
Rendiconti di Matematica, Serie VII
Volume 14, Roma (1994), 503-521

An existence result for a non convex problem

without upper growth conditions

D. GIACHETTI – R. SCHIANCHI

Riassunto: Proviamo un risultato di esistenza di soluzioni di problemi di minimo
per funzionali integrali con integrando non convesso e non coercivo. Gli argomenti prin-
cipali sono la regolarità e le proprietà geometriche delle soluzioni di opportuni problemi
approssimanti.

Abstract: We deal with existence of solutions of minimum problems for inte-
gral functionals with non convex, non coercive integrands. The result is obtained by
using regularity and geometrical properties of the solutions of suitable approximating
problems.

– Introduction

In this paper we consider a minimum problem for a non convex func-

tional of the Calculus of Variations of the type

F (u) =

1∫

0

f
(
x, u(x), u′(x)

)
dx u ∈ W 1,1(0, 1)
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without any growth condition from above for f . It is well known that if

f(x, s, ξ) does not satisfy the growth condition

Φ(|ξ|) ≤ f(x, s, ξ) ∀(x, s, ξ) ∈ (0, 1) × R × R

where Φ is a superlinear function at infinity,then it is not possible to state

the compactness of the minimizing sequences for F (u), since W 1,1 is not

a reflexive Sobolev space. Sometime this leads to investigate minimum

problem for F (u) in BV spaces (see [11]). Here we prove an existence

result for the constrained problem

(Pb.1) min
{
F (u) :u∈W 1,1(0, 1), u(0)≥0, u(1)≤λ, u′ > 0 a.e., I(u)<+∞

}

essentially under linear or sublinear growth condition from below for

f(x, s, ξ) (see (A.1)), by assuming that the greatest convex function f∗∗

less then or equal to f has derivatives satisfying some sign condition

(see (A.4)). The difficulty of finding compact minimizing sequences is

overcome by applying direct methods of the Calculus of Variations to ap-

proximating convex problems whose solutions uν verify Euler’s equation

in a weak form. The arguments to show that solutions uν verify Euler’s

equation are very much alike to the ones used in [1] and they also give

uν ∈ W 1,∞
loc (0, 1). This enable us to prove that uν ∈ W 2,2

loc (0, 1) (see lemma

in sec. 2). Then Euler’s equation holds almost everywhere in a strong

form and, by using the sign condition (A.4), we obtain some convexity or

concavity properties for uν . This is enough to get a uniform estimate for

uν in W 1,∞
loc (0, 1); by passing to the limit, we get a solution u of the con-

vexified problem of (Pb.1). The argument to deduce compactness from

geometrical properties has been introduced by P.Marcellini in [9] and

has been used in [4] and [6]. Our main existence result is achieved since

(A.4) leads to the equality f(x, u(x), u′(x)) = f∗∗(x, u(x), u′(x)) for al-

most every x ∈ (0, 1). This paper has been motivated in the framework

of non linear elasticity problems. Indeed the well known functional

∫

Ω

|Du|2 + h(det Du)dx

where Ω is the n-dimensional unit ball centered at the origin,in the class
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of the radial deformations u(x) = v(r)
x

r
, r = |x|, becomes

(0.1) ωn

1∫

0

rn−1
[
v

′2 + (n − 1)
v2

r2
+ h(v′(

v

r
)n−1)

]
dr,

here ωn is the (n − 1)-measure of the surface of Ω. A minimum prob-

lem for (0.1), when h is a convex and superlinear function such that

lim
t→0+

h(t) = lim
t→+∞

h(t)

t
= +∞ has been considered in [1]. Our main result

(theorem 1) may be applied to the convex,linear or sublinear case (see

example 1). Motivated by the so called Blatz-Ko materials (see [8]), non

convex integrands with a linear asymptotic behaviour have been treated

in [9], where, under some upper growth conditions, an existence theorem

is given for a problem of the type :

(Pb.2) min
{
I(v) :v ∈ W 1,1(0, 1), v(0)≥0, v(1)≤λ, v′ >0 a.e., I(v)<+∞

}

with

I(v) = F (v) + h̃
[∫ v(0)

0

a(s)ds +

∫ λ

v(1)

a(s)ds
]
.

In that paper it is assumed, on one hand,that the function ϕ in

(A.4) is continuous,on the other hand,that lim
ξ→0+

f(x, s, ξ) ∈ R. We point

out that this condition on ϕ is satisfied under particular assumptions,for

example when f(x, s, ξ) = a(x, s)h(ξ), a, h ∈ C1, but in general ϕ is

not a continuous function (see remark 1). Our corollary in section 1

gives an existence result for (Pb.2) without upper growth conditions with

regularity assumptions on ϕ less restrictive than continuity, by assuming

lim
ξ→0+

f(x, s, ξ) = +∞ which is more natural in the framework of the non

linear elasticity theory.

Let us observe that, if f is a convex function with respect to ξ and sat-

isfies some upper control (see [8]), then I(v) is the restriction to W 1,1(0, 1)

of the lower semicontinuous extension to
{
v ∈ W 1,1

loc (0, 1), v(0) ≥ 0, v(1) ≤
λ, v′ > 0a.e.

}
of F (v) in the class

{
v ∈ W 1,1(0, 1), v(0) = 0, v(1) = λ, v′ >

0a.e.
}
.
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1 – Assumptions and main results

Let us consider a Carathedory function f : (x, s, ξ) ∈ (0, 1) × R+ ×
R+ → R, such that:

(A.1) f(x, s, ξ) ≥ a(x, s)h(ξ) − K

where K ≥ 0, h : ξ ∈ R+ → h(ξ) ∈ R+ is a convex function such that

lim
ξ→+∞

h(ξ)

ξ
= h̃ ∈ [0,+∞) and lim

ξ→0+
h(ξ) = +∞, a(x, s) is locally bounded

from below by a positive constant.

Denoted by f∗∗(x, s, ·) the greatest convex function with respect to

ξ less than or equal to f , f∗∗ satisfies

(A.2) f∗∗(x, ·, ξ) is locally lipschitz uniformly with respect to (x, ξ)

varying in a compact set of (0, 1) × R+.

f∗∗
ξ (x, s, ξ) is differentiable and locally lipschitz on (0, 1) × R+ × R+

(A.3) there exists δ0 > 0 such that

|f∗∗
s (x, σs, ξ)| ≤ M(x0, r)|f∗∗(x, s, ξ)| ∀ξ ∈ R+

for x ∈ [x0, 1), x0 > 0, s ∈ [r, λ], 0 < r < λ, |σ − 1| < δ0, where M is a

constant only dependent on x0 and r.

The function ϕ(x, s, ξ) = f∗∗
s − f∗∗

ξx − ξf∗∗
ξs defined almost everywhere

in (0, 1) × R+ × R+ satisfies

(A.4) ϕ(x, s, ξ) ≥ 0 (resp.ϕ(x, s, ξ) ≤ 0) .

Remark 1. Let us observe that if f is not convex, for x, s fixed,

there exists an interval J = [ξ0(x, s), ξ1(x, s)] such that f(x, s, ξi(x, s)) =

f∗∗(x, s, ξi(x, s)),for i = 0, 1 and f∗∗(x, s, ξ) is linear for ξ ∈ J . Therefore

f∗∗(x, s, ξ) = f(x, s, ξ0(x, s)) + fξ(x, s, ξ0(x, s))(ξ − ξ0(x, s))

for ξ ∈ J and, even if much regularity is assumed on f∗∗, an easy com-

putation gives

ϕ(x, s, ξ) = ϕ(x, s, ξ0(x, s)) − fξξ(x, s, ξ0(x, s))[(ξ0)x(x, s)+

+ (ξ0)s(x, s)ξ0(x, s)]
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for ξ ∈ I. Then,in general, ϕ is not continuous.

We consider the functional

(1.1) F (v) =

∫ 1

0

f(x, v(x), v′(x))dx

and the constrained minimum problem

(Pb.1) min
{
F (v) :v∈W 1,1(0, 1), v(0)≥0, v(1)≤λ, v′ >0 a.e., F (v)<+∞

}

where λ is a fixed positive number.

Our aim is to prove the following results.

Theorem 1. Under assumptions (A.1),...,(A.4), there exists a so-

lution u ∈ W 1,∞
loc (0, 1) of (Pb.1) and it satisfies the estimate

(1.2) |u′(x)| ≤ 2λ

δ
∀x ∈ (δ, 1 − δ) ∀δ ∈ (0,

1

2
) .

Theorem 2. Assume (A.1) with h̃ = +∞, (A.2), (A.3) and, if

f(x, s, ·) is not convex, ϕ *= 0 instead of (A.4), the conclusion of theorem 1

holds true.

Corollary. Assume (A.1), . . . ,(A.4) with the function a(x, s) in

(A.1) independent of x, bounded from above on each interval (0, λ), λ ∈
R+ and locally lipschitz. Then the problem

(Pb.2) min
{
I(v) :v∈W 1,1(0, 1), v(0)≥0, v(1)≤λ, v′ >0 a.e., I(v)<+∞

}

with

I(v) = F (v) + h̃
[∫ v(0)

0

a(s)ds +

∫ λ

v(1)

a(s)ds
]

admits a solution u ∈ W 1,∞
loc (0, 1) which satisfies (1.2).

Remark 2. If h̃ = +∞ the existence theorem for a convex integrand

is given in [1].
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2 – Preliminar lemma

The following lemma will be used to prove our theorem

Lemma. Let u ∈ W 1,∞
loc (0, 1). Assume that ∀ε there exists m(ε) > 0

such that:

(2.1) [m(ε)]−1 ≤ u′(x) ≤ m(ε) ∀x ∈ (ε, 1)

and let u be a solution of the equation

(2.2) A(x, u, u′) =

∫ x

1

B(t, u(t), u′(t))dt + const for a.e. x ∈ (0, 1)

where A is a differentiable and locally lipschitz function on (0, 1) × R+ ×
R+; B is bounded on the compact subsets of (0, 1)×R+×R+; Aξ ≥ ν > 0.

Then u ∈ W 2,2
loc (0, 1).

Proof. We consider a cut-off function η ∈ C∞
0 (0, 1), 0 ≤ η ≤ 1, η =

1 in[a, b] ⊂ (0, 1) and for h > 0 we set:

τhu(x) =
u(x + h) − u(x)

h

and

φ(x) = τ−h(η2τhu) .

The function φ(x) has a support in some interval [ε, r] ⊂ (0, 1). More-

over

φ′(x) = τ−h(2ηη′τhu + η2τhu′) .

Now we multiply for φ′(x) in (2.2) and, integrating by parts, we get:

(2.3)

∫ 1

0

A(x, u(x), u′(x))φ′(x) dx = −
∫

suppφ

B(x, u(x), u′(x))φ(x) dx

which is possible because of the assumption on A and B taking into

account (2.1).
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Let us consider the first member in (2.3)

(2.4)

1∫

0

A(x, u(x), u′(x))φ′(x) dx =

∫ 1

0

τhA(x, u, u′)[2ηη′τhu + η2τhu′] dx .

On the other hand we get

(2.5) τhA(x, u, u′)=
1

h

1∫

0

[
d

dt
A(x+th, u(x)+thτhu(x), u′(x)+thτhu′(x))] dt

=

1∫

0

(Ax + Asτhu + Aξτhu′) dt

and the functions Ax, As, Aξ are calculated in (x + th, u(x) + thτhu(x),

u′(x) + thτhu′(x)).

Let us observe that for x ∈ supp φ = [ε, r] ⊂ (0, 1), for t ∈ [0, 1] and

h small enough, x + th ∈ [ε, r1] ⊂ (0, 1).

Moreover, by the assumptions, we get

u(ε) = (1 − t)u(ε) + tu(ε) ≤ u(x) + thτhu(x) =

= (1 − t)u(x) + tu(x + h) ≤ u(1) ≤ λ

and

(1 − t)[m(ε)]−1 + t[m(ε)]−1 ≤ u′(x) + thτhu′(x) =

= (1 − t)u′(x) + tu′(x + h) ≤ (1 − t)m(ε1) + tm(ε1) .

We can conclude that the arguments, where the functions Ax, As, Aξ

are calculated, belong to a compact subset of (0, 1) × R+ × R+ and (2.5)

make sense because of the locally lipschitz assumption on A.

From (2.4) and (2.5) we get:

1∫

0

A(x, u, u′)φ′(x) dx =

=

1∫

0




1∫

0

(Ax + Asτhu + Aξτhu′) dt


 (2ηη′τhu + η2τhu′) dx .
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We estimate the second member in the previous equality by proceed-

ings as in [5] and we get:

(2.6)

1∫

0

A(x, u, u′)φ′(x) dx ≥ ν

1∫

0

η2|τhu′|2 dx − c(η, max
supp η

|u|) .

Let us estimate the second member in equality (2.3) recalling that B

is bounded by our assumptions.

(2.7) |
1∫

0

B(x, u, u′)φ(x) dx| ≤
∫

suppφ

|B(x, u, u′)| |τ−h(η ητhu)| dx

≤ M

1∫

0

|τ−h(η ητhu)| dx

where M is a constant depending on supp η.

Since τ−h(fg) = (τ−hf)g + f(x + h)τ−hg, by using Young inequality

and proposition 3.3 in [5], for ε small enough we get:

(2.8)

1∫

0

|τ−h(η · ητhu)| dx ≤
1∫

0

|η(x + h)| |τ−hητhu)| dx+

+

1∫

0

|η(x)| |τhu| |τ−h(η)| dx ≤ ε

2

1∫

0

|(ητhu)′|2 dx + c(η, max
suppη

|u′|) .

From (2.7) and (2.8) we have

(2.9) |
1∫

0

B(x, u, u′)φ(x) dx| ≤ c(η, max
suppη

|u′|) +
ε

2

1∫

0

η2|τhu)′|2 dx .

Finally (2.3), (2.6) and (2.9) give

1∫

0

η2|τhu′|2 dx ≤ c(η, max
suppη

|u′|)
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and recalling that η = 1 in [a, b]

b∫

a

|τhu′|2 dx ≤ c(η, max
suppη

|u′|) .

Since, by our assumptions, u ∈ W 1,∞
loc (0, 1), the previous inequality

implies that u ∈ W 2,2
loc (0, 1).

3 – Proofs

Proof of theorem 1.

We proceed in four steps:

Step 1. Assumption (A.1) implies that lim
ξ→0+

f∗∗(x, s, ξ) = +∞ so we

can extend the definition of f∗∗ to (0, 1)×R ×R by setting f∗∗(x, s, ξ) =

+∞ if s ≤ 0 and ξ ≤ 0. This extension will be convex in ξ and lower

semicontinuous in s ∈ R.

Now we consider the functional

(3.1) Fν(w) =

1∫

0

[f∗∗(x, w, w′) + ν(1 + |w′|2)] dx for ν > 0

and minimize Fν(w) on the set W = {w ∈ W 1,1(0, 1) : w(1) ≤ λ, Fν(w) <

+∞} that is equivalent to minimize Fν(w) on the set

{w ∈ W 1,1(0, 1) : w(0) ≥ 0, w(1) ≤ λ, w′(x) > 0 a.e., Fν(w) < +∞} .

Let {un
ν}n∈N be a minimizing sequence, i.e.

lim
n

Fν(u
n
ν ) = inf{Fν(w) : w ∈ W} .

By assumption (A.1) we get:

ν

1∫

0

(1 + |(un
ν )′|2) dx ≤ Fν(u

n
ν ) + K ≤ const.
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Then there exists a subsequence of {un
ν}n∈N weakly convergent to

some function uν ∈ W 1,1(0, 1). Moreover by th.1 in [7] and standard ar-

guments in direct methods of the Calculus of Variations, we get existence

of a minimizer uν ∈ W 1,1(0, 1) for (3.1).

Such function uν satisfies the following properties:

(3.2) uν(0) ≥ 0, uν(1) ≤ λ, u′
ν(x) > 0 for a.e. x ∈ (0, 1) .

Step 2. For simplicity we set u = uν . We prove, following [1], that

u satisfies the Euler’s equation of (3.1).

For k = 2, 3, ...., set

Sk = {x ∈ (
1

k
, 1) :

1

k
≤ u′(x) ≤ k}

and denote by χk the characteristic function of Sk.

For v ∈ L∞(0, 1) such that
∫

Sk

v(t) dt = 0 and ε small enough define

uε(x) = u(x) + ε

x∫

0

χk(t)v(t) dt .

It follows that u′
ε(x) = u′(x) for x ≤ 1

k
or u′(x) *∈

[1

k
, k

]
and uε(0) = u(0).

Now we estimate the first variation of the functional:

(3.3)

|1
ε
[f∗∗(x, uε(x), u′

ε(x)) + ν(1 + |u′
ε|2)+

− f∗∗(x, u(x), u′(x)) − ν(1 + |u′|2)]| ≤

≤ 1

ε
|f∗∗(x, uε(x), u′

ε(x)) − f∗∗(x, u(x), u′
ε(x))|+

+
1

ε
|f∗∗(x, u(x), u′

ε(x)) − f∗∗(x, u(x), u′(x))|+

+
ν

ε
|(u′

ε)
2 − (u′)2| .

If x ≤ 1

k
since

x∫
0

χk(t)v(t) dt = 0, uε(x) = u(x) and u′
ε(x) = u′(x)

then the first member in (3.3) is equal to zero.



[11] An existence result for a non convex problem etc. 513

If x >
1

k
and x *∈ Sk we already know that u′

ε(x) = u′(x), then the

right hand size in (3.3) reduces to:

1

ε
|f∗∗x, uε(x), u′

ε(x)) − f∗∗(x, u(x), u′
ε(x))| =

=
1

ε
|f∗∗(x, uε(x), u′(x)) − f∗∗(x, u(x), u′(x))|.

Let us estimate the last term.

(3.4)
1

ε
|f∗∗(x, uε(x), u′(x)) − f∗∗(x, u(x), u′(x))|

=
1

ε
|

1∫

0

d

dt
f∗∗(x, tuε(x) + (1 − t)u(x), u′(x)) dt|

≤ 1

ε

1∫

0

|f∗∗
s (x, tuε(x) + (1 − t)u(x), u′(x))| |uε(x) − u(x)| dt

≤ |
x∫

0

χk(t)v(t) dt|
1∫

0

|f∗∗
s (x, tuε(x) + (1 − t)u(x), u′(x))| dt .

We observe that x >
1

k
gives u(x) > u

(1

k

)
= δ > 0.

Indeed u
(1

k

)
cannot be zero because of conditions (3.2)1, (3.2)3 on

the minimizing function, then for x ≥ 1

k
, if δ0 is the constant in (A.3),

for ε < δ0u(1/k)/||v||L∞(0,1), we get

∣∣∣ tuε + (1 − t)u

u(x)
− 1

∣∣∣ < δ0

and we can apply assumption (A.3) to obtain that f∗∗
s (x, tuε + (1 −

t)u, u′) ∈ L1(0, 1).

Therefore for every x *∈ Sk, (3.4) and, consequently, the first member

in (3.3) is controlled from above by an L1-function independent on ε, for

ε small enough.
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Suppose now that x ∈ Sk so that χk(x) = 1. We get u′
ε(x) = u′(x) +

εv(x) and the right hand side of (3.3) is bounded by the quantity

∣∣∣∣∣∣

x∫

0

χk(t)v(t) dt

∣∣∣∣∣∣

∣∣∣∣∣∣

1∫

0

f∗∗
s (x, tuε + (1 − t)u, u′

ε) dt

∣∣∣∣∣∣
+

+
[
2νσ̃ε(x) +

∣∣∣f∗∗
ξ (x, u(x),σε(x))

∣∣∣
]

|χk(x)v(x)|

where for ε > 0, σε(x) and σ̃ε(x) belong to the interval with extrems u′
ε(x)

and u′(x) for a.e. x ∈ (0, 1).

Moreover for σε = tu′
ε + (1 − t)u′ and ||v||L∞ ≤ 1

k(k + 1)
we get the

estimate

1

k + 1
≤ 1

k
− tε||v||L∞(0,1) ≤ σε(x) = u′(x) + tεv(x) ≤ k + ε||v||L∞(0,1) ≤

≤ k + ||v||L∞(0,1) .

It follows that, for
1

k
≤ x ≤ 1, δ = u

(
1

k

)
≤ u(x) ≤ λ,

1

k + 1
≤

σε(x) ≤ k + ||v||L∞(0,1) and, by assumption (A.2), we get

(3.5)
∣∣∣f∗∗

ξ (x, u(x),σε(x))
∣∣∣ < c(k) .

By the same arguments we get

(3.6) |f∗∗
s (x, tuε(x) + (1 − t)u(x), u′

ε(x))| ≤ c(k)

and

(3.7) |σ̃ε(x)|2 ≤ c(k) .

From (3.3), ..., (3.7) we deduce that also if x ∈ Sk the first member

in (3.3) is not greater than some L1 function. We are able to apply the

Lebesgue’s theorem of the dominated convergence to get

(3.8)
d

dε
Fν(uε)

∣∣∣∣
ε=0

=

1∫

1
k


f∗∗

s

x∫

0

χk(τ)v(τ)dτ +(f∗∗
ξ +2νu′)χk(x)v(x)


 dx=0.
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By using assumption (A.3), f∗∗
s (x, u, u′) ∈ L1

(1

k
, 1

)
; in fact if x ∈

(1

k
, 1

)

1∫

1
k

|f∗∗
s (x, u, u′)| dx ≤ M

(
1

k
, u(

1

k
)

) 1∫

1
k

|f∗∗(x, u, u′)| dx

which is finite since u is a minimizing function.

By proceedings as in [1] we integrate by parts and we get

(3.9)

∫

Sk


f∗∗

ξ + 2νu′ −
x∫

1

f∗∗
s


 v(x) dx = 0

for all v ∈ L∞(0, 1) such that ||v||L∞ ≤ 1

k(k + 1)
and

∫
Sk

v(t) dt = 0. It is

not difficult to see that (3.9) holds for all v ∈ L∞(0, 1) with
∫

Sk

v(x) dx = 0.

Since, by (A.2), f∗∗
ξ + 2νu′ is bounded in Sk, we deduce

f∗∗
ξ + 2νu′ +

x∫

1

f∗∗
s = ck for a.e. x ∈ Sk.

Moreover we have

(3.10) f∗∗
ξ + 2νu′ −

x∫

1

f∗∗
s = const for a.e. x ∈ (0, 1)

because meas [(0, 1)/ ∪k Sk] = 0

From (3.10), if x ∈ (ε, 1], we get

|f∗∗
ξ (x, u, u′) + 2νu′| ≤ const +

1∫

ε

|f∗∗
s | dx

which means that the first member is in L∞
loc(0, 1), and, by assumptions

(A.1) and (A.2), there exists m(ε) > 0 such that

(3.11) [m(ε)]−1 ≤ u′(x) ≤ m(ε) ∀x ∈ (ε, 1] .
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Step 3. The minimizing function u = uν satisfies equation (3.10)

and condition (3.11) so that we can apply the lemma proved in Sec. 2

with

A(x, u, u′) = f∗∗
ξ (x, u, u′) + 2νu′

B(x, u, u′) = f∗∗
s (x, u, u′)

since its assumption are verified because of (A.2).

We obtain that u = uν ∈ W 2,2
loc (0, 1).

We show that u = uν is convex (resp. concave) for every ν. Indeed,

since uν ∈ W 2,2
loc (0, 1), for almost every x ∈ (0, 1) we can derive Euler’s

equation (3.10) to get

(
f∗∗

ξξ + 2ν
)

u′′ = f∗∗
s − f∗∗

ξx − ξf∗∗
ξs .

The second member of the above equation is ϕ ≥ 0 (resp. ϕ ≤ 0)

by assumption and the quantity f∗∗
ξξ + 2ν is never negative so we can

conclude that, for almost every x ∈ (0, 1), u′′ ≥ 0 i.e. u is convex (resp.

u′′ ≤ 0 i.e. u is concave).

Assume,for example,that uν is convex for every ν, we can deduce a

uniform estimate for the W 1,∞
loc norm. In fact, by proceeding as in [9],

uν(0) − uν(x)

−x
≤ u′

ν(x) ≤ uν(1) − uν(x)

1 − x

and for x ∈ (δ, 1 − δ), 0 < δ < 1/2 we get

|u′
ν(x)| ≤ 2

δ
λ .

Then there exists a subsequence which converges to some u0 ∈ W 1,∞
loc (0, 1)

in the weak topology of W 1,∞
loc (0, 1). It is easily seen that

(3.12) ||u′
0(x)||L∞

(δ,1−δ)
≤ lim

ν
||u′

ν(x)||L∞
(δ,1−δ)

≤ 2λ

δ
∀δ ∈

(
0,

1

2

)
.

We prove now that u0 is a minimizing function for the functional

F0(w) =

1∫

0

f∗∗(x, w, w′) dx
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in the class {w ∈ W 1,1(0, 1) : w(0) ≥ 0, w(1) ≤ λ, w′(x) > 0 a.e., F0(w) <

+∞} of the admissible functions.

In fact, by the convexity of f∗∗(x, s, ξ) with respect to ξ, recalling

that uν is a minimizing function for Fν(v), we get:

1∫

0

f∗∗(x, u0(x), u′
0(x)) dx≤ lim

ν

1∫

0

[
f∗∗(x, uν(x), u′

ν(x))+ν(1+|u′
ν |2)

]
dx≤

≤ lim
ν

1∫

0

[
f∗∗(x, w, w′) + ν(1 + |w′|2)] dx =

1∫

0

f∗∗(x, w, w′) dx

for w any function in the class of the admissible ones.

Step 4. First we assume that ϕ has a strict sign: ϕ > 0 (resp.

ϕ < 0). Now we are able to prove existence for (Pb. 1)

To this aim we show that

(3.13) f(x, u0(x), u′
0(x)) = f∗∗(x, u0(x), u′

0(x)) for a.e. x ∈ (0, 1] .

By the same arguments used in Step 2 we get that u0(x) satisfies the

Euler’s equation

(3.14) f∗∗
ξ (x, u0(x), u′

0(x)) = c +

x∫

1

f∗∗
s (t, u0(t)u

′
0(t)) dt.

Since u′
0(x) is monotone, then it is differentiable almost everywhere

in (0, 1). Let x ∈ (0, 1) be a point where u′
0(x) is differentiable and

f(x, u0(x), u′
0(x)) *= f∗∗(x, u0(x), u′

0(x)); since f∗∗(x, u0(x), ξ) is linear

where f *= f∗∗, by a derivation with respect to x of (3.14) we get

f∗∗
ξx (x, u0(x), u′

0(x)) + f∗∗
ξs (x, u0(x), u′

0(x))u′
0(x) = f∗∗

s (x, u0(x), u′
0(x))

which contradicts the condition ϕ > 0 (resp. ϕ < 0).

If ϕ has not a strict sign, following [9] we consider the function

f ε(x, s, ξ) = f(x, s, ξ) + εe+s
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with ε ∈ (0, 1] and the sign + is chosen in dependence on the sign of ϕ

(sign + if ϕ ≥ 0). Then

ϕε(x, s, ξ) = ϕ(x, s, ξ)+εe+s

has a strict sign. By the previous part of the proof, for every ε, there

exists uε minimizing the functional (1.1) with f replaced by f ε; by similar

arguments as in [9], we can conclude the proof of theorem 1.

Proof of theorem 2. In [1] existence of a solution u0 of the

convexified problem of (Pb 1) is proved without the condition ϕ *= 0. It

is also proved that u0 satisfies Euler equation, then we can apply step 3

in the proof of theorem 1 to obtain u0 ∈ W 2,2
loc .

Moreover by the same arguments as in step 4, under the assumption

ϕ *= 0, we get existence for the non convex problem.

Proof of the corollary. If h̃ = 0, I(v) = F (v) and existence has

been proved in the theorem 1. If h̃ ∈ (0,+∞) we set k0 = inf[h(ξ) − h̃ξ],

existing because of the convexity of h(ξ) and the limit conditions in (A.1)

and

Φ(ξ) =

{
h(ξ) − h̃ξ if k0 ≥ 0

h(ξ) − h̃ξ − k0 if k0 < 0 .

Defining g(x, s, ξ) = f(x, s, ξ) − a(s)h̃ξ we get

g(x, s, ξ) ≥ a(s)Φ(ξ) − k̃

where

k̃ =

{
k if k0 ≥ 0

k − k0sup{a(s) : s ∈ (0, λ)} if k0 < 0 .

Assumption (A.1)is verified by g(x, s, ξ) since Φ(ξ) is a non negative

convex function satisfying

Φ̃ = lim
ξ→+∞

Φ(ξ)

ξ
= lim

ξ→+∞

h(ξ)

ξ
− h̃ = 0 .

Moreover lim
ξ→+∞

Φ(ξ) = +∞ and g(x, s, ξ) satisfies (A.2) because of

the assumption on a(s). Finally g(x, s, ξ) does not satisfies exactly as-

sumption (A.3) but some assumption (A.3)bis which is enough for our

aims:
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(A.3)bis. There exists δ0 > 0 such that

|g∗∗
s (x, σs, ξ)| ≤ N(x0, r)(|g∗∗(x, s, ξ)| + h̃ξ) ∀ξ ∈ R+

for x ∈ [x0, 1), x0 > 0, s ∈ [r, λ], 0 < r < λ, |σ − 1| < δ0, where N is a

constant only dependent on x0 and r. Now

I(v) =

1∫

0

g(x, v(x), v′(x))dx + h̃

1∫

0

a(v)v′dx + h̃
[ v(0)∫

0

a(s)ds +

λ∫

v(1)

a(s)ds
]
.

By a change of variable the last three terms reduce to h̃
λ∫
0

a(s)ds

which is independent of v. Therefore (Pb2) is equivalent to (Pb1) for the

integrand g and we can apply the theorem.

4 – Some examples

Here we present some examples of integrand functions f to which our

existence results apply.

Ex.1.

(4.1) f(x, s, ξ) = (
x

s
)p− p

n ξp + (n − 1)(
s

x
)

p
n + g(ξ), 1 < p < n

where g is a convex function such that lim
ξ→+∞

g(ξ)

ξ
= g̃ ∈ [0, +∞) and

lim
ξ→0+

g(ξ) = +∞. Integrand (4.1) is obtained by the change of variables

in (0.1) r = x
1
n and w(x) = vn(x

1
n ). Here an easy computation gives

ϕ ≥ 0. The function (4.1) is considered in [1] under the assumption

lim
ξ→+∞

g(ξ)

ξ
= +∞. He proves existence of a minimizing function for the

functional F (u). Theorem 1 gives existence for the same functional when

lim
ξ→+∞

g(ξ)

ξ
∈ [0, +∞) .

In [4] existence of a minimizing function for I(v), under suitable as-

sumptions on f, is proved.
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We remark that the integrand (4.1) doesn’t satisfy their assumptions,

since they assume that f(x, s, 0) is finite and some structure condition of

the type

a(x, s)h(ξ) ≤ f(x, s, ξ) ≤ a(x, s)h(ξ) + b(x, s).

Our corollary gives existence for I(v) with f given by (4.1).

Ex.2.

f(x, s, ξ) = a(s)g(ξ)

where a(s) and g(ξ) are such that assumption (A.1), . . . ,(A.3) are sat-

isfied. In particular (A.1) is satisfied with h(ξ) = g∗∗(ξ) and k = 0.

Moreover,if h̃ = 0 and a(s) is a monotone function assumption (A.4) is

satisfied.For example we consider

f1(x, s, ξ) = sp[ξ−1 + ξ
1
2 ]

f2(x, s, ξ) = s−p[ξ−1 + ξ
1
2 ] .

Theorem 1 applies to f1 and f2.
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