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Perturbation properties of some classes of operators

C. SCHMOEGER

Riassunto: Sia X uno spazio di Banach complesso e L(X) l’algebra di di Banach
di tutti gli operatori lineari limitati in X. Considerate le seguenti famiglie di operatori:

D(X) = {T ∈ L(X) : T (X) is closed and N(T ) ⊆
∞⋂

n=1

T n(X)},

S(X) = {T ∈ D(X) : T is relatively regular}.
si determinanno i punti interni di D(X) e S(X), si dimostrano inoltre alcuni teoremi
di perturbazione.

Abstract: Let X be a complex Banach space and L(X) the Banach algebra of all
bounded linear operators on X. We consider the following classes of operators:

D(X) = {T ∈ L(X) : T (X) is closed and N(T ) ⊆
∞⋂

n=1

T n(X)},

S(X) = {T ∈ D(X) : T is relatively regular}.
We determine the interior points of D(X) and S(X) and prove some perturbation
theorems.

1 – Introduction and terminology

Throughout this paper X denotes a Banach space over the complex
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field C and L(X) the Banach algebra of all bounded linear operators on

X. If T ∈ L(X) we denote by N(T ) the kernel of T and by α(T ) the

dimension of N(T ). The range of T is denoted by T (X) and we define

β(T ) = codim T (X).

T ∈ L(X) is called relatively regular if TST = T for some S ∈ L(X).

R(X) will denote the set of all relatively regular operators.

We shall make use of the following results [1, p. 10]:

1. T ∈ R(X) if and only if N(T ) and T (X) are closed complemented

subspaces of X.

2. If TST = T for some S ∈ L(X), then TS is a projection onto T (X)

and I − ST is a projection onto N(T ).

An operator T is called an Atkinson operator if T ∈ R(X) and at

least one of α(T ), β(T ) is finite. The set of Atkinson operators will be

denoted by A(X).

We write C(X) for the set of operators having closed range. The class

of semi-Fredholm operators is defined by

SF(X) = {T ∈ C(X) : α(T ) < ∞ or β(T ) < ∞}.

We have A(X) ⊆ SF(X). The index of T ∈ SF(X) is given by ind(T ) =

α(T ) − β(T ).

The following result is well known (for proofs see [1] and [3]).

Theorem 1. Let T ∈ A(X) (resp. T ∈ SF(X)). Then there exists

δ > 0 such that

(a) T −B ∈ A(X) (resp. T −B ∈ SF(X)), α(T −B) ≤ α(T ), β(T −B) ≤
β(T ) and ind(T − B) = ind(T ) for all B ∈ L(X) with ||B|| < δ;

(b) α(T − λI) is a constant ≤ α(T ), β(T − λI) is a constant ≤ β(T ) for

0 < |λ| < δ.

The above theorem shows that A(X) and SF(X) are open subsets

of L(X). Furthermore, the continuity of the index shows that the jump

of T ∈ SF(X)

j(T ) =

{
α(T ) − α(T − λI) (0 < |λ| < δ) if α(T ) < ∞
β(T ) − β(T − λI) (0 < |λ| < δ) if β(T ) < ∞

is unambigously defined.
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Proposition 1. If T ∈ SF(X) then j(T ) = 0 ⇐⇒ N(T ) ⊆⋂
n≥1

T n(X).

Proof. [14, Proposition 2.2].

We now list various classes of bounded linear operators which will be

discussed:

SF0(X) = {T ∈ SF(X) : α(T ) = 0 or β(T ) = 0};

B(X) = {T ∈ L(X) : N(T ) ⊆ T (X)};

M(X) = {T ∈ L(X) : T is left or right invertible in L(X)};

D(X) = {T ∈ C(X) : N(T ) ⊆
⋂

n≥1

T n(X)};

S(X) = {T ∈ R(X) : N(T ) ⊆
⋂

n≥1

T n(X)}.

It is well known that M(X) is open. SF0(X) is open by Theorem 1.

An operator in S(X) is called an operator of Saphar type. Such operators

have an important property:

T ∈ S(X) if and only if there is a neigbourhood U ⊂ C of 0

and a holomorphic function F : U → L(X) such that

(T − λI)F (λ)(T − λI) = T − λI for all λ ∈ U.

For a proof see [7, Théorème 2.6] or [12, Theorem 1.4].

2 – Interior points of D(X) and S(X)

If H is a subset of L(X) we write int(H) for the set of interior points

of H.

Proposition 2. If T ∈ int(B(X)) then N(T ) = {0} or T (X) = X.



536 C. SCHMOEGER [4]

Proof. There exists δ > 0 such that

S ∈ B(X) whenever ||T − S|| < δ.

Suppose that N(T ) *= {0} and T (X) *= X. Then there are x0, y0 ∈ X

with x0 *= 0, Tx0 = 0, y0 *∈ T (X) and ||Ty0|| = δ/2. Since y0 *∈ T (X) and

N(T ) ⊆ T (X), we have y0 *∈ N(T ). An application of the Hahn-Banach

extension theorem shows the existence of a continuous linear functional

f such that

α = f(x0) *= 0, f(y0) = 0 and ||f || = 1

(see [6, Satz 36.3]). Define S ∈ L(X) by

Sx = Tx + f(x)Ty0 (x ∈ X).

It follows that ||Tx − Sx|| = |f(x)| ||Ty0|| ≤ ||x||δ/2, thus ||T − S|| < δ,

hence S ∈ B(X). Since S(X) ⊆ T (X), we conclude that

N(S) ⊆ T (X).

Now put z = y0 − x0/α. It results that

Sz = Ty0 + f

(
y0 − 1

α
x0

)
Ty0 = Ty0 − Ty0 = 0.

This gives z ∈ T (X), hence y0 = z +x0/α ∈ T (X)+N(T ) = T (X) which

contradicts y0 *∈ T (X).

It is shown in [10] that neither D(X) nor S(X) are open subsets of

L(X). But the following perturbation results are valid:

Suppose T ∈ S(X) (resp. T ∈ D(X)), B ∈ L(X) and

B

( ∞⋂
n=1

T n(X)

)
⊆

∞⋂
n=1

T n(X). If ||B|| is sufficiently small

then T − B ∈ S(X) (resp. T − B ∈ D(X)).

(For proofs see [1, p. 150] (resp. [10, Corollaire 3.6]).)

Therefore a natural question arises: What are the interior points of

S(X) and D(X)? The following result gives an answer.
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Theorem 2.

(a) int(D(X)) = int(B(X) ∩ C(X)) = SF0(X).

(b) int(S(X)) = int(B(X) ∩ R(X)) = M(X).

Proof. (a) By Theorem 1 and Proposition 1, SF0(X) ⊆ D(X).

Since SF0(X) is open and SF0(X) ⊆ D(X) ⊆ B(X) ∩ C(X), we have

SF0(X) ⊆ int(D(X)) ⊆ int(B(X) ∩ C(X)).

If T ∈ int(B(X)∩C(X)) then T ∈ int(B(X)), thus α(T ) = 0 or β(T ) = 0,

by Proposition 2. Since T (X) is closed, we derive T ∈ SF0(X).

(b) Since M(X) is open and M(X) ⊆ S(X) ⊆ B(X) ∩ R(X), we

have

M(X) ⊆ int(S(X)) ⊆ int(B(X) ∩ R(X)).

Let T ∈ int(B(X) ∩ R(X)). There is S ∈ L(X) with TST = T . Propo-

sition 2 shows that (I − ST )(X) = N(T ) = {0} or TS(X) = T (X) = X,

thus ST = I or TS = I, therefore T ∈ M(X).

Remark. If X is a Hilbert space, then C(X) = R(X) [1, p. 12],

hence D(X) = S(X). In this special case it was shown in [8, Théorème

6.5] that int(D(X)) = M(X).

Corollary 1. If X is a Hilbert space then int(S(X)) is dense in

L(X).

Proof. M(X) is dense in L(X) [4, Problem 140]. Now use Theo-

rem 2.

Corollary 2.

(a) int({T ∈ SF(X) : j(T ) = 0}) = SF0(X).

(b) int({T ∈ A(X) : j(T ) = 0}) = M(X).

Proof. (a) follows from SF0(X) ⊆ {T ∈ SF(X) : j(T ) = 0} ⊆
D(X) (Proposition 1) and from Theorem 2.

(b) follows from M(X) ⊆ {T ∈ A(X) : j(T ) = 0} ⊆ S(X) and from

Theorem 2.
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3 – The reduced minimum modulus of operators in D(X)

By definition, the reduced minimum modulus γ(T ) of T ∈ L(X)\{0}
is given by

γ(T ) = inf

{ ||Tx||
d(x, N(T ))

: x ∈ X, Tx *= 0

}
.

(d(x, N(T )) denotes the distance of x to N(T ).) Observe that γ(T ) > 0

if and only if T ∈ C(X) [3, Theorem IV. 1.6].

Proposition 3. Let T ∈ L(X).

(a) If T ∈ D(X) then T n ∈ D(X) for all n ∈ IN.

(b) If T ∈ D(X) then γ(T n+m) ≥ γ(T n)γ(T m) for all n, m ∈ IN.

(c) If T ∈ R(X) and TST = T for some S ∈ L(X) then ||S||−1 ≤ γ(T ).

(d) If T ∈ S(X) and TST = T for some S ∈ L(X) then T nSnT n = T n

for each n ∈ IN.

Proof. (a) [11, Satz 6]. (b) [2, Lemma 1]. (c) [2, Lemma 4]. (d)

[13, Proposition 2].

We denote by σ(T ) the spectrum of T ∈ L(X) and by r(T ) =

max{|λ| : λ ∈ σ(T )} (= lim
n→∞

||T n||1/n) the spectral radius of T . ∂σ(T )

denotes the boundary of σ(T ).

Proposition 4. Let T ∈ L(X).

(a) If µ ∈ ∂σ(T ) then T − µI *∈ D(X).

(b) If T ∈ D(X) then

sup
n≥1

γ(T n)1/n ≤ min {|µ| : µ ∈ ∂σ(T )},

the sequence (γ(T n)1/n)n≥1 converges and

lim
n→∞

γ(T n)1/n = sup
n≥1

γ(T n)1/n.

(c) If T ∈ S(X) and TST = T for some S ∈ L(X) then

r(S)−1 ≤ lim
n→∞

γ(T n)1/n.
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Proof. (a) follows from [11, Satz 2].

(b) Fix µ ∈ ∂σ(T ) such that |µ| = min{|λ| : λ ∈ ∂σ(T )} and suppose

that |µ| < γ(T m)1/m for some m ∈ IN. Thus |µm| < γ(T m). Since T m ∈
D(X) (Proposition 3(a)), Théorème 2.10 in [9] gives T m − µmI ∈ D(X).

[11, Satz 6] implies now that T − µI ∈ D(X), but this contradicts (a).

Hence γ(T m)1/m ≤ |µ| for each m ∈ IN.

(b) follows from [2, remarks in connection with Lemma 1].

(c) By Proposition 3(d), T nSnT n = T n for all n ∈ IN. Part (c) of

Proposition 3 implies that ||Sn||−1 ≤ γ(T n) for each n ∈ IN, hence

r(S)−1 = lim
n→∞

1

||Sn||1/n
≤ lim

n→∞
γ(T n)1/n.

The following theorem is another perturbation result for operators in

D(X) which generalizes Théorème 2.10 in [9].

Theorem 3. If T ∈ D(X), B ∈ L(X), TB = BT and r(B) <

lim
n→∞

γ(T n)1/n, then T − B ∈ D(X).

Proof. Since r(B) = inf
k≥1

||Bk||1/k < sup
n≥1

γ(T n)1/n, there exists k ∈ IN

such that ||Bk+1|| < γ(T k+1). By Proposition 3(a), T k+1 ∈ D(X), thus

T k+1 − Bk+1 ∈ D(X), by [10, Corollaire 3.6], since B

( ∞⋂
n=1

T n(X)

)
⊆

∞⋂
n=1

T n(X). TB = BT implies

T k+1 − Bk+1 = (T − B)(T k + T k−1B + · · · + TBk−1 + Bk).

Therefore [11, Satz 5] shows that T − B ∈ D(X).

The next result is proved in [10, Théorème 3.7]. It is now an imme-

diate consequence of the last theorem.

Theorem 4. Let T,Q ∈ L(X). If Q is quasi-nilpotent and com-

mutes with T , then

T ∈ D(X) if and only if T − Q ∈ D(X).
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We close this paper with a perturbation result concerning operators

in S(X). For the proof we need the following proposition.

Proposition 5. If A, B ∈ L(X) commute and AB ∈ S(X), then

A, B ∈ S(X).

Proof. [5, Theorem 10].

Theorem 5. Let T,Q ∈ L(X). If Q is quasi-nilpotent and com-

mutes with T , then

T ∈ S(X) if and only if T − Q ∈ S(X).

Proof. It suffices to prove the implication T ∈ S(X) =⇒ T − Q ∈
S(X). Put S ∈ L(X) such that TST = T . By Proposition 3(a),(d),

T n ∈ S(X) and T nSnT n = T n for each n ∈ IN. Put Sn := SnT nSn

(n ∈ IN). It follows that T nSnT n = T n, SnT nSn = Sn and ||Sn||1/n ≤
||S||2||T ||. There exists k ∈ IN such that ||Qk+1||1/(k+1) < (||S||2||T ||)−1,

thus ||Qk+1|| < ||Sk+1||−1. By [1, Theorem 9 in Section 5.2], T k+1−Qk+1 ∈
S(X). TQ = QT implies

T k+1 − Qk+1 = (T − Q)(T k + T k−1Q + · · · + TQk−1 + Qk),

hence T − Q ∈ S(X), by Proposition 5.
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