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Almost complex manifolds with
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Riassunto: Una distribuzione 2q-dimensionale su di una varietà orientabile M di
dimensione 2n si dice olomorfa se il suo fibrato tangente TM ammette una riduzione
del gruppo strutturale ad un prodotto U(n−q)×U(q) di due gruppi unitari. Si dimostra
che una varietà con una distribuzione olomorfa ammette due classi di metriche g, h,
due classi di strutture quasi-complesse J , J ′ ed una struttura quasi-prodotto Q. Sono
analizzate le condizioni d’integrabilità delle strutture J , J ′ e Q. Sono inoltre trattate
le condizioni (quasi) Kähler di J e J ′ con rispetto a g e h.

Abstract: A 2q-dimensional distribution on an orientable manifold M of di-
mension 2n is called holomorphic if its tangent bundle TM admits a reduction of the
structure group to a product U(n − q) × U(q) of two unitary groups. It is shown that a
manifold with a holomorphic distribution admits two kinds of metrics g, h, two kinds of
almost complex structures J , J ′, and an almost product structure Q. The integrability
conditions of the structures J , J ′ and Q are analysed. The (almost) Kähler conditions
of J , J ′ with respect to g and h are also treated.

Supported by a project DGICYT, PB89-0571-C02-01 (Spain).
Key Words and Phrases: Holomorphic distributions – Almost complex structure –
Almost product structure – Kähler form – Indefinite almost Hermitian metric
A.M.S. Classification: 53C15 – 53C55



568 A. BONOME – R. CASTRO – E. GARCÍA-RÍO et alia [2]

1 – Introduction

In his book [17], Steenrod proved that a compact manifold ad-

mits a pseudo-Riemannian metric of certain signature, say k, if and only

if the manifold admits a k-dimensional distribution (or equivalently, a

nonsingular field of tangent k-planes). If the manifold is of dimension

m, then such a situation is just a reduction of the structure group of

its tangent bundle to O(m − k) × O(k), the maximal compact subgroup

of the pseudo-orthogonal group O(m − k, k). We now restrict our at-

tention to an orientable manifold M of even dimension 2n, which ad-

mits an orientable distribution τ of even dimension 2q. That is, the

tangent bundle TM of M admits a reduction of the structure group to

SO(2n−2q)×SO(2q), the maximal compact subgroup of SO0(2n−2q, 2q).

We shall call such a 2q-dimensional distribution τ holomorphic if the

structure group SO(2n−2q)×SO(2q) further reduces to a product group

U(n − q) × U(q) of two unitary groups.

The purpose of the present paper is to study such even-dimensional

orientable manifolds with holomorphic distributions. It is elementary

to recognize that a manifold M with a holomorphic distribution τ is

necessarily an almost complex manifold since U(n − q) × U(q) ⊂ U(n),

and moreover that M is a pseudo-Riemannian manifold of signature 2q,

since U(n − q) × U(q) ⊂ SO(2n − 2q) × SO(2q) ⊂ SO0(2n − 2q, 2q). We

denote an almost complex structure and a pseudo-Riemannian metric on

M by J and g, respectively.

We shall show that a manifold M with a holomorphic distribution

τ admits another almost complex structure J ′ which commutes with J ,

an almost product structure Q which is written in terms of J and J ′ as

Q = −JJ ′, and also a Riemannian metric h which is related to g by

h = Qg. Therefore, a manifold M with τ carries four kinds of almost

Hermitian structures

(g, J), (g, J ′), (h, J), (h, J ′)

and two kinds of almost product metric structures

(g, Q), (h, Q).

At the first stage of the paper, we shall study the mutual relations among

these six structures.
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In Section 2, we shall observe the basic relations among the metrics g,

h, the almost complex structures J , J ′, and the almost product structure

Q, which are needed for the later analysis of the various almost Hermitian

structures and product metric structures. In Section 3, the holomorphic

distributions are characterized in terms of two kinds of Kähler forms, and

their integrability are analysed. In Section 4, using the Lie brackets of

two (1, 1) tensors defined by Fröhlicher and Nijenhuis [8] we study

the integrability of J , J ′ and Q. A special attention will be paid to

4-dimensional manifolds, in relation to the work of Beauville [2]. In

the last section (§5), indefinite Kähler manifolds and opposite Kähler

manifolds are treated.

Throughout the paper, we always pay attention to examples in var-

ious cases. The analysis on Chern classes determined by J and J ′ are

treated separately [4].

2 – Manifolds with holomorphic distributions

It is well-known (Steenrod [17]) that the existence of a pseudo-

Riemannian metric on a manifold is equivalent to the existence of a dis-

tribution of certain dimension k. In other words, an m-dimensional man-

ifold admits a pseudo-Riemannian metric of signature k if and only if the

Grassmann manifold bundle Gk(TM) over M (associated with its tan-

gent bundle TM), with fibre Gk(IR
m) = O(m)/O(m − k) × O(k), admits

a section.

In the present paper, we shall restrict our attention to even dimen-

sional orientable manifolds, where the orthogonal group in Steenrod’s

analysis can be replaced by unitary groups. Such manifolds are in fact

almost complex manifolds.

Let M be a 2n-dimensional almost complex manifold, and GC
q (TM)

a bundle over M (associated with TM), with fibre

GC
q (IR2n) = U(n)/U(n − q) × U(q).

We call the bundle GC
q (TM) a complex Grassmann manifold bundle

over M .

Theorem 2.1. If an almost complex manifold (M,J) admits an

almost pseudo-Hermitian metric of signature 2q, then the metric defines
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a section of the complex Grassmann manifold bundle GC
q (TM) over M .

Conversely, if there exists a section of GC
q (TM), then M admits an almost

pseudo-Hermitian metric of signature 2q.

Proof. From Steenrod’s analysis [17, 40.6], if M admits a pseudo-

Riemannian metric g of signature 2q (i.e., if the structure group of TM

reduces to SO0(2n−2q, 2q)), then there exists a pair (h, Q) of a Rieman-

nian metric h and an almost product structure Q on M such that

Qh = hQ = g,

where Q, h and g are considered as linear endomorphisms of TM . (Here,

an almost product structure Q associated with g is a symmetric bilinear

form of signature 2q, which satisfies Q2 = Id [9], [17 Ch. XI], [19, p.423].

Q is also a pseudo-Riemannian metric of signature 2q.) It is elementary

to know that Q defines a 2q-dimensional distribution, denoted by τ , and

also its complementary distribution τ⊥ of dimension (2n − 2q).

Assume that g is J-invariant:

Jg = gJ,

which is equivalent to the condition

g(JX, JY ) = g(X, Y )

for X, Y ∈ X(M) (X(M): the algebra of smooth vector fields on M).

Then, the structure group of TM further reduces to

G = U(n) ∩ SO0(2n − 2q, 2q) = U(n − q) × U(q).

This implies that Q is also J-invariant:

JQ = QJ,

and hence that the distributions τ and τ⊥ are both J-invariant, i.e.,

Jτ ⊂ τ, Jτ⊥ ⊂ τ⊥.
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Thus, an almost pseudo-Hermitian metric g of signature 2q defines

a section of GC
q (TM).

Conversely, if there exists a section of GC
q (TM), then it uniquely

defines a 2q-dimensional distribution τ and also its complementary dis-

tribution τ⊥. It further defines uniquely an almost product structure Q

such that QJ = JQ. It is well-known that we can construct an almost

Hermitian metric h in terms of any Riemannian metric h0 on M as follows

h(X, Y ) = h0(X, Y ) + h0(JX, JY ),

for X, Y ∈ X(M). That is, J and h commute with each other

Jh = hJ.

From Steenrod’s analysis, we can construct a pseudo-Riemannian metric

g such that

g = Qh = hQ,

or equivalently

g(X, Y ) = h(QX, Y ) = h(X, QY ).

Since h and Q are both J-invariant, g is also J-invariant: Jg = gJ .

Therefore, the existence of a section of GC
q (TM) implies the existence of

an almost pseudo-Hermitian metric g.

In the above theorem, it should be noted that such an almost pseudo-

Hermitian metric g is not unique, because an almost Hermitian metric h

on M is not unique.

When GC
q (TM) admits a section (or equivalently, the reduction of

the structure group to G = U(n − q) × U(q)), we call the correspond-

ing J-invariant distribution τ a holomorphic distribution. The following

proposition is also a crucial observation for the present issue.

Proposition 2.2. Let M be a 2n-dimensional manifold with an al-

most complex structure J and a 2q-dimensional holomorphic distribution

τ . Then, M admits an almost complex structure J ′ such that

J ′ = JQ = QJ,

where Q is the almost product structure on M associated with τ .
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Proof. From the proof of Theorem 2.1, we already know that JQ =

QJ . It is easy to see that QJ is an almost complex structure, since

(QJ)2 = QJQJ = Q2J2 = −Id. Clearly, J ′ -= J .

Definition 2.3. We call J ′ an opposite almost complex structure

on M .

Thus, we have observed that M with a holomorphic distribution τ

admits two kinds of almost complex structures J , J ′, and an almost

product structure Q. Moreover, M admits an almost pseudo-Hermitian

metric g and an almost Hermitian metric h. In summary, these structures

are mutually related to each other as follows:

(1) JJ ′ = J ′J = −Q, JQ = QJ = J ′, J ′Q = QJ ′ = J,

and for X, Y ∈ X(M),

(2)





g(JX, JY ) = g(X, Y ), h(JX, JY ) = h(X, Y )

g(J ′X, J ′Y ) = g(X, Y ), h(J ′X, J ′Y ) = h(X, Y )

g(X, Y ) = h(QX, Y ) = h(X, QY )

h(X, Y ) = g(QX, Y ) = g(X, QY ).

Therefore, we have the following.

Theorem 2.4. A manifold M with a holomorphic distribution τ

admits four kinds of almost Hermitian structures:

(g, J) (almost pseudo-Hermitian)

(g, J ′) (opposite almost pseudo-Hermitian)

(h, J) (almost Hermitian)

(h, J ′) (opposite almost Hermitian),

and moreover, two kinds of almost product metric structures:

(g, Q) (almost pseudo-product metric)

(h, Q) (almost product metric).
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These six structures in the above theorem are the main concern of

the present paper. In what follows, we shall call the 2q-dimensional (resp.

(2n − 2q)-dimensional) holomorphic distribution τ (resp. τ⊥) spacelike

(resp. timelike), since vectors in τ (resp. τ⊥) are positive (resp. negative)

definite with respect to g.

3 – Indefinite Kähler Forms and opposite Kähler Forms

Let M be a manifold with a holomorphic distribution τ . Associated

with the four kinds of almost Hermitian structures in Theorem 2.4, we

have four kinds of Kähler forms:

FJ(X, Y ) = g(X, JY ), FJ ′(X, Y ) = g(X, J ′Y )

F h
J (X, Y ) = h(X, JY ), F h

J ′(X, Y ) = h(X, J ′Y ).

The following proposition shows the relations among them.

Proposition 3.1. The following relations hold for X, Y ∈ X(M),

FJ(X, Y ) = F h
J ′(X, Y ), FJ ′(X, Y ) = F h

J (X, Y ).

Proof. From (1) and (2), we have

FJ(X, Y ) = g(X, JY ) = g(X, QJ ′Y ) = h(X, J ′Y ) = F h
J ′(X, Y ).

The second relation follows similarly.

In consequence, there are only two essentially different Kähler forms

FJ and FJ ′ (or equivalently F h
J and F h

J ′). We will say that M is indefinite

almost Kähler and opposite almost Kähler if both 2-forms FJ and FJ ′ are

closed: dFJ = 0 and dFJ ′ = 0.

Let us consider a local orthonormal frame {e1, e1∗ = Je1, . . . , en, en∗ =

Jen} in such a way that the first 2q vectors span the spacelike distribution

τ , and the last 2(n − q) vectors span the timelike distribution τ⊥. Then
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the Kähler 2-forms FJ and FJ ′ are written respectively by

FJ = −
q∑

i=1

ei ∧ ei∗ +
n∑

j=q+1

ej ∧ ej∗

FJ ′ = −
q∑

i=1

ei ∧ ei∗ −
n∑

j=q+1

ej ∧ ej∗
,

where {e1, . . . , en∗} is the dual basis of 1-forms. In this way, spacelike

and timelike distributions are characterized by

τ = {X ∈ X(M)|iXΩ+ = 0}

τ⊥ = {X ∈ X(M)|iXΩ− = 0},

where

Ω+ =
1

2
(FJ − FJ ′) , Ω− =

1

2
(FJ + FJ ′) ,

and iX denotes the usual inner product of forms and vector fields, i.e.,

(iXΩ±)(Z) = Ω±(X, Z).

The following lemma shows the basic formulas for the differentials

of Ω±.

Lemma 3.2. The differentials dΩ± of Ω± can be obtained in terms

of the covariant derivatives of J and J ′ by metric connection ∇ of g as

follows:

dΩ±(A, B, C) =
1

2
σ {g((∇AJ)B, C) ± g((∇AJ ′)B,C)} ,

where σ denotes the cyclic sum over A, B, C ∈ X(M).

On the basis of the above formulas, we have some useful relations for

dΩ±. Associated with the holomorphic distribution τ , we can decompose

any tangent vector X into two parts X = X+ + X− such that X+ ∈ τ

and X− ∈ τ⊥.

Lemma 3.3. Let X, Y, Z be vector fields on M , with decompositions

X = X+ + X−, Y = Y+ + Y−, Z = Z+ + Z− such that X+, Y+, Z+ ∈ τ
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and X−, Y−, Z− ∈ τ⊥. Then we have the following relations

(a) dΩ+(X+, Y+, Z+) = 0,

dΩ−(X−, Y−, Z−) = 0

(b) dΩ+(X−, Y−, Z−) = dFJ(X−, Y−, Z−),

dΩ−(X+, Y+, Z+) = dFJ ′(X+, Y+, Z+)

(c) dΩ+(X+, Y+, Z−) =
(
i[X+,Y+]Ω+

)
(Z−),

dΩ−(X−, Y−, Z+) =
(
i[X−,Y−]Ω−

)
(Z+)

(d) dΩ+(X−, Y−, Z+) = dFJ(X−, Y−, Z+)−(
i[X−,Y−]Ω−

)
(Z+)

dΩ−(X+, Y+, Z−) = dFJ ′(X+, Y+, Z−)−(
i[X+,Y+]Ω+

)
(Z−).

At this stage, we recall the definition of the mean curvature vector of a

distribution on a pseudo-Riemannian manifold. Let D be a p-dimensional

distribution on a pseudo-Riemannian manifold (M, g), with metric con-

nection ∇. Then, the mean curvature vector of D is defined by [3, p.7],

(3) HD =
1

p

p∑

i=1

εinor(∇ei
ei),

where {ei} is an orthonormal frame on D, εi = g(ei, ei), (i = 1, . . . , p) and

nor(∇XY ) denotes the normal component of ∇XY only for X, Y ∈ D.

The distribution D is said to define a minimal foliation if D is involutive

and HD = 0.

As a consequence, we establish the following.

Theorem 3.4. If an almost pseudo-Hermitian manifold (M, g, J,J ′)

is indefinite almost Kähler and opposite almost Kähler, then the space-

like and timelike distributions τ , τ⊥ define transversal minimal foliations

on M .

Proof. From Lemma 3.3, we see that the distributions τ , τ⊥ are

integrable if and only if

dΩ(±)

(
X(±), Y(±),−

)
= 0 ∀X+, Y+ ∈ τ, X−, Y− ∈ τ⊥.
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Moreover, if dFJ = 0 and dFJ ′ = 0, it follows that Ω± are closed forms,

and so, τ and τ⊥ define complementary foliations on M .

From (3), for the mean curvature vector of the distribution τ we get

(4) Hτ = − 1

2p

p∑

i=1

{nor(∇Ui
Ui) + nor(∇JUi

JUi)} ,

where {Ui, JUi} is an orthonormal frame on τ with (Ui)− = 0 and

(JUi)− = 0. Then, considering the relation between the almost com-

plex structures J and J ′, we have for X+ ∈ τ and Y− ∈ τ⊥,

(5) dΩ−(X+, JX+, Y−) = −g(∇X+
X+ + ∇JX+

JX+, Y−).

Therefore, if the 2-form Ω− is closed, then the vector ∇X+
X++∇JX+

JX+

lies in τ (its normal components are zero), and hence Hτ = 0. This implies

that τ is minimal. A similar result for τ⊥ follows from the same argument

for Ω+.

Corollary 3.5. Let (M, g, J) be an indefinite almost Kähler man-

ifold. Then the distributions τ , τ⊥ are integrable if and only if the ac-

companied opposite almost pseudo-Hermitian structure (g, J ′) is opposite

almost Kähler.

Proof. From Lemma 3.2 it follows that since dFJ = 0, the distri-

butions τ , τ⊥ are integrable if and only if dΩ+ = 0, and so dFJ ′ = 0,

dΩ− = 0.

We restrict our attention to 4-dimensional manifolds for a while

(cf. [12], [11]).

Theorem 3.6. Let M be a 4-dimensional manifold with an indef-

inite metric of signature (+,+,−,−). Then, the spacelike and timelike

distributions define minimal foliations on M if and only if the associated

almost Hermitian structures (g, J), (g, J ′) are indefinite almost Kähler

and opposite almost Kähler.
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Proof. We shall prove that the 2-forms Ω± are closed if and only if

the distributions τ , τ⊥ are integrable and minimal.

The ’only if’ part is a previous result. In order to prove the ’if’ part,

we consider the differential dΩ+, which vanishes when we apply it to three

vectors on τ because both distributions are of dimension 2. According

to Lemma 3.3, dΩ+(X+, Y+, Z−) = 0 if and only if the distribution τ is

integrable. From (4) and (5), it follows that dΩ+(X−, JX−, Y+) = 0 if and

only if τ⊥ is minimal. As a consequence of dimτ⊥ =2, dΩ+(X−,Y−,Z+)=0

if and only if τ⊥ is minimal. This completes the proof.

Example 3.7. 4–dimensional indefinite almost Kähler and opposite

almost Kähler manifolds.

Let G(k) be a 3-dimensional Lie group of matrices

A =




ekz 0 0 x

0 e−kz 0 y

0 0 1 z

0 0 0 1


 ,

where x, y, z ∈ IR and ek +e−k is an integer different from 2. There exists

a discrete subgroup Γ(k) of G(k) such that the quotient space M 3(k) =

Γ(k)\G(k) is compact, and we can consider the 4-dimensional compact

parallelizable manifold M 4(k) = M 3(k) × S1 ≡ (Γ(k) × ZZ)\(G(k) × IR).

Let {α̃, β̃, γ̃} be the basis of left invariant 1-forms on G(k); they

satisfy the equations

dα̃ = −kα̃ ∧ γ̃, dβ̃ = kβ̃ ∧ γ̃, dγ̃ = 0.

Let {X̃, Ỹ , Z̃} be the dual basis of left invariant vector fields on G(k).

Let {α, β, γ} and {X, Y, Z} denote their projections on M 3(k), and let

T be the coordinate vector field on S1, T = ∂/∂t, t being the usual

coordinate on S1, and η = dt. Then on M 4(k) we have

dα = −kα ∧ γ, dβ = kβ ∧ γ, dγ = dη = 0.

Thus we can construct on M 4(k): an indefinite metric of signature

(+,+, −,−) given by

g = α ⊗ α + β ⊗ β − γ ⊗ γ − η ⊗ η,
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an almost complex structure J and an opposite almost complex structure

J ′ given by

J(X) = Y, J(Z) = T, J ′(X) = Y, J ′(Z) = −T.

It is easy to check that the pair (g, J) is an almost pseudo-Hermitian

structure on M 4(k), and similarly that the pair (g, J ′) is an opposite

almost pseudo-Hermitian structure on M 4(k). Moreover, both structures

are almost Kähler (dFJ = 0, dFJ ′ = 0), with timelike distribution τ⊥ =<

Z, T > and spacelike distribution τ =< X, Y >, and neither of them is

Kähler because M 4(k) does not admit complex structures [7].

The following Theorem may be viewed as a certain converse of The-

orem 3.4.

Theorem 3.8. Let (M, g, J) be a 2n-dimensional almost pseudo-

Hermitian manifold with metric of signature (2p, 2q), n − 1 > p, q > 1

such that the Kähler forms satisfy

(6) dFJ = ωJ ∧ FJ , dFJ ′ = ωJ ′ ∧ FJ ′

for certain 1-forms ωJ and ωJ ′ defined on M . Then the distributions τ

and τ⊥ are involutive if and only if M is almost Kähler and opposite

almost Kähler.

Proof. Put

(7) ω+ = ωJ − ωJ ′ , ω− = ωJ + ωJ ′ .

Then, taking account of the relations among the 2-forms Ω± and the

Kähler forms FJ and FJ ′ , we have the following:

dΩ+ =
1

2
(dFJ − dFJ ′) =

1

2
(ωJ ∧ FJ − ωJ ′ ∧ FJ ′)

= (ω+ + ω−) ∧ (Ω+ + Ω−) − (ω− − ω+) ∧ (Ω− − Ω+)

= 2ω+ ∧ Ω− + 2ω− ∧ Ω+.
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Since the spacelike distribution τ is characterized by τ = {X ∈ X(M)|
iXΩ+ = 0}, it follows that

(8) (ω+ ∧ Ω−)(X+, Y+, Z+) = 0,

for X+, Y+, Z+ ∈ τ .

In an analogous way, from (c) in Lemma 3.3, we get

(9) 2ω+(Z−)Ω−(X+, Y+) =
(
i[X+,Y+]Ω+

)
(Z−)

for X+, Y+ ∈ τ , and Z− ∈ τ⊥. From the local expressions for the Kähler

forms FJ and FJ ′ , it follows that the spacelike (resp. timelike) distribution

is contained in the kernel of the 1-form ω+ (resp. ω−), as observed in (8).

Now, if the distribution τ is integrable, it follows from (9) that

ω+(Z−)Ω−(X+, Y+) = 0 for Z− ∈ τ⊥, X+, Y+ ∈ τ , and hence, it must

be ω+(Z−) = 0, which shows that the timelike distribution τ⊥ is con-

tained in the kernel of the 1-form ω+.

In an analogous way for the 1-form ω−, together with Lemma 3.3, we

have that such a form is zero, and hence, from (7) the 1-forms ωJ and ωJ ′

are also zero. Consequently, from (6), M is almost Kähler and opposite

almost Kähler.

4 – Complex and opposite complex manifolds

The mutual relations (1) among J , J ′ and Q are similar to those of an

almost quaternionic structure (of either the first or the second kind [18],

[19]). See also [16]. Then, an interesting problem may be the following:

Does the integrability of any two of J , J ′ and Q imply the integrability

of the third one?

We begin with a review of an example: The manifold of Kodaira-

Thurston.

Example 4.1. Complex and opposite complex manifold, which are

not locally diffeomorphic to a product.
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The manifold of Kodaira-Thurston is determined by the structure

equations

dω1 = 0, dω2 = ω1 ∧ ω1

and can be realized as a quotient space K = Γ\G, where G is the real

Lie group of complex matrices of the form




1 z1 z2

0 1 z1

0 0 1


 ,

and Γ is the subgroup of G consisting of those matrices whose entries are

Gaussian integers.

The Lie algebra of the manifold of Kodaira-Thurston may be de-

scribed as the 4-dimensional Lie algebra with basis {E1, E2, E3, E4} such

that [E1, E2] = E3 and the other brackets are trivial. A left invariant

almost complex and opposite almost complex structures J , J ′ on such a

manifold are given by

JE1 = E2, JE2 = −E1, JE3 = E4, JE4= −E3

J ′E1= E2, J ′E2= −E1, J ′E3= −E4, J ′E4= E3

Their integrability follows from the Lie algebra equation. The associated

almost product structure Q acts on the bases {Ei} as follows:

QE1 = E1, QE2 = E2, QE3 = −E3, QE4 = −E4,

which defines a totally geodesic foliation {E3, E4}. However, the comple-

mentary distribution {E1, E2} is not involutive, and so the almost product

structure is not integrable.

In light of the above example, we will concentrate our attention to

the conditions under which integrability of two of J , J ′ and Q implies

that of the third one.

Let (M, g, J) be an almost pseudo-Hermitian manifold, and Q, J ′ be

the accompanying an almost product-complex structure and an opposite

almost complex structure, respectively. An almost product structure Q

is said to be integrable if it defines two complementary foliations on the
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manifold. Such a condition is expressed analytically by [Q, Q] = 0, where

the Lie bracket of two (1, 1) tensor fields L, N is defined by [8]:

[L, N ](X, Y ) = [LX, NY ] − L[NX, Y ] − N [X, LY ] + [NX, LY ]

− N [LX, Y ] − L[X, NY ] + (LN + NL)[X, Y ].

We also recall two operations defined in [8]

([L, T ]∧̄N) (X, Y ) = [L, T ](NX, Y ) + [L, T ](X, NY )

(N ∧̄[L, T ]) (X, Y ) = N ([L, T ](X, Y ))

for X, Y ∈ X(M), where L, T, N are (1, 1)-tensor fields. The following

identity holds for such operation ([8], [18]):

(10) [L, TN ] + [T, LN ] = [L, T ]∧̄N + L∧̄[T,N ] + T ∧̄[L, N ]

Let us consider the (1, 1) tensor fields J, J ′, Q on the manifold M

with a holomorphic distribution τ .

Theorem 4.2. Let (M, g, J) be a pseudo-Hermitian manifold with

a holomorphic distribution τ , which satisfies [Q, J ] = 0. Then, the almost

product structure Q is integrable if and only if the opposite almost complex

structure J ′ is integrable.

Proof. If we consider the particular choice in (10) such that L =

T = J, N = J ′, then

[J, Q] = −J∧̄[J, J ′] − 1

2
[J, J ]∧̄J ′

and thus [J, J ′] = 0. Now, if we take L = T = J ′, N = J in (10), we get

[J ′, Q] = −1

2
[J ′, J ′]∧̄J

and so, if the opposite almost complex structure is integrable it follows

[J ′, Q] = 0. Taking L = J, T = Q, N = J ′ in (10), we have

[Q, Q] = −J∧̄[Q, J ′],
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and hence [Q, Q] = 0.

Conversely, if we supposse that the almost product structure Q is

integrable, taking L = T = Q, N = J in (10) we obtain [Q, J ′] = 0.

Specifying L = J ′, T = Q, N = J in (10), we get the integrability of the

opposite almost complex structure J ′.

In an analogous way the following Theorem and Corollary can be

obtained.

Theorem 4.3. Let (M, g, J) be an almost pseudo-Hermitian mani-

fold with an integrable holomorphic distribution τ , which satisfies [Q, J ] =

0. Then, the almost complex structure J is integrable if and only if the

opposite almost complex structure J ′ is integrable.

Corollary 4.4.

1. If M is a complex and opposite complex manifold, then the almost

product structure Q is integrable if and only if [Q, J ] = 0.

2. If M is a complex manifold with integrable almost product structure

Q, then the opposite almost complex structure is integrable if and only

if [Q, J ] = 0.

It should be noted that [Q, J ] = 0 occurs, for instance, if M is a

complex manifold and the decomposition is compatible with the complex

structure, or if the almost product structure Q is integrable and the metric

g is fiber-like for both timelike and spacelike foliations.

At this stage, we give some examples, which will be helpful for illus-

tration.

Example 4.5. Complex and opposite complex manifolds, which are

locally diffeomorphic to a product.

We consider the product manifold M = M1 ×(f1,f2) M2 of two Her-

mitian manifolds (Mi, hi, Ji), (i = 1, 2), endowed with a double warped

product structure g = f2
2h1−f1

2h2 and the complex structure J = J1+J2,

where fi : Mi 5→ IR are differentiable functions (i = 1, 2).Then (M, g, J)

is a pseudo-Hermitian manifold with spacelike distribution consisting of

vectors tangent to M1 and with timelike distribution consisting of vectors

tangent to M2. In consequence, both distributions define complementary
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foliations on M . Now, a simple calculation shows that [Q, J ] = 0, and

hence, by Theorem 4.2 the opposite almost complex structure J ′ = J1−J2

defines a complex structure on M . Moreover, spacelike and timelike dis-

tributions are totally umbilical with shape operator depending on the

functions f2 and f1, respectively [15]. In consequence, M is neither in-

definite almost Kähler nor opposite almost Kähler unless it is a product.

This follows from the umbilicity of the distributions τ , τ⊥, since any

holomorphic submanifold in an indefinite almost Kähler manifold must

be minimal.

Example 4.6. Complex and opposite almost complex (not opposite

complex) manifold.

Let (M, <, >) be a 4-dimensional Riemannian manifold, and h be the

induced Riemannian metric on the vector bundle π : ∧2M 5→ M defined

by

h(A1 ∧ A2, A3 ∧ A4) =
1

2
det(< Ai, Aj >).

The Hodge operator 0 gives rise to a decomposition ∧2TM = ∧2
+TM ⊕

∧2
−TM , where ∧2

±TM are the subbundles corresponding to the eigen-

values ±1 of the 0-operator. In this way, the twistor space Z over M

is defined as the submanifold of ∧2
−TM determined by those vectors of

norm 1. We recall that each point σ ∈ Z determines a complex structure

K on the tangent space TpM as follows: < KA, B >= 2h(σ, A ∧ B),

where A, B ∈ TpM,p = π(σ).

For an arbitrary tangent vector A ∈ TpM , let Ah denote its horizontal

lift, and consider the almost complex structures J and J ′ defined by

J(Ah) = (KA)h, JV = σ × V

J ′(Ah) = (KA)h, J ′V = −σ × V,

where V is a tangent vector to the fiber π−1(p) and × is the standard

vector product on the oriented 3-dimensional vector space ∧2
−TM [14].

The different classes of (positive definite) almost Hermitian structures

are also studied in [14].

In a particular case of M being self-dual, J defines a complex struc-

ture on Z, which is Kähler if and only if M is a self-dual Einstein manifold
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of positive constant scalar curvature. However, the opposite almost com-

plex structure can never be integrable. See also [5].

The almost product structure determined by J and J ′ is equivalently

defined by the distributions generated by vertical and horizontal vectors

on the bundle Z. So, if we consider a particular case of M being a flat

torus, its twistor space is a complex manifold and locally a product, but

it never be opposite complex.

In [2], Beauville considered a problem: When does a surface admit

an integrable opposite almost complex structure? We now consider a

broader situation: When does an almost complex 4-manifold admit an

integrable opposite almost complex structure? Therefore, we concentrate

our attention to 4-manifolds with almost complex structures and opposite

almost complex structures (equivalently, the existence of fields of 2-planes

[11, Fact.7]). Then we have the following.

Theorem 4.7. Let M be a 4-manifold which admits an almost

complex structure and an opposite almost complex structure. If χ[M ] ≤ 0

and τ [M ] < 0, or if χ[M ] > 0 and χ[M ] + 3τ [M ] < 0, then the opposite

almost complex structure is not integrable.

Proof. Let c2
1(−M), c2(−M) denote the opposite Chern numbers

determined by an opposite almost complex structure. We already know

[12, Th. 13] that

c2
1(−M) = −3τ [M ] + 2χ[M ], c2(−M) = χ[M ]

From Miyaoka [13, p.226], we see that a 4-manifold of non positive

Euler characteristic whose opposite Chern numbers satisfy

c2
1(−M) > 2c2(−M)

does not admit an integrable opposite almost complex structure. There-

fore, we have that c2
1(−M) > 2c2(−M) ⇒ τ [M ] < 0.

In the case of positive Euler characteristic, it is necessary for M to

admit an integrable opposite almost complex structure that c2
1(−M) ≤

3c2(−M), and hence that χ[M ] + 3τ [M ] ≥ 0.

This proves the assertion.
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Remark 4.8 Let c2
1(M) and c2(M) be the Chern numbers of M

determined by an almost complex structure on M . Then, the inequalities

c2
1(−M) > 2c2(−M) and c2

1(−M) ≤ 3c2(−M) can be written in terms of

c2
1(M), c2(M), respectively, as follows

c2
1(M) < 2c2(M), c2

1(M) ≥ c2(M).

5 – Indefinite Kähler and opposite Kähler manifolds

This section is an extended application of our analysis in sections 3

and 4, and includes some results and examples concerning indefinite and

opposite Kähler structures (cf. [1]). Our first result is the following

Theorem 5.1. Let (M, g, J) be an indefinite Kähler manifold with

[Q, J ] = 0. Then, the opposite almost complex structure is complex and

almost Kähler if and only if M is opposite Kähler. In such a case M is

locally a pseudo-Riemannian product manifold.

Proof. If M is indefinite Kähler and opposite almost Kähler, by

Theorem 3.4, the almost product structure is integrable, and so, using

Theorem 4.2, the opposite almost complex structure is integrable. Now,

a complex and almost Kähler manifold is Kähler, which proves that M

is indefinite Kähler and opposite Kähler.

Suppose that M is indefinite Kähler and opposite complex. Then

both almost complex structures are integrable, and so is the almost prod-

uct structure. Then, from Corollary 3.5 it follows that M is opposite

almost Kähler, which proves that both (M, g, J) and (M, g, J ′) are indef-

inite Kähler manifolds.

On the other hand, (M, g, J, J ′) is indefinite Kähler and opposite

Kähler if and only if the metric connection ∇ makes parallel both com-

plex structures: ∇J = 0 and ∇J ′ = 0. Hence, it makes parallel the

almost product structure, ∇Q = 0, which shows that the distributions

τ, τ⊥ are integrable and their leaves are totally geodesic submanifolds.

Consequently, M is locally isomorphic to a direct product.
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It should be noted that if M is locally a product of two 2-dimensional

manifolds M1 and M2, both of which can be endowed with a structure of

Kähler manifold, then M is a product.

Example 5.2. Indefinite Kähler and opposite Kähler manifold.

Complex tori Tn can be considered as a quotient space of an abelian

group of n-tuples of complex numbers Cn by discrete subgroups, and

therefore they admit n-linearly independent left invariant 1-forms dωi = o

(i = 1, . . . , n).

Theorem 5.3. (M, g, J) is a complex and opposite almost Kähler

manifold if and only if the associated almost Hermitian manifold (M, h, J)

is Kähler.

Proof. The Kähler form F h
J of the Hermitian manifold (M, h, J)

which is associated with (M, g, J) coincides with FJ ′ (Proposition 3.1).

Consequently, (M, h, J) is a positive definite Kähler manifold. Converse-

ley, if (M, h, J) is a Kähler manifold admitting a field of complex q-planes,

then the associted almost pseudo-Hermitian manifold (M, g, J) is com-

plex and opposite almost Kähler.

There are many examples concerned with the above theorem. Some

of them are as follows.

Example 5.4. Complex and opposite almost Kähler manifolds, but

not indefinite Kähler and opposite Kähler.

In [6] the existence of submersions with complex totally geodesic

fibers S2 from the complex projective space CP 2n+1 into the quaternionic

projective space QP n is shown. If we denote by π such a submersion, it

follows that Kerπ∗ and (Kerπ∗)
⊥ are orthogonal complex distributions

in CP 2n+1. Let Q be the almost product structure induced by that de-

composition in such a way that its restriction to the tangent space to

the fibers is minus the identity. Then it satisfies JQ = QJ , where J

denotes the complex structure on CP 2n+1. From section 2, we see the

existence of an almost pseudo-Hermitian metric on CP 2n+1 of signature

(4n, 2) with closed opposite Kähler form. However, such a structure can
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never be indefinite Kähler and opposite almost Kähler, because of the

indecomposibility of CP 2n+1.

We end this paper with some remarks.

Remark 5.5

1. In Example 5.4, an indefinite metric of signature (4n, 2) on CP 2n+1

is treated. In general, the existence of an indefinite metric on a

projective space is restrictive. For example, one of the authors [10]

shows non existence of almost pseudo-Hermitian metrics of signa-

ture (2p, 8m − 2p − 4), 2p ≡ 2 mod4 in the complex projective space

CP 2n+1.

2. Examples of Kähler and opposite complex manifolds but neither in-

definite Kähler nor opposite Kähler are not known by the authors.

In the spirit of Theorem 5.3, they must come from Kähler manifolds

admitting fields of complex planes, such that the opposite almost

complex structure is integrable, but not the almost product struc-

ture.

3. The manifold of Kodaira-Thurston, in Example 4.1, admits many

indefinite Kähler metrics. However, the opposite almost complex

structures are neither integrable nor almost Kähler with respect to

any of those metrics. If any one of these cases occurs, such a mani-

fold might admit positive definite Kähler metrics with respect to the

complex structure J or the opposite one J ′, according to Theorem

5.3. But, the first Betti number of the manifold of Kodaira-Thurston

is odd, and hence, it does not admit any positive definite Kähler

metric.
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