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Jackson type estimates in the approximation

of random functions by random polynomials

S.G. GAL

Riassunto: Il problema dell’approssimazione delle funzioni aleatorie mediante po-
linomi aleatori è stato studiato in [1-2], [6-8], [10]. Lo scopo di questo lavoro è di
ottenere stime dell’ordine di convergenza delle approssimazioni.

Abstract: Some theorems of Weierstrass type concerning the uniform approx-
imation in mean of random functions by random polynomials are obtained in [1-2],
[6-8], [10] and Korovkin type estimates are given in [11]. Using a suitable modulus of
continuity Ω(f ; δ), the main purpose of this paper is to construct random polynomials of
degree ≤ n which approximate the random function f uniformly in mean, with the ap-
proximation order O

(
Ω(f ; 1/n)

)
. The cases of both periodic and non-periodic random

functions are considered.

1 – Introduction

Let (E, B, P ) be a probability space, where E is a nonempty set, B
a σ-field of parts on E and P a probability on B.

Let us denote by L(E, B, P ) the set of the real random variables

Key Words and Phrases: Random function – Random polynomial – Uniform ap-
proximation in mean – Jackson type estimates
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defined on E, a.e. finite and for each p ≥ 1 let us define

Lp(E, B, P ) =

{
g ∈ L(E, B, P ) ;

∫

E

∣∣g(ω)
∣∣pdP (ω) < +∞

}
.

Section 2 of this paper contains some definitions and auxiliary results.

Using a suitable modulus of continuity Ω(f ; δ), in Section 3 we obtain

Jackson type estimates for the uniform approximation in mean of 2π-

periodic random functions, by random trigonometric polynomials, the

approximation order being O(
Ω(f ; 1/n)

)
.

Finally, Section 4 contains a Timan type estimates for the uniform

approximation in mean of random functions defined on a closed interval,

by random algebraic polynomials.

Although known arguments used in the approximation of real func-

tions by ordinary polynomials are adapted to our problems and the results

are going to give are the analogue of what are well-known in that field,

however we believe that they are of some interest in the study of the

stochastic processes.

2 – Definitions and auxiliary results

It is known the following

Definition 2.1 (see e.g. [8], p. 46). Let f : [a, b]−→L1(E, B, P ) be

a random function. We say that f is continuous in mean (of order one)

in a point t0 ∈ [a, b], it for any ε > 0, there exists δ = δ(ε, t0) such that

∫

E

∣∣f(t, ω) − f(t0, ω)
∣∣dP (ω) < ε , for all t ∈ [a, b] with |t − t0| < δ .

For a, b ∈ IR, a < b, let us define

CM [a, b] =
{
f : [a, b] −→L1(E, B, P ) ; f is continuous in mean in

each t ∈ [a, b]
}
.
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The following result holds.

Lemma 2.2. If f ∈ CM [a, b] then

sup

{ ∫

E

∣∣f(t, ω)
∣∣dP (ω) ; t ∈ [a, b]

}
< +∞ .

Proof. Define F : [a, b]−→ IR by F (t) =
∫

E

∣∣f(t, ω)
∣∣dP (ω) and let

suppose that F is unbounded on [a, b]. This means that there exists a

sequence xn ∈ [a, b], n ∈ IN, such that F (xn) > n, n = 1, 2, . . . , that is

(1)

∫

E

∣∣f(xn, ω)
∣∣dP (ω) > n , ∀n ∈ IN .

Since xn ∈ [a, b], n ∈ IN, there exists a subsequence of xn, yk = xnk
,

k = 1, 2, . . . , such that yk → y0 ∈ [a, b].

By (1) we get

k <

∫

E

∣∣f(yk, ω)
∣∣dP (ω) ≤

∫

E

∣∣f(yk, ω) − f(y0, ω)
∣∣dP (ω)+

+

∫

E

∣∣f(y0, ω)
∣∣dP (ω) , k ∈ IN

and passing to limit with k → +∞, taking into account that f is contin-

uous in mean in y0 too, we obtain the contradiction
∫

E

∣∣f(y0, ω)
∣∣dP (ω) = +∞ .

Let us define

L1
(
[a, b] × E

)
=

{
f : [a, b]−→ L1(E, B, P ); f(t, ω) is measurable

L[a, b] × B and
∫ b

a

∣∣f(t, ω)
∣∣dt < +∞; a.e. ω ∈ E

}

and

(2) L1
2π(IR × E) =

{
f : IR −→L1(E, B, P ); f(t, ω) is measurable

L(IR) × B and there exists A ⊂ E with P (A) = 1,

such that f(t + 2π, ω) = f(t, ω), for all t ∈ IR,

ω ∈ A and
∫ π

−π

∣∣f(t, ω)
∣∣dt < +∞, for all ω ∈ A

}
,
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where L[a, b] and L(IR) denote the classes of Lebesgue measurable sets

on [a, b] and on IR, respectively.

Remark. In [3], f : IR −→ L1(E, B, P ) is called 2π-periodic if satis-

fies the weakened condition

∫

E

∣∣f(t + 2π, ω) − f(t, ω)
∣∣dP (ω) = 0 , ∀ t ∈ R .

Denote

∆n
hf(x) =

n∑

i=0

(−1)n−i ·
(

n

i

)
· f(x + ih) .

Definition 2.3 (see e.g. [3], p. 460). Let f ∈ L1
2π(IR × E) and

n ∈ IN. The n-th order modulus of smoothness of f is given by

(3) Ωn(f ; δ)=sup

{
sup

{∫

E

∣∣∆n
hf(t, ω)

∣∣dP (ω) ; t ∈ IR

}
; 0 ≤ h ≤ δ

}
,

where ∆n
hf(t, ω) is applied to the variable t.

Also, for f ∈ L1
(
[a, b] × E

)
, the n-th order modulus of smoothness of

f is given by

(4) Ωn(f ; δ)=sup

{
sup

{∫

E

∣∣∆n
hf(t, ω)

∣∣dP (ω) ; t ∈ [a, b − nh]
}

; 0≤h≤δ

}
.

The modulus Ω1(f ; δ) will be denoted by Ω(f ; δ).

Concerning the above moduli of smoothness, the following property

will be used in Section 3.

Lemma 2.4. For all λ > 0 and all δ > 0 we have

(5) Ωn(f ;λδ) ≤ (λ + 1)nΩn(f ; δ) ,

where Ωn is given by (4) or (3).
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Proof. Let Ωn be given by (3), for example. Firstly, we will prove

that for any m ∈ IN we have

(6) Ωn(f ;mδ) ≤ mn · Ωn(f ; δ) .

Indeed, by [5]. p. 47 we get

∆n
mhf(t, ω) =

m−1∑

k1=0

. . .
m−1∑

kn=0

∆n
hf(t + k1h + . . . + knh, ω) , a.e. ω ∈ E .

Hence passing to absolute value and integrating on E, we obtain

∫

E

∣∣∆n
mhf(t, ω)

∣∣dP (ω) ≤
m−1∑

k1=0

. . .
m−1∑

kn=0

∫

E

∣∣∣∣∣∆
n
hf

(
t + h

( n∑

i=1

ki

)
, ω

)∣∣∣∣∣dP (ω)≤

≤
m−1∑

k1=0

. . .
m−1∑

kn=0

Ωn(f ; δ) = mn · Ωn(f ; δ) ,

and passing to supremum with 0 ≤ h ≤ δ and with t ∈ IR, we get (6).

Now, since by (3) obviously Ωn(f ; δ) is monotone as function of δ and

taking into account that λ < [λ] + 1 ≤ λ + 1, we immediately get (5).

The proof for Ωn(f ; δ) defined by (4) is analogous.

Another important result which will be used in Section 3 and 4 is

indicated below.

Lemma 2.5 (i). If f ∈ L1
(
[a, b] × E

)
, then we have

∫

E

[ b∫

a

∣∣f(t, ω)
∣∣dt

]
dP (ω) =

b∫

a

[ ∫

E

∣∣f(t, ω)
∣∣dP (ω)

]
dt .

(ii) If f ∈ L1
2π(R × E) then

∫

E

[ π∫

−π

∣∣f(t, ω)
∣∣dt

]
dP (ω) =

π∫

−π

[ ∫

E

∣∣f(t, ω)
∣∣dP (ω)

]
dt .
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Proof. (i) By f ∈ L1
(
[a, b]×E

)
, obviously |f | ∈ L1

(
[a, b]×E

)
. Then

our equality is an immediate consequence of a Fubini type result (see e.g.

Theorem 10.2.2 in [9], p. 187).

The proof of (ii) is entirely analogous.

Now, if we define

CM(IR) =
{
f : IR −→L1(E, B, P ); f is continuous in mean on IR

}
, the

following result holds.

Theorem 2.6 (i). If f ∈ L1
(
[a, b] × E

) ∩ CM [a, b] then

(7)

∫

E

[ b∫

a

f(t, ω)dt

]
dP (ω) =

b∫

a

[ ∫

E

f(t, ω)dP (ω)

]
dt .

(ii) If f ∈ L1
2π(IR × E) ∩ CM(IR) then

(8)

∫

E

[ π∫

−π

f(t, ω)dt

]
dP (ω) =

π∫

−π

[ ∫

E

f(t, ω)dP (ω)

]
dt .

Proof. (i) Let f ∈ L1
(
[a, b] × E

) ∩ CM [a, b] be and define F :

[a, b]−→R by

F (t) =

∫

E

∣∣f(t, ω)
∣∣dP (ω) , t ∈ [a, b] .

Since f is measurable L[a, b] × B, then by e.g. [9, Theorem 10.2.2,

p. 187], F is measurable L[a, b]. Also, by Lemma 2.2, F is bounded on

[a, b] and therefore F is Lebesgue integrable on [a, b].

As conclusion, there exists finite the integral
∫ b

a

[ ∫
E

∣∣f(t, ω)
∣∣dP (ω)

]
dt,

and by the Fubini’s theorem (see e.g. [9], p. 189), we get (7).

The proof of (ii) is entirely analogous.
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Finally, let us consider two known concepts by

Definition 2.7 (see [8]). A finite sum of the form Pn(t, ω) =
n∑

k=0

ai(ω) · ti, t ∈ [a, b], where ak ∈ L(E, B, P ), k = 0, 1, . . . , n, will be

called random algebraic polynomial od degree ≤ n.

Analogously, a sum of the form Sn(t, ω) =
n∑

k=0

[
ak(ω) · cos kt + bk(ω) ·

sin kt
]
, t ∈ IR, ω ∈ E, where ak, bk ∈ L(E, B, P ), k = 0, 1, . . . , n, will be

called random trigonometric polynomial of degree ≤ n.

3 – Approximation by random trigonometric polynomials

The approximation of 2π-periodic random functions f ∈ L1
2π(IR×E)

by random Fourier series and by random trigonometric sum of Fejer type

is considered in [3], where additional references can be found.

In this section we will consider random trigonometric polynomials of

Jackson type, which will approximate f ∈ L1
2π(IR × E) with the approxi-

mation order O(
Ω(f ; 1/n)

)
.

The main result of this section is

Theorem 3.1. There exists an absolute constant C > 0 such

that for each f ∈ L1
2π(IR × E) there exists a sequence (Jn)n of random

trigonometric polynomials od degree ≤ n which satisfies

∫

E

∣∣f(x, ω) − Jn(f)(x, ω)
∣∣dP (ω) ≤ C · Ω(f ; 1/n) , x ∈ IR , n ∈ IN

and even
∫

E

∣∣f(x, ω) − Jn(f)(x, ω)
∣∣dP (ω) ≤ C · Ω2(f ; 1/n) , x ∈ IR , n ∈ IN .

Proof. For f ∈ L1
2π(IR × E), let us define

Jn(f)(x, ω) =

π∫

−π

f(x + t, ω) · Kn(t)dt , ω ∈ A , n ∈ IN ,

where A is given by (2) and Kn(t) is defined as in [5, p. 55, relation (5)].
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Since f ∈ L1
2π(IR × E), obviously we can write

Jn(f)(x, ω) =

π∫

−π

f(t, ω) · Kn(x − t)dt , ω ∈ A , n ∈ IN ,

which means that Jn(f)(x, ω) are random trigonometric polynomials.

In the following, we will reason exactly as in the proof of Theorem 2

in [5, p. 56]. We get

f(x, ω) − Jn(f)(x, ω) =

π∫

−π

[
f(x, ω) − f(x + t, ω)

] · Kn(t)dt =

=

π∫

0

[
2f(x, ω) − f(x + t, ω) − f(x − t, ω)

] · Kn(t)dt , ω ∈ A , x ∈ IR .

Hence passing to absolute value and integrating on E, we immediately

get

∫

E

∣∣f(x, ω) − Jn(f)(x, ω)
∣∣dP (ω) ≤

≤
∫

E

[ π∫

0

∣∣2f(x, ω) − f(x + t, ω) − f(x − t, ω)
∣∣ · Kn(t)dt

]
dP (ω) =

=

π∫

0

[ ∫

E

∣∣2f(x, ω) − f(x + t, ω) − f(x − t, ω)
∣∣dP (ω)

]
Kn(t)dt ≤

≤
π∫

0

Ω2(f ; t) · Kn(t)dt =

π∫

0

Ω2

(
f ;nt(1/n)

) · Kn(t)dt ≤

≤ Ω2(f ; 1/n)

π∫

0

(nt + 1)2 · Kn(t)dt ≤ C · Ω2(f ; 1/n) , x ∈ IR ,

where we have applied firstly Lemma 2.5, (ii), and secondly (5).

In conclusion, this proves the second estimate in Theorem 3.1.

Now, the first estimate is an immediate consequence of the obvious

inequality Ω2(f ; δ) ≤ 2Ω(f ; δ).
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Remarks. 1) For f ∈ L1
2π(IR × E) and p ∈ IN, let us define

In(f)(x, ω) = −
π∫

−π

Kn,r(t) ·
p+1∑

k=1

(−1)k ·
(

p + 1

k

)
f(x + kt, ω)dt , n ∈ IN ,

where r and Kn,r(t) are defined as in [5, p. 57].

Then, reasoning exactly as in the proof of Theorem 3 in [5, p. 57-58]

and as in the proof of the previous Theorem 3.1, we get

f(x, ω)−In(f)(x, ω) = (−1)p+1·
π∫

−π

Kn,r(t)·∆p+1
t f(x, ω)dt , ω ∈ A , n ∈ IN .

Hence passing to absolute value and integrating on E, by Lemma 2.5,

(ii) and by (5) we obtain

∫

E

∣∣f(x, ω) − In(f)(x, ω)
∣∣dP (ω) ≤

≤
∫

E

[ π∫

−π

Kn,r(t)·
∣∣∆p+1

t f(x, ω)
∣∣dt

]
·dP (ω) =

=

π∫

−π

Kn,r(t) ·
[ ∫

E

∣∣∆p+1
t f(x, ω)

∣∣dP (ω)

]
dt ≤

≤
π∫

−π

Kn,r(t) · Ωp+1

(
f ; |t|)dt = 2

π∫

0

Ωp+1

(
f ;nt( 1

n
)
) · Kn,r(t)dt ≤

≤ 2 · Ωp+1(f ; 1
n
)

π∫

0

(nt + 1)p+1Kn,r(t)dt ≤ Cp+1 · Ωp+1(f ; 1
n
) .

As conclusion, for every f ∈ L1
2π(IR × E) and every p = 1, 2, . . . ,

there exists a sequence
(
In(f)

)
n

of random trigonometric polynomials of

degree ≤ n, such that

(9)

∫

E

∣∣f(x, ω) − In(f)(x, ω)
∣∣dP (ω) ≤ Cp+1 · Ωp+1(f ; 1/n) ,

n ∈ IN , x ∈ IR ,
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where Cp+1 is an absolute constant.

2) If in addition f is supposed to be in CM(IR), then since it is easy

to see that Ωp+1(f ; δ) ≤ 2p ·Ω(f ; δ), and as in the usual case, f ∈ CM(IR)

implies Ω(f ; δ) → 0, as δ → 0, we get Ωp+1(f ; δ) → 0, for δ → 0.

Hence, obviously the random trigonometric polynomials
(
Jn(f)

)
n

in

Theorem 3.1 and
(
In(f)

)
n

in (9), converge uniformly in mean on IR, to

the random function f .

3) A question which remains to settle is if Theorem 3.1 remains valid

by replacing in (2) the condition

f(t + 2π, ω) = f(t, ω) , ∀ t ∈ IR , ∀ω ∈ A ,

with the weakened condition in [3]

∫

E

∣∣f(t + 2π, ω) − f(t, ω)
∣∣dP (ω) = 0 , ∀ t ∈ IR .

4 – Approximation by random algebraic polynomials

In this section we will extend Theorem 3.1 to the case of approxima-

tion of f ∈ L1
(
[a, b] × E

)
by random algebraic polynomials.

We set

L[a, b] =
{
f : [a, b]−→ IR ; f is Lebesgue integrable on [a, b]

}
,

let us consider a positive linear operator T : L[a, b]−→L[a, b] satisfying

(10)

T (1[a,b]) = 1[a,b] ,

∫

E

T
[
f(u, ω)

]
(x)dP (ω) = T

[ ∫

E

f(u, ω)dP (ω)

]
(x) ,

for all f ∈ L1
(
[a, b] × E

)
and all x ∈ [a, b]. T

[
f(u, ω)

]
means that T acts

on f considered as function of the first variable u; by f ∈ L1
(
[a, b] × E

)
,

obviously f(·, ω) ∈ L[a, b], a.e. ω ∈ E.

In the sequel we need the following result
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Theorem 4.1. Let L : L1
(
[a, b]×E

) ∩CM [a, b]−→L1
(
[a, b]×E

) ∩
CM [a, b] be the linear operator defined by

L(f)(x, ω) = T
[
f(u, ω)

]
(x) , ∀x ∈ [a, b] , a.e. ω ∈ E ,

where T satisfies (10).

For all f ∈ L1
(
[a, b] × E

) ∩ CM [a, b] and all x ∈ [a, b], we have

∫

E

∣∣f(x, ω) − L(f)(x, ω)
∣∣dP (ω) ≤ 2 · Ω

(
f ;T

(|u − x|)(x)
)
.

Proof. Let x ∈ [a, b] be fixed and δ > 0. By the standard technique

and by (10) we immediately get
∫

E

∣∣f(x, ω) − L(f)(x, ω)
∣∣dP (ω) =

∫

E

∣∣f(x, ω) − T
[
f(u, ω)

]
(x)

∣∣dP (ω) =

=

∫

E

∣∣T
[
f(x, ω)−f(u, ω)

]
(x)

∣∣dP (ω)≤
∫

E

T
(∣∣f(x, ω)−f(u, ω)

∣∣)(x)dP (ω)=

= T

[ ∫

E

f(x, ω) − f(u, ω)
∣∣dP (ω)

]
(x) ≤ T

[
Ω

(
f ; δ · |u − x|/δ

)]
(x) ≤

≤ T
[
(1 + |u − x|/δ

) · Ω(f ; δ)
]
(x) =

[
1 + T

(|u − x|)/δ
] · Ω(f ; δ) .

We have two possibilities:

(i) T
(|u − x|)(x) = 0 and (ii) T

(|u − x|)(x) > 0 .

Case (i). By the above inequality we get
∫

E

∣∣f(x, ω) − L(f)(x, ω)
∣∣ · dP (ω) ≤ Ω(f ; δ) , for all δ > 0 .

Passing with δ → 0 and taking into account that f ∈ CM [a, b] implies

Ω(f ; δ) → Ω(f ; 0) = 0, we get
∫

E

∣∣f(x, ω) − L(f)(x, ω)
∣∣dP (ω) = 0 = Ω

(
f ;T

(|u − x|)(x)
)
.

Case (ii). Choosing δ = T
(|u − x|)(x) > 0, the proof is immediate.
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Remark. A global (and not pointwise) estimate of the previous type

was given in [11, Theorem 4.1].

Now, let us consider the Lehnhoff algebraic polynomials introduced

in [4] by

Tn(f)(x) = (1/π) ·
π∫

−π

f
[
cos(arccos x + v)

] · K3n−3(v)dv ,

f ∈ C[−1, 1] , x ∈ [−1, 1] ,

where

K3n−3(v) =
[
10/

[
n(11n4 + 5n2 + 4)

]] · [
sin(nv/2)/ sin(v/2)

]6
.

In [4] it is proved that Tn(f)(x) is an algebraic polynomial of degree

3n − 3 and that is a positive linear operator on C[−1, 1], which satisfies

(11)

Tn(1[−1,1]) = 1[−1,1] ,

Tn

(|u − x|2)(x) ≤
(30

11

)
·
[√

1 − x2

n
+

|x|
n2

]2

.

Let us define Ln : L1
(
[−1, 1] × E

) ∩ CM [−1, 1]−→L1
(
[−1, 1] × E

) ∩
CM [−1, 1], by

(12)

Ln(f)(x, ω) = Tn

[
f(u, ω)

]
(x) =

= (1/π) ·
π∫

−π

f
[
cos(arccos x + v), ω

]
K3n−3(v)dv .

Since f ∈ L1
(
[−1, 1] × E

) ∩ CM [−1, 1], obviously f ◦ cos belongs to

the same intersection and therefore we immediately get

Ln(f)(x, ω) = (1/π) ·
π∫

−π

f [cos v, ω] · K3n−3(arccos x − v)dv ,

which proves that Ln is a random algebraic polynomial of degree 3n − 3.
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On the other hand, by Theorem 2.6, (ii), we obtain

∫

E

[
(1/π) ·

π∫

−π

f
[
cos(arccos x + v), ω

]
K3n−3(v)dv

]
dP (ω) =

=

π∫

−π

[
(1/π) ·

∫

E

f
[
cos(arccos x + v), ω

]
dP (ω)

]
K3n−3(v)dv .

Hence by (11) and by Theorem 4.1, the following estimate of Timan

type holds.

Corollary 4.2. For all f ∈ L1
(
[−1, 1] × E

) ∩ CM [−1, 1] and all

x ∈ [−1, 1] we have

∫

E

∣∣f(x, ω) − Ln(f)(x, ω)
∣∣dP (ω) ≤ 4 · Ω

(
f ;

√
1 − x2/n + |x|/n2

)
,

where Ln(f)(x, ω) is given by (12).

Remarks. 1) An open problem is the following: what become The-

orem 3.1 and Corollary 4.2 if the integral which defines Jn(f)(x, ω) and

Ln(f)(x, ω) is replaced by the integral in probability defined in e.g. [8,

p. 50]?

2) Another problem of some intereset is to find similar results when

the convergence in mean is replaced by the convergence in mean of order

p > 1 (see e.g. [8, p. 46]) and the moduli of smoothness defined by (3) or

(4) are replaced by

Ωn,p(f ; δ)=sup

{
sup

{( ∫

E

∣∣∆n
hf(t, ω)

∣∣pdP (ω)

)1/p

; t ∈ IR

}
; 0≤h≤δ

}
.
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