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An existence result for a non convex problem

without upper growth conditions

D. GIACHETTI - R. SCHIANCHI

RIASSUNTO: Proviamo un risultato di esistenza di soluzioni di problemi di minimo
per funzionali integrali con integrando non convesso e non coercivo. Gli argomenti prin-
cipali sono la regolarita e le proprieta geometriche delle soluzioni di opportuni problemi
approssimants.

ABSTRACT: We deal with existence of solutions of minimum problems for inte-
gral functionals with non convexr, non coercive integrands. The result is obtained by

using reqularity and geometrical properties of the solutions of suitable approximating
problems.

— Introduction

In this paper we consider a minimum problem for a non convex func-
tional of the Calculus of Variations of the type

F(u) = /f(:v,u(x),u'(x))d:n u e WhHH0,1)
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without any growth condition from above for f. It is well known that if
f(x,s,&) does not satisfy the growth condition

d(|¢]) < fl,8,8) Y(z,5,6) €(0,1) x Rx R

where ® is a superlinear function at infinity,then it is not possible to state
the compactness of the minimizing sequences for F(u), since W' is not
a reflexive Sobolev space. Sometime this leads to investigate minimum
problem for F(u) in BV spaces (see [11]). Here we prove an existence
result for the constrained problem

(Pb.1) min{F(u) cu e Wh0,1),u(0)>0,u(1) <\ u' > 0 ae., I(u)< +oo}

essentially under linear or sublinear growth condition from below for
f(z,s,€) (see (A.1)), by assuming that the greatest convex function f**
less then or equal to f has derivatives satisfying some sign condition
(see (A.4)). The difficulty of finding compact minimizing sequences is
overcome by applying direct methods of the Calculus of Variations to ap-
proximating convex problems whose solutions u, verify Euler’s equation
in a weak form. The arguments to show that solutions w, verify Euler’s
equation are very much alike to the ones used in [1] and they also give
u, € W,5>°(0,1). This enable us to prove that u, € W22(0,1) (see lemma
in sec. 2). Then Euler’s equation holds almost everywhere in a strong
form and, by using the sign condition (A.4), we obtain some convexity or
concavity properties for u,. This is enough to get a uniform estimate for
u, in W,2>°(0,1); by passing to the limit, we get a solution u of the con-
vexified problem of (Pb.1). The argument to deduce compactness from
geometrical properties has been introduced by P.MARCELLINI in [9] and
has been used in [4] and [6]. Our main existence result is achieved since
(A.4) leads to the equality f(z,u(x),u/(z)) = f*(z,u(z), v (z)) for al-
most every x € (0,1). This paper has been motivated in the framework
of non linear elasticity problems. Indeed the well known functional

/ |Dul* + h(det Du)dx
Q

where (2 is the n-dimensional unit ball centered at the origin,in the class
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of the radial deformations u(z) = v(r)z, r = |z|, becomes
r

(0.1) wn [0 4 (0 - 1):—2 R ()],

here w,, is the (n — 1)-measure of the surface of 2. A minimum prob-
lem for (0.1), when h is a convex and superlinear function such that

h(t
lin%r h(t) = tligrn ¥ = 400 has been considered in [1]. Our main result
t—0 —+0o0

(theorem 1) may be applied to the convex,linear or sublinear case (see
example 1). Motivated by the so called Blatz-Ko materials (see [8]), non
convex integrands with a linear asymptotic behaviour have been treated
in [9], where, under some upper growth conditions, an existence theorem
is given for a problem of the type :

(Pb.2) min{I(v):v € W(0,1),0(0)>0,0(1) <A, v'>0 a.c., [(v) <+o0}

with
I(v) = F(v) + ﬁ[/ov( )a(s)ds + /v(l) a(s)ds} :

In that paper it is assumed, on one hand,that the function ¢ in
(A.4) is continuous,on the other hand,that lim+ f(z,s,&) € R. We point
£—0

out that this condition on ¢ is satisfied under particular assumptions,for
example when f(z,s,€) = a(x,s)h(§),a,h € C', but in general ¢ is
not a continuous function (see remark 1). Our corollary in section 1
gives an existence result for (Pb.2) without upper growth conditions with
regularity assumptions on ¢ less restrictive than continuity, by assuming
51_1}1%5r f(z,s,&) = 400 which is more natural in the framework of the non

linear elasticity theory.
Let us observe that, if f is a convex function with respect to £ and sat-
isfies some upper control (see [8]), then I(v) is the restriction to W**(0,1)

of the lower semicontinuous extension to {v e Wh1(0,1),v(0) > 0,v(1) <

A0 > Oa.e.} of F'(v) in the class {v e Wh(0,1),v(0) =0,v(1) = X\, 0" >

Oa.e.}.
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1 — Assumptions and main results

Let us consider a Carathedory function f : (z,s,&) € (0,1) x R} x
R, — R, such that:

(Al) f(x,s,ﬁ) > a(az,s)h(f) - K

where K > 0, h : £ € Ry — h(§) € Ry is a convex function such that
£—+o0

from below by a positive constant.

Denoted by f**(z,s,-) the greatest convex function with respect to
£ less than or equal to f, f** satisfies

h ~
lim e = h € [0,+00) and 5lilfqr h(§) = 400, a(z, s) is locally bounded
—0

(A.2)  f*(xz,-,&) is locally lipschitz uniformly with respect to (z,¢)
varying in a compact set of (0,1) x R,.
f& (s, €) is differentiable and locally lipschitz on (0,1) x R, x R,

(A.3) there exists dy > 0 such that

[f (s 08, 8)] < M (o, 7)[f(2,5,8)] VE € Ry

for x € [x9,1),29 > 0,8 € [r,\,0 < r < A\/|o — 1| < &y, where M is a
constant only dependent on xq and 7.

The function ¢(z,s,§) = fi* — fiy — £ f¢5 defined almost everywhere
in (0,1) x Ry x R, satisfies

(A.4) o(z,s,€) >0 (resp.p(z,s,£) <0).

REMARK 1. Let us observe that if f is not convex, for z,s fixed,
there exists an interval J = [§o(x, s), &1 (x, )] such that f(x,s,&(z,s)) =
f*(x,s,&(x,s)),for i = 0,1 and f**(z,s,§) is linear for £ € J. Therefore

f**(flf, 375) = f((l?, 3750(1'7 S)) + fg((L', 37§O(x7 5))(§ - §0($7 8))

for £ € J and, even if much regularity is assumed on f**, an easy com-
putation gives

(P(xa S, {) = ‘P(xv S, ‘SO(x> 3)) - fEE(m7 S, €O($v S))[(go)r(x’ S)+
+ (8o)s(z, 5)o(, )]
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for £ € I. Then,in general, ¢ is not continuous.
We consider the functional

1
(1.1) F(v) = / fz,v(@), o' (z))de
0
and the constrained minimum problem
(Pb.1) min{F(v) :weW(0,1),v(0)>0,v(1) <\, v >0 a.e., F(v) <—i—oo}

where A is a fixed positive number.
Our aim is to prove the following results.

THEOREM 1. Under assumptions (A.1),...,(A.4), there exists a so-
lution u € W2°(0,1) of (Pb.1) and it satisfies the estimate

ocC

(1.2) ()] < ? vre(d.1-0) We (o, %).

THEOREM 2.  Assume (A.1) with h = 400, (A.2), (A.3) and, if
f(x,s,-) is not convex, ¢ # 0 instead of (A.4), the conclusion of theorem 1
holds true.

COROLLARY. Assume (A.1), ... (A.4) with the function a(z,s) in
(A.1) independent of x, bounded from above on each interval (0,\), A €
R, and locally lipschitz. Then the problem

(Pb.2) min{[(v) weW0,1),v(0)>0,v(1) <\, 0" >0 ae., I(v)< —i—oo}
with
~ v(0) A
I(v) = F(v) + h[/ a(s)ds + / a(s)ds}
0 v(1)
admits a solution u € W,5>°(0,1) which satisfies (1.2).

REMARK 2. If h = 400 the existence theorem for a convex integrand
is given in [1].
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2 — Preliminar lemma

The following lemma will be used to prove our theorem

LEMMA. Let u € W,5>°(0,1). Assume that Ve there exists m(e) > 0
such that:

(2.1) [m(e)] ™t <u/(x) < mle) Vo € (e,1)

and let u be a solution of the equation
(2.2) A(x,u,u’) / B(t,u(t),u'(t))dt + const  for a.e. x € (0,1)

where A is a differentiable and locally lipschitz function on (0,1) X Ry X
R, ; B is bounded on the compact subsets of (0,1) x Ry x Ry; A¢ > v > 0.
Then u € W22(0,1).

PROOF. We consider a cut-off function n € C5°(0,1),0 <n <1,n=
1 infa,b] C (0,1) and for h > 0 we set:

u(x 4+ h) — u(x)
h

Thu(x) =

and
P(x) = T_n(n*mhu) .

The function ¢(z) has a support in some interval [e, 7] C (0,1). More-
over

¢'(z) = T 2mm'Tu + )

Now we multiply for ¢'(x) in (2.2) and, integrating by parts, we get:

(2.3) /O " A u(z), o (2)) () dx = — /  Blau(a) i (@)ola) dr

which is possible because of the assumption on A and B taking into
account (2.1).
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Let us consider the first member in (2.3)

/ Az, u(@), o (2))d' () do =
(2.4) 0

1
/ A (x, u,u') 200 Thou + P ] de .
0

On the other hand we get

1

1 /[th(iU‘f’th, u(z)+thryu(x), o (x)+thmu'(x))] dt

(2.5) ThA(x,u,u’):E
0

1
= /(A:c + Agmpu+ Aepu’) dt
0

and the functions A,, A, A¢ are calculated in (x + th,u(x) + thr,u(x),
u'(x) + thmu'(x)).

Let us observe that for x € supp ¢ = [¢,7] C (0,1), for ¢t € [0,1] and
h small enough, = + th € [e,r1] C (0, 1).

Moreover, by the assumptions, we get

u(e) = (1 —t)ule) + tu(e) < u(x) + thru(z) =
= (1—t)u(z) +tulx +h) <u(l) <A
and
(1 —t)[m(e)] " +t[m(e)] " </ (x) + thmyu'(x) =
=1 -t () +tu'(x+h) < (1 —t)m(e;) + tm(e) .
We can conclude that the arguments, where the functions A,, A, A,
are calculated, belong to a compact subset of (0,1) x R, x R, and (2.5)

make sense because of the locally lipschitz assumption on A.
From (2.4) and (2.5) we get:

1
/Aa:uu (z) de =
0

|

1
/(Az + Asmhu 4+ Aempu) dt] 2nn'hu + nPmu’) dx .
0
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We estimate the second member in the previous equality by proceed-
ings as in [5] and we get:

1
(2.6) /A z,u,u')P (z) de > I//772‘Thu/‘2 dzx — ¢(n, max |u|).
supp 1
0 0

Let us estimate the second member in equality (2.3) recalling that B
is bounded by our assumptions.

(2.7) |/B(x,u,u’)¢(a:) dz| < / B, u,0!)| |7_n(n nrau)| dz

suppo

<M [ fran nmw)| do
0

where M is a constant depending on supp 7.
Since 7_1,(fg) = (7_nf)g + f(x + h)T_1g, by using Young inequality
and proposition 3.3 in [5], for € small enough we get:

1

(2.8) /]T_h(n -nmu)| de < / In(x 4+ h)| |T_pnmau)| dx+

0

1

1
€ ! !
+ [ @] Inal Ir)l do < 5 [ 0ma) P do + c(n, ma o).
0

0

From (2.7) and (2.8) we have

1

29) | [ Blauu)(a) do] < cln, max fu') +

0

Do ™

1
/772|7'hu)’|2 dx .
0

Finally (2.3), (2.6) and (2.9) give

suppmn

1
/772|Thu'|2 dx < ¢(n, max |u'|)
0
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and recalling that n =1 in [a, b]

/\Thu’P dx < ¢(n, max |u'|).

suppn

Since, by our assumptions, u € T/Vll (0, 1), the previous inequality
implies that u € W22(0, 1).

loc

3 — Proofs

PROOF OF THEOREM 1.

We proceed in four steps:

STEP 1. Assumption (A.1) implies that 5li%l+ f*(z,s,&) = +00 so we
—

can extend the definition of f** to (0,1) x R x R by setting f**(x,s,§) =
+o0 if s < 0 and £ < 0. This extension will be convex in £ and lower
semicontinuous in s € R.

Now we consider the functional

1
(3.1) / (x,w,w") +v(1+|w')?)] dv for v >0
0

and minimize F,(w) on the set W = {w € W"'(0,1) : w(1) < \, F,(w) <
+oo} that is equivalent to minimize F,(w) on the set
{we WhH0,1) : w(0) > 0,w(1) <\ w'(z) >0 ae., F,(w) < +oo}.
Let {u"}

ncn De a minimizing sequence, i.e.

lim F,(u?) = inf{F,(w) : w € W}.

By assumption (A.1) we get:

1
I// (1+ |(u)|?) de < F,(ul) + K < const.
0
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Then there exists a subsequence of {u}}, _, weakly convergent to
some function u, € W*'(0,1). Moreover by th.1 in [7] and standard ar-
guments in direct methods of the Calculus of Variations, we get existence
of a minimizer u, € W1(0,1) for (3.1).

Such function u, satisfies the following properties:

(3.2) u,(0) > 0,u,(1) < A\jul(z) >0 for a.e. z € (0,1).

STEP 2. For simplicity we set u = u,. We prove, following [1], that
u satisfies the Euler’s equation of (3.1).
For k=2,3,...., set

szwe(%nz < /(z) < k}

=

and denote by xi the characteristic function of S.
For v € L>(0,1) such that [ v(t) dt = 0 and € small enough define
Sk

T

m@ﬂzu@ﬂ+e/xdﬂﬂﬂdﬁ

0

1 1
It follows that u.(x) = u/(x) for x < o u'(z) & [E’ k:} and u.(0) = u(0).
Now we estimate the first variation of the functional:
1 * %k ! !
=7 (@, ue(z), ue(z)) +v(1 + ARES
— [ u(@), v () — v(1+ [u/ )] <

(3.3) =< %!f**(w,ue(w)wé(w)) — 7 (@, u(@), uc(2)) |+

If x < % since Zxk(t)v(t) dt = 0,u.(zr) = u(x) and u.(x) = u'(z)

then the first member in (3.3) is equal to zero.
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1
If z > z and x ¢ S, we already know that u/(z) = u/(z), then the
right hand size in (3.3) reduces to:

L), wl(2) — 7o)l )] =

= %\f**(m,ue(w)aw(w)) — 7, u(z), u'(2))]

Let us estimate the last term.

(3.4) %\f**(wj ue(x), w'(x)) = [ (2, u(x), v (z))]

= 1/|f§*($,tu5(aj) + (1 —t)u(z), v (x))] |uc(z) — u(z)| dt

<1 [outu® del [ 157 @ tue) + (1= tu@). o' @) dr.

1 1
We observe that x > z gives u(z) > U(E> =6>0.
1
Indeed u(E) cannot be zero because of conditions (3.2)q, (3.2); on

1
the minimizing function, then for z > iz if §y is the constant in (A.3),

for e < dou(1/k)/||v||Lo0(0,1), We get

‘tuE +(1-tu 1} <5
u(z)
and we can apply assumption (A.3) to obtain that fX*(z,tu. + (1 —
t)u,u’) € L'(0,1).
Therefore for every x ¢ Sy, (3.4) and, consequently, the first member
in (3.3) is controlled from above by an L'-function independent on e, for
€ small enough.



514 D. GIACHETTI — R. SCHIANCHI [12]

Suppose now that x € Sy so that y.(z) = 1. We get u’(z) = u/(z) +
ev(x) and the right hand side of (3.3) is bounded by the quantity

1

/f;*(x,tue + (1 —t)u,ul) dt|+

0

x

[t

0

+ [2v6.(2) +

fo (@, u(@), 7)) ba@)o()]

where for € > 0,7.(x) and &.(x) belong to the interval with extrems u/(x)
and u'(z) for a.e. x € (0,1).

Moreover for 7, = tu. + (1 — t)u’ and ||v||ze < we get the

1
k(k+ 1)

estimate

— tel[vllLoe01) S Te(w) = u'(2) +tev(z) <k + €l |v]|Le o) <

F vl -

[
—_

1
It follows that, for z <x<1,§ = u(k <u < A, Pl <

() < k+||v][zee(0,1) and, by assumption (A.2), we get

(3.5)

fi (@, u(@),7.(2))] < (k).

By the same arguments we get

(3.6) |f (@, tuc () + (1 — t)u(x), u (z))] < c(k)
and
(3.7) Ge(2)* < ck) .

From (3.3), ..., (3.7) we deduce that also if x € S}, the first member
in (3.3) is not greater than some L' function. We are able to apply the
Lebesgue’s theorem of the dominated convergence to get

(3.8) %Fy(ue) = / [f;* / X (P)u(r)dr+ (£ + 200 xu(@)o () | dz=0.
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1
By using assumption (A.3), f**(z,u,u’) € Ll(E,l); in fact if z €
1
(1)
/|f**xuu)]d:z:<M( )/]f**acuu)|da;

which is finite since v is a minimizing function.
By proceedings as in [1] we integrate by parts and we get

(3.9) /

Sk

f§*+2yu'—/f;‘*] v(z) de =0
1

for all v € L>(0, 1) such that ||v||ge < and [ v(t) dt=0. It is

1
k(k+1) $
not difficult to see that (3.9) holds for all v € L>(0,1) with [ v(z) dz = 0.
Sk

Since, by (A.2), f¢* + 2vu’ is bounded in Sy, we deduce
[ 2vu’ + /‘Tf:* =¢, forae. x€S§,.
Moreover we have
(3.10) f& 22U — ]f:* = const for a.e. z € (0,1)
1

because meas [(0,1)/ U, Si] =0
From (3.10), if = € (¢, 1], we get

1
| (2, u,u') 4 200/ < const +/|fs**| dx

which means that the first member is in L (0,1), and, by assumptions
(A.1) and (A.2), there exists m(e) > 0 such that

(3.11) [m(e)] ™ <u/(x) < me) Vz € (e,1].
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STEP 3. The minimizing function u = w, satisfies equation (3.10)
and condition (3.11) so that we can apply the lemma proved in Sec. 2
with

Az, u,u') = fE (2, u,u’) + 2vu

B(z,u,u') = f*(z,u,u’)
since its assumption are verified because of (A.2).

We obtain that u = u, € W22(0,1).

We show that u = u, is convex (resp. concave) for every v. Indeed,
since u, € W22(0,1), for almost every z € (0,1) we can derive Euler’s
equation (3.10) to get

(far +2v)u" = fr — fi — €855

The second member of the above equation is ¢ > 0 (resp. ¢ < 0)
by assumption and the quantity f{f + 2v is never negative so we can
conclude that, for almost every =z € (0,1), v’ > 0 i.e. u is convex (resp.

"< 0i.e. uis concave).

Assume,for example,that u, is convex for every v, we can deduce a

uniform estimate for the W,.:> norm. In fact, by proceeding as in [9],

w(0) ~u@) _ o wll) — (@)
B R T

and for z € (6,1 —10),0 <6 < 1/2 we get

Ju, (2)] < <A

S N

Then there exists a subsequence which converges to some u, € W,2°(0,1)
in the weak topology of W,2>(0,1). It is easily seen that

2\ 1
312 Il , <lml @y, <5 e (03).

We prove now that ug is a minimizing function for the functional

1
/f**xww ) dz
0
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in the class {w € WH'(0,1) : w(0) > 0,w(1) < \,w'(x) > 0 a.e., Fy(w) <
+00} of the admissible functions.

In fact, by the convexity of f**(x,s,&) with respect to &, recalling
that u, is a minimizing function for F,(v), we get:

[ £ @ un(a),wy(a)) do <lim [ 17 (@, (@), ) (0) +0(1+ u, )] do <

0

1 1
<hm/ [ (z,w,w') + v(1+ [w')?)] /f**xww dx
0

for w any function in the class of the admissible ones.

STEP 4. First we assume that ¢ has a strict sign: ¢ > 0 (resp.
¢ < 0). Now we are able to prove existence for (Pb. 1)
To this aim we show that

(3.13)  f(z,uo(x),u(x)) = f(z,uo(x), ug(x)) for ae. x € (0,1].
By the same arguments used in Step 2 we get that uy(x) satisfies the

Euler’s equation

x

(B14) L @unle) up(@) = et [ L7 (o0 (1) dt

1

Since ug(z) is monotone, then it is differentiable almost everywhere
n (0,1). Let z € (0,1) be a point where u)(z) is differentiable and

P, uo(@) () £ (2, o), wy(x)); since [ (2, uo(), €) is linear
where f # f**, by a derivation with respect to x of (3.14) we get

& (@, uo (@), ug(x)) + fed (2, uo (), ug(2))ug (v) = f7 (2, uo(), ug())

which contradicts the condition ¢ > 0 (resp. ¢ < 0).
If ¢ has not a strict sign, following [9] we consider the function

f6($7 876) = f(l', S,f) —+ eeis
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with e € (0,1] and the sign + is chosen in dependence on the sign of ¢
(sign + if ¢ > 0). Then

o (z,8,&) = p(x,s,&)+eet?

has a strict sign. By the previous part of the proof, for every ¢, there
exists u. minimizing the functional (1.1) with f replaced by f€; by similar
arguments as in [9], we can conclude the proof of theorem 1.

PROOF OF THEOREM 2. In [1] existence of a solution ug of the
convexified problem of (Pb 1) is proved without the condition ¢ # 0. It
is also proved that u, satisfies Euler equation, then we can apply step 3
in the proof of theorem 1 to obtain u, € W72,

Moreover by the same arguments as in step 4, under the assumption
» # 0, we get existence for the non convex problem.

PROOF OF THE COROLLARY. If h =0,I(v) = F(v) and existence has
been proved in the theorem 1. If h € (0, +00) we set ko = inf[h(£) — h&],
existing because of the convexity of A(£) and the limit conditions in (A.1)

and h(€) — h¢ if ky>0
- 1 0=
2(6) = { hE) — hé —ko if ko <O.
Defining g(x, s, &) = f(x,s,&) — a(s)hé we get

ol

g(x, S,{) > a(s)@(f) -

where

k — kosup{a(s) : s € (0,\)} if ky<O.
Assumption (A.1)is verified by g(z, s, ) since ®(&) is a non negative

- {k if ky>0
b=

convex function satisfying

® = lim &5): lim

he) 5
P é_ o, T —h 0.

Moreover EliT ®(¢) = +oo and g(x, s,§) satisfies (A.2) because of
— o0

the assumption on a(s). Finally g(z,s,&) does not satisfies exactly as-
sumption (A.3) but some assumption (A.3),;s which is enough for our
aims:
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(A.3)pis. There exists 0y > 0 such that
195" (2,05, )| < N(wo,7)(lg" (w,5,€)| + hé) VE € Ry

for x € [zg,1),29 > 0,5 € [r,A\],0 < r < A/|o — 1] < &y, where N is a
constant only dependent on zq and r. Now

I(v) = jg(:v,v(x),v’(m))d:c + iz/la(v)v’d:c + B{U/(O)a(s)ds + ] a(s)ds} .
0 0 0 v(1)

_ A
By a change of variable the last three terms reduce to h [ a(s)ds
0

which is independent of v. Therefore (Pb2) is equivalent to (Pbl) for the
integrand g and we can apply the theorem.

4 — Some examples

Here we present some examples of integrand functions f to which our
existence results apply.

Ex.1.

»

(4D f@s=CrFe+m-DE)R 49, 1<p<n

8

9(&)
£

where g is a convex function such that lim = g € [0,400) and

£——+o0

lim+ g(&) = +o0. Integrand (4.1) is obtained by the change of variables
£—0

in (0.1) r = z» and w(z) = v"(zw). Here an easy computation gives
¢ > 0. The function (4.1) is considered in [1] under the assumption
9§
lim ===

E—+o0
functional F'(u). Theorem 1 gives existence for the same functional when

9()
e €l

= 400. He proves existence of a minimizing function for the

lim 0, +00).
E—+o0
In [4] existence of a minimizing function for I(v), under suitable as-

sumptions on f, is proved.
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We remark that the integrand (4.1) doesn’t satisfy their assumptions,
since they assume that f(z,s,0) is finite and some structure condition of
the type

a(z,s)h(€) < f(z,5,¢) < alz,s)h(E) + b(x, s).
Our corollary gives existence for I(v) with f given by (4.1).

Ex.2.
f(z,5,€) = a(s)g(§)

where a(s) and g(§) are such that assumption (A.1), ... ,(A.3) are sat-
isfied. In particular (A.1) is satisfied with h(§) = ¢™ (&) and k& = 0.
Moreover,if h = 0 and a(s) is a monotone function assumption (A.4) is
satisfied.For example we consider

fi(z,5,€) = sP[e7! + €3]
fo(w,5,8) = s7P[¢! + 5%] )

Theorem 1 applies to f; and fs.
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