
Rendiconti di Matematica, Serie VII
Volume 14, Roma (1994), 609-623

Integrable almost s-tangent structures

M. DE LEÓN – J. A. OUBIÑA – M. SALGADO

Riassunto: Si prova che una varietà quasi s–tangente integrabile che definisce
una fibrazione su una varietà differenziabile M è un fibrato vettoriale su M isomorfo
al fibrato tangente stabile su M .

Abstract: We prove that an integrable almost s–tangent manifold which defines
a fibration over a differentiable manifold M is a vector bundle over M isomorphic to
the stable tangent bundle of M .

1 – Introduction

The purpose of this paper is to establish some global properties of

almost s-tangent structures. Almost s-tangent structures were introduced

by Oubiña [18] by abstracting the key differential geometric structure of

the stable tangent bundle of a differentiable manifold. The stable tangent

bundle T s(M) may be introduced as the Whitney sum T (M) ⊕ θ, where

θ is the trivial line bundle M × IR or as the restriction of the usual

tangent bundle T (M × IR) to M × {0}. In [20], Vaisman provides a

method of generating this bundle from the differentiable structure of M
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only, showing how it may be used to describe higher dimensional unified

theories and also giving some purely differential geometric applications.

Our main result proves that, under some global hypotheses, an in-

tegrable almost s-tangent structure which defines a fibration is an affine

bundle modelled on a stable tangent bundle, and hence it is isomorphic

to this stable tangent bundle.

Almost s-tangent structures are the odd–dimensional analogues of al-

most tangent structures. As it is well–known, almost tangent manifolds

are the natural framework to develop the Lagrangian formalism in Me-

chanics (for instance, see [3,9,10,11,16]). In recent papers [4,5,12,14,15,17]

it is shown that almost s-tangent structures play an important role in the

time–dependent Lagrangian formalism.

The paper is structured as follows. In Section 2 we recall the main

properties of almost s-tangent structures. In Section 3 we study the

integrability conditions of an almost s-tangent structure (J, ω, ξ) in terms

of the vanishing of the Nijenhuis tensor NJ and the closedness of ω; so,

we solve the problem of local equivalence for almost s-tangent structures.

Finally, in Section 4 we prove our main result, which solves the problem

of global equivalence.

The results may be closely compared with the corresponding ones

due to Crampin et al. [6,19].

2 – Almost s-tangent structures

In this section we recall the main properties of almost s-tangent struc-

tures.

Let V be a differentiable manifold of dimension 2n + 1. A triple

(J, ω, ξ), where J is a tensor field of type (1, 1), ω is a 1-form and ξ is a

vector field on V such that

ω(ξ) = 1,(1)

J2 = ω ⊗ ξ,(2)

rank J = n + 1,(3)

will be called an almost s-tangent structure and the manifold V an almost

s-tangent manifold.
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From (1) and (2) it follows that Jξ = λξ and ωJ = λω, where

λ = ω(Jξ) and λ2 = 1. Moreover, conditions (1) and (2) imply that

rank J ≤ n + 1. Thus, condition (3) requires rank J to be maximal.

The main example of almost s-tangent manifold is the stable tangent

bundle T s(M) of a manifold M . If M is an n-dimensional differentiable

manifold then T s(M) can be identified with the space of 1-jets J1(IR, M)

and admits a canonical almost s-tangent structure (J, ω, ξ), given by

J =
∂

∂yi
⊗ dxi +

∂

∂t
⊗ dt, ω = dt, ξ =

∂

∂t
,

where (xi, yi, t) are the coordinates induced on T s(M) by the local coor-

dinates (xi) of M and the coordinate t of IR.

Next, we shall describe an almost s-tangent structure as a kind of

G-structure.

Let (J, ω, ξ) be an almost s-tangent structure on a manifold V of

dimension 2n + 1. Let Q be the 2n-dimensional distribution defined

by the condition ω = 0 and let P be the one-dimensional distribution

determined by ξ. We have Tx(V ) = Qx ⊕ Px, for each x ∈ V . Since

ωJ = ±ω then Kx = kerJx ⊂ Qx for each x ∈ V and K = kerJ is a

subbundle of Q = kerω. If Sx is a complementary subspace of Kx in Qx

and {X1, . . . , Xn} is a basis for Sx then {X1, . . . , Xn, JX1, . . . , JXn, ξx}
is a basis for Tx(V ), which we call an adapted frame. Two adapted frames

are related by a matrix A ∈ Gl(2n + 1, IR) of the form

A =




A 0 0

B A 0

0 0 1


 .

The group G of such matrices is a closed subgroup of Gl(2n + 1, IR) and

therefore it is a Lie subgroup of Gl(2n+1, IR). The set BG(V ) of adapted

frames at all points of V defines a G–structure on V .

With respect to an adapted frame, J is represented by the matrix

J0 =




0 0 0

In 0 0

0 0 λ


 ,
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where λ = ω(Jξ) = ±1.

Conversely, given a G–structure B on V , we may define an almost

s-tangent structure (J, ω, ξ) on V as follows:

Jx(X) = p ◦ J0 ◦ p−1(X), ξx = p(e2n+1), ωx(p(ei)) = δ2n+1
i ,

where X ∈ Tx(V ), x ∈ V , p : IR2n+1 −→TxV belongs to B and

{e1, . . . , e2n+1} is the canonical basis for IR2n+1.

Summing up, we have proved the following

Proposition 2.1. A manifold V of dimension 2n + 1 admits an

almost s-tangent structure if and only if the structure group of its tangent

bundle is reducible to G.

Remark 2.1. For each point x ∈ V , let us consider all the frames of

the form {X1, . . . , Xn, JX1, . . . , JXn, X̃}, where X1, . . . , Xn ∈ ker ω = Q

and JX̃ = λX̃, λ = ω(Jξ). Two frames of this type are related by a

matrix 


A 0 0

B A 0

0 0 a




where A ∈ Gl(n, IR), B is an n×n matrix and a is a nonzero real number.

In fact, the group G̃ of these matrices can be described as the invariance

group of the matrix J0, i.e. A ∈ G if and only if AJ0A
−1 = J0. It is a

closed subgroup of Gl(2n + 1, IR) and the set BG̃(V ) of all such frames

is a G̃-structure over V . A linear frame p at x ∈ V belongs to BG̃(V ) if

and only if Jx ◦ p = p ◦ J0 and so BG̃(V ) is the G̃-structure defined by

the tensor J ([1], [7]). Obviously, BG(V ) is a differentiable subbundle of

BG̃(V ).

Remark 2.2. Let g be a Riemannian metric on V and let S be the

subbundle of Q orthogonal to K with respect to g. Then J|S : S → Q is

injective, J(S) = K = kerJ and T (V ) = S ⊕ K ⊕ 〈ξ〉. If we put

ϕX = JX, X ∈ S,

ϕX = −(J|S)−1X, X ∈ K,

ϕξ = 0,

then ϕ2 = −Id + ω ⊗ ξ and (ϕ, ξ, ω) is an almost contact structure on V .

Therefore, an almost s-tangent manifold is an almost contact manifold.
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The converse is not true. For example, the sphere S5 inherits an almost

contact structure from the natural almost complex structure of IR6 but,

since S5 does not admit a continuous field of 2–planes (that is, T (S5) has

not a 2–dimensional subbundle), it does not admit an almost s-tangent

structure. A nontrivial example of compact almost s-tangent manifold is

the tangent sphere bundle of a Riemannian compact manifold (see [18]).

3 – Integrability

Let V be a (2n + 1)-dimensional manifold with an almost s-tangent

structure (J, ω, ξ). We say that (J, ω, ξ) is integrable if the corresponding

G-structure BG(V ) is integrable. This means that around each point of

V there is a coordinate system (xi, yi, t) such that

(4)

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= 0, J

(
∂

∂t

)
= λ

(
∂

∂t

)

λ2 = 1, ω = dt, ξ =
∂

∂t
,

Notice that, for any differentiable manifold M , the canonical almost

s-tangent structure on T s(M) is integrable.

We shall characterize the integrability of (J, ω, ξ) in terms of the

vanishing of the Nijenhuis tensor NJ of J and dω. The following lemma

can be easily verified.

Lemma 3.1. If NJ = 0 and dω = 0, then we have

(a) if Z ∈ Q then [ξ, Z] ∈ Q,

(b) if Z ∈ K then [ξ, Z] ∈ K,

(b) LξJ = 0 .

Proposition 3.1. An almost s-tangent structure (J, ω, ξ) on V is

integrable if and only if NJ = 0 and dω = 0.
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Proof. Clearly, if (J, ω, ξ) is integrable then NJ = 0 and dω=0.

Conversely, if dω = 0 then Q and of course P are integrable distribu-

tions. Then, around each point x ∈ V , there exists a cubic coordinate

neighbourhood U , with local coordinates ( ūi, v̄i, t̄ ), −ε < t̄ < ε, such that

Q =

〈
∂

∂ūi
,

∂

∂v̄i

〉
, P =

〈
∂

∂t̄

〉
.

Then ξ = f(∂/∂t̄ ) and ω = g dt̄, with g = 1/f . Since dω = 0, we deduce

that ∂g/∂ūi = ∂g/∂v̄i = 0 and so g = g(t̄ ). Now, we introduce a new

coordinate system (u′i, v′i, t′), where u′i = ūi, v′i = v̄i, t′ = h(t̄ ), being

h(t̄ ) a primitive function of g(t̄ ). With respect to (u′i, v′i, t′), we have

Q =

〈
∂

∂u′i ,
∂

∂v′i

〉
, ξ =

∂

∂t′ , ω = dt′.

If NJ = 0 then J|Q is an integrable almost tangent structure on the

integral manifolds of Q ([13]). Let W be the submanifold of U defined

by t′ = 0. Then there exists a coordinate open set U ′ in W , with local

coordinates ( ũi, ṽi ) such that

J

(
∂

∂ũi

)
=

∂

∂ṽi
, J

(
∂

∂ṽi

)
= 0.

Now, we consider the open subset U ′×(−ε, ε) of V , with local coordinates

( xi = ũi, yi = ṽi, t = t′ ). We put

J

(
∂

∂xi

)
= Ar

i

∂

∂xr
+ Br

i

∂

∂yr
+ αi

∂

∂t
,

J

(
∂

∂yi

)
= Cr

i

∂

∂xr
+ Dr

i

∂

∂yr
+ βi

∂

∂t
.

By (c) of Lemma 3.1, it follows that

∂Ar
i

∂t
= 0,

∂Br
i

∂t
= 0,

∂Cr
i

∂t
= 0,

∂Dr
i

∂t
= 0,

∂αi

∂t
= 0,

∂βi

∂t
= 0,
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and, consequently,

Ar
i (x

j, yj, t)= Ar
i (x

j, yj, 0)= 0,

Br
i (x

j, yj, t)= Br
i (x

j, yj, 0)= δr
i ,

αi(x
j, yj, t) = αi(x

j, yj, 0) = 0,

Cr
i (xj, yj, t)= Cr

i (xj, yj, 0)= 0,

Dr
i (x

j, yj, t)= Dr
i (x

j, yj, 0)= 0,

βi(x
j, yj, t) = βi(x

j, yj, 0) = 0.

Hence, the tensor fields J , ω and ξ are locally expressed by (4), then

(J, ω, ξ) is integrable.

Now, we shall establish the existence of a symmetric connection on an

integrable almost s-tangent manifold with respect to which the covariant

derivatives of J , ω and ξ are zero.

Proposition 3.2. An almost s-tangent structure (J, ω, ξ) is inte-

grable if and only if there exists a symmetric connection ∇ on V such

that ∇J = 0, ∇ω = 0 and ∇ξ = 0.

Proof. First, suppose that (J, ω, ξ) is integrable. Then, the

G̃-structure BG̃(V ) defined by the tensor J is also integrable (see Re-

mark 2.1). Thus, from the general theory of G-structures, there exists a

symmetric connection ∇̃ on V such that J is parallel with respect to ∇̃.

Now, the new connection ∇ on V defined by

∇XY = ∇̃XY − ω(Y )∇̃Xξ

for any vector fields X and Y on V satisfies the required properties.

Conversely, from the existence of a symmetric connection ∇ on V

such that ∇J = 0, ∇ω = 0 and ∇ξ = 0, we can easily check that NJ = 0

and dω = 0. By Proposition 3.1, (J, ω, ξ) is integrable.
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4 – Integrable almost s-tangent structures which define fibra-

tions

Let (J, ω, ξ) be an integrable almost s-tangent structure on the (2n+

1)-dimensional manifold V . Then im J = kerJ ⊕ 〈ξ〉 is an integrable

distribution of dimension n+1. Let M be the space of leaves, that is the

quotient space of V by the foliation defined by im J and let π : V → M

be the natural projection.

We say that the integrable almost s-tangent structure (J, ω, ξ) on V

defines a fibration if M is a quotient manifold of V , that is π : V → M

is a submersion, and hence dim M = n. In this case, for each x ∈ V , we

have kerπ∗x = (im J)x = (kerJ)x ⊕ 〈ξx〉, and we may define a vertical

lift of tangent vectors on M to V as follows. If z ∈ M , X ∈ Tz(M) and

x ∈ π−1(z) = Vz, we define Xv ∈ Tx(V ) by

Xv = Jx(X̃) − λωx(X̃)ξx,

where λ = ω(Jξ) = ±1, X̃ ∈ Tx(V ) and π∗x(X̃) = X. Thus, Xv ∈
(kerJ)x and it is independent of the choice of X̃. If X is a vector field on

M , its vertical lift Xv to V is the vector field Xv = JX̃ −λω(X̃)ξ, where

X̃ is any vector field on V which is π-related to X. We shall consider a

differentiable subbundle S of T (V ) complementary to ker π∗ = im J with

respect to a Riemannian metric. Then, if X is a vector field on M , there

exists a unique vector field X̃ on V π-related to X such that X̃x ∈ Sx for

all x ∈ V . Since S is a differentiable subbundle of T (V ) complementary

to kerπ∗, X̃ is a well defined differentiable vector field and, therefore,

Xv = JX̃ is differentiable.

From now on, we shall assume (J, ω, ξ) is an integrable almost s-

tangent structure on V which defines a fibration π : V → M . First, we

shall establish some of the basic properties of vertical lifts.

Lemma 4.1. Let X and Y be vector fields on M and let Ỹ be the

vector field on V π-related to Y such that Ỹx ∈ Sx for all x ∈ V . Then

[Xv, Ỹ ] ∈ kerJ .

Proof. From π∗X
v = 0 and π∗Ỹ = Y , it follows π∗[X

v, Ỹ ] = 0, then

[Xv, Ỹ ] ∈ kerπ∗ = im J . On the other hand, Xv and Ỹ belong to Q and,

since Q is integrable, [Xv, Ỹ ] ∈ Q. Thus [Xv, Ỹ ] ∈ ker J .
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Proposition 4.1. Let X and Y be two vector fields on M . Then

(a) [Xv, Y v] = 0,

(b) [ξ, Xv] = 0,

(c) LXvJ = 0,

(d) ıXvω = 0.

Proof. (a) Let X̃ and Ỹ be the vector fields on V π-related to X

and Y , respectively, such that X̃x, Ỹx ∈ Sx for all x ∈ V . Since NJ = 0,

we have
[Xv, Y v] = [JX̃, JỸ ]

= J [JX̃, Ỹ ] + J [X̃, JỸ ] + ω([X̃, Ỹ ])ξ

= J [Xv, Ỹ ] + J [X̃, Y v] + ω([X̃, Ỹ ])ξ.

By Lemma 3.1 and the integrability of Q, we get [Xv, Y v] = 0.

(b) Let X̃ be the vector field on V π-related to X such that X̃x ∈ Sx

for all x ∈ V . Since (J, ω, ξ) is integrable,

0 = (LξJ)(X̃) = [ξ, JX̃] − J [ξ, X̃].

Thus, [ξ, Xv] = J [ξ, X̃]. But π∗ξ = 0 and π∗X̃ = X, and therefore

π∗[ξ, X̃] = 0 and so [ξ, X̃] ∈ im J . By (a) of Lemma 3.1, [ξ, X̃] ∈ Q, then

[ξ, X̃] ∈ ker J and [ξ, Xv] = 0.

(c) It is sufficient to prove

(LXvJ)Ỹ = 0, (LXvJ)Y v = 0, (LXvJ)ξ = 0,

where Y is a vector field on M and Ỹ is the vector field on V π-related

to Y such that Ỹx ∈ Sx for all x ∈ V . Second and third equations are

consequence of (b) and (a), respectively. Now,

(LXvJ)Ỹ = [Xv, JỸ ] − J [Xv, Ỹ ] = [Xv, Y v] − J [Xv, Ỹ ] = 0,

by (a) and Lemma 4.1.

(d) In fact, ıXvω = ω(Xv) = ω(JX̃) − λω
(
ω(X̃)ξ

)
= 0, because

ωJ = λω.
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Now, let ∇ be a symmetric connection on V such that ∇J = 0,

∇ω = 0 and ∇ξ = 0.

Proposition 4.2. The connection induced by ∇ on each fibre of

π : V → M is flat.

Proof. We shall prove

(a) ∇XvY v = 0, (b) ∇Xvξ = 0, (c) ∇ξX
v = 0,

where X and Y are arbitrary vector fields on M .

(a) If Ỹ is the vector field on V such that π∗Ỹ = Y and Ỹx ∈ Sx for

all x ∈ V , then, using that ∇J = 0, the symmetry of ∇ and Lemma 4.1,

we have
∇XvY v = ∇XvJỸ = J(∇Xv Ỹ )

= J(∇Ỹ Xv + [Xv, Ỹ ]) = ∇Ỹ JXv = 0.

(b) Since ∇ is symmetric,

∇ξX
v = ∇Xvξ − [ξ, Xv] = −[ξ, Xv] = 0,

by (b) of Proposition 4.1.

Before proving our main theorem, we shall recall the definition of an

affine bundle (see [6], [8]).

Suppose that π : A → M is a smooth surjective submersion of dif-

ferentiable manifolds. Let (E, p, M, F ) be a vector bundle, where E is

the total space, p the projection, M the base and F the fibre. Denote

by A ×M E the fibre product of the fibred manifolds A and E. It is said

that A is an affine bundle modelled on E if there exists a smooth map

ρ : A ×M E → A, which is fibred over the identity map of M , such that

for each z ∈ M , ρz : π−1(z) × p−1(z) → π−1(z) is a free and transitive

action of the vector space p−1(z) on π−1(z). In this case, A is a locally

trivial bundle over M with standard fibre F ([8]).

Theorem 4.1. If each leaf of the foliation defined by im J is simply

connected and geodesically complete with respect to ∇ then V is an affine

bundle modelled on the stable tangent bundle T s(M) of M . Therefore, V

admits a structure of vector bundle over M isomorphic to T s(M).
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Proof. We define a map

ρ : V ×M T s(M) −→ V

as follows. An element of T s
z (M) ≡ Tz(M) × IR may be written (X, r),

where X ∈ Tz(M) and r ∈ IR. We define a vector field X̂r on π−1(z) = Vz,

associated to (X, r), by

X̂r
y = Xv

y + rξy, y ∈ Vz,

By Proposition 4.2, ∇X̂rX̂r = 0. Then X̂r is a geodesic vector field and so

it is a complete vector field. Let φ(X,r) : IR×Vz → Vz be the 1–parameter

group of transformations of Vz generated by X̂r. We define ρ by

ρz

(
y, (X, r)

)
= φ(X,r)(1, y).

Next, we shall prove that ρz : Vz × T s
z (M) → Vz is a transitive and

free action of T s
z (M) on Vz. Let (X, r), (X ′, r′) ∈ T s

z (M) and let X̂r

and X̂ ′r′
be the corresponding vector fields on Vz. By Proposition 4.1,

[X̂r, X̂ ′r′
] = 0. Then, their 1–parameter groups commute and, since X̂r

and X̂ ′r′
are complete, the composition φ(X,r) ◦φ(X′,r′) = φ(X′,r′) ◦φ(X,r) is

the 1–parameter group of transformations of Vz generated by X̂r + X̂ ′r′
.

Thus,

φ(X,r)

(
t, φ(X′,r′)(t, y)

)
= φ(X′,r′)

(
t, φ(X,r)(t, y)

)
= φ(X,r)+(X′,r′)(t, y)

and hence

ρz

(
ρz(y, (X ′, r′)), (X, r)

)
= ρz

(
ρz(y, (X, r)), (X ′, r′)

)

= ρz

(
y, (X, r) + (X ′, r′)

)
,

that is, ρz is an action of T s
z (M) on Vz.

Now, in order to prove that ρz is transitive, we consider an arbitrary

scalar product 〈 , 〉 on TzM and we define a Riemannian metric h on Vz

by

h
(
X̂r, X̂ ′r′)

= 〈X, X ′〉 + rr′.
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Since ∇X̂r = ∇X̂ ′r′
= 0 and h

(
X̂r, X̂ ′r′)

is constant on Vz, we deduce

that ∇h = 0 and so ∇ is the Riemannian connection for h. Hence Vz is

a complete Riemannian manifold. By the Hopf–Rinow theorem, if y and

y′ are two points of Vz, there exists a geodesic τ in Vz such that τ(0) = y

and τ(1) = y′. Since τ̇(0) belongs to (im J)y then τ̇(0) = Xv
y + rξy for

some X ∈ Tz(M) and r ∈ IR. Then τ is just the integral curve of X̂r,

that is τ(t) = φ(X,r)(t, y), and y′ = τ(1) = φ(X,r)(1, y) = ρz

(
y, (X, r)

)
.

This proves the transitivity of ρz.

Next, we shall prove that the action is free. Let Γ(y) be the isotropy

group of ρz at y ∈ Vz, that is

Γ(y) = { (X, r) ∈ T s
z (M) | ρz

(
y, (X, r)

)
= y}.

The map β : T s
z (M) → Vz given by β(X, r) = ρz

(
y, (X, r)

)
may be

factored as follows:

T s
z (M)

β
−−−−−−−→ Vz

α exp

Ty(Vz)

−−−−
−−−

→−−−−−−−→

−−−−−−

where α(X, r) = Xv
y + rξy and exp : Ty(Vz) → Vz is the exponential

map at y of ∇ restricted to Vz. Since α is an isomorphism, β maps

diffeomorphically a neighbourhood of 0 at T s
z (M) onto a neighbourhood

of z at Vz. Thus, Γ(y) = β−1(y) is a discrete subgroup of the additive

group T s
z (M). So, Γ(y) consists of integer linear combinations of k linearly

independent vectors v1, . . . , vk, where 0 ≤ k ≤ n + 1, and, therefore, the

coset space T s
z (M)/Γ(y) is diffeomorphic to the product of a k-torus Tk =

S1× k. . .×S1 and IRn+1−k. Since the action ρz of T s
z (M) on Vz is transitive,

then Vz is diffeomorphic to T s
z (M)/Γ(y) ≈ Tk × IRn+1−k. Moreover, since

Vz is simply connected, k = 0 and Γ(y) is trivial. Therefore, the action

is free.

Thus, V is a locally trivial bundle over M and each fibre of π : V →
M is diffeomorphic with the Euclidean space IRn+1. Hence, there exists

a smooth global section σ : M → V . We put

Fz : T s
z (M) −→ Vz

(X, r) 5−→ ρz

(
σ(z), (X, r)

)
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for each z ∈ M . This defines a diffeomorphism F : T s(M) → V and we

can define a vector bundle structure on V such that V becomes a vector

bundle over M isomorphic to T s(M).

Corollary 4.1. Under the assumptions of the theorem except

the hypothesis that the leaves of the foliation defined by im J are simply

connected, if in addition π : V → M admits a global section, then T s(M)

is a covering manifold of V and the leaves of im J are diffeomorphic to

Tk × IRn+1−k (0 < k ≤ n + 1).

Proof. Let σ : M → V be a global section. As we have seen in

the proof of Theorem 4.1, we have a transitive action ρz of T s
z (M) on Vz

and the fibre Vz is diffeomorphic to T s
z (M)/Γ

(
σ(z)

) ≈ Tk × IRn+1−k for

some k, 0 < k ≤ n + 1. Let ψ : T s
z (M) → Tk × IRn+1−k be the canonical

projection, which is a covering map. Let U be a triviality open set of M

for the bundle T s(M). We define

π−1(U)
φ−→U × (Tk × IRn+1−k)

y 5−→ (
π(y), ψ(X, r)

)
,

where ρπ(y)

(
σπ(y), (X, r)

)
= y. Then φ is a diffeomorphism and so V is

a locally trivial bundle over M . Moreover, the map

T s
z (M) −→ Vz

(X, r) 5−→ ρz

(
σ(z), (X, r)

)

defines a covering map of T s(M) onto V .

Remark 4.1. Once we have established our main result for an inte-

grable almost s-tangent structure which defines a fibration in the sense

considered above, consider again an integrable almost s-tangent struc-

ture (J, ω, ξ) on V and let ∇ be a symmetric connection on V such that

∇J = 0, ∇ω = 0 and ∇ξ = 0, but now suppose that:

(1) N = V/ ker J is a quotient manifold of V .

(2) If µ : V → N is the natural projection, the 1-form ω and the

vector field ξ on V are projectable, that is, there exists a 1-form ω0 and

a vector field ξ0 on N such that µ∗ω0 = ω, µ∗ξ = ξ0.
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Under these assumptions, with similar arguments to those used in

this section, it can be proved that if each leaf of the foliation defined by

ker J is simply connected and geodesically complete with respect to ∇
then V admits a structure of vector bundle over M isomorphic to the

quotient bundle TN/〈ξ0〉.
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