GL(V, L)

then σ − ρ ∈ GL(V,L) (see for example, the argument of Lüneburg [11]

((2.2), (2.3)) which also is valid for partial spreads).

Then, it follows that if σ(w1) = δw1 for some nonzero w1 then σ(x) =

δx for all x ∈ W . This completes the proof of (3.14).

Corollary 3.15 (see De Clerck and Johnson [3] for the finite

case). A projective - codimension two or pseudo regulus net is a regulus

net if and only if the associated skew field corresponding to the vector

space underlying the projective space containing the net is a field.

Proof. Both structures can be brought into the same canonical form

provided the associated skewfield is a field.

Hence, combining the previous results, we also have the proofs to

theorem I, II and III stated in the introduction.

It might be noted that when the dimension of the ambient space of

an embedding is two then a codimension two subspace is a point. Then a

net whose dual may be embedded projectively is simply a Desarguesian

affine plane. In this case, there is exactly one subplane of the net incident

with any affine point namely the plane itself. When the dual of a net is

embedded in AG(3, K) for some skewfield then the net is a one parallel

class retraction of a Desarguesian affine plane.
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