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Existence and non-existence of radially symmetric

non-negative solutions for a class of

semi-positone problems in an annulus

D. ARCOYA – A. ZERTITI

Riassunto: Si studia il seguente problema al contorno:
{

−∆u(x) = λf(u(x)), R < |x| < R̂

u(x) = 0, |x| ∈ {R, R̂}

con λ > 0, f(0) < 0, essendo f : [0, +∞) una funzione superlineare. Si dimostra che
per λ abbastanza piccolo esistono soluzioni non negative e dotate di simmetria radiale
e che invece non esistono soluzioni di questo tipo se λ è troppo grande.

Abstract: We study the boundary value problem
{

−∆u(x) = λf(u(x)), R < |x| < R̂

u(x) = 0, |x| ∈ {R, R̂}

where λ > 0, f(0) < 0 and f is superlinear. We prove existence of a radially symmetric
non-negative solution for λ > 0 sufficiently small and nonexistence of such a solution
for λ > 0 large.

This paper was done while the second author was visiting the Departamento de Análisis
Matemático de la Universidad de Granada. He thanks this Department for its hospi-
tality.
Key Words and Phrases: Superlinear semi-positone problems – Radial positive
solution
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1 – Introduction

In this paper we study the existence and non-existence of radial pos-

itive solutions of the problem

(1)

{
−∆u(x) = λf(u(x)), x ∈ Ω

u(x) = 0, x ∈ ∂Ω

where λ > 0, f : [0,+∞) → IR is a continuous nonlinearity and Ω ⊂ IRN ,

is the annulus Ω = C(0, R, R̂) = {x ∈ IRN/ R < |x| < R̂} (N ≥ 3, 0 <

R < R̂).

In the positone case, i.e. in the case that f(0) ≥ 0, the study of

positive solutions of (1) in a bounded domain Ω has been intensively

studied by many authors (see [4] and [6] for excellents surveys and the

references therein). Recently, the non-positone case (i.e. f(0) < 0) has

been considered in [1, 2, 3, 8]. In particular the first two works study the

existence [2] and non-existence [1] of positive solutions of (1) when Ω =

B(0, R) is the ball of radius R > 0 centered at zero and f is a monotone

non-decreasing nonlinearity satisfying f(0) < 0 and lim
u→+∞

f(u)

u
= +∞

(superlinear case). Observe that, since f(0) < 0, the constant 0 is an

upper solution of (1) and as a consequence it is not possible, in general,

to apply the usual techniques (for example: the method of upper and

lower solutions, the fixed point index, etc...) to prove the existence of

positive solutions of (1). However, it is well known [5] that all positive

solutions u of (1) for Ω = B(0, R) are radial with
∂u

∂r
< 0 in Ω (

∂

∂r
denotes the derivative of u(r) (r = |x|)). This permits to the authors

in [2] to apply the shooting method when f satisfies suitable hypotheses.

We remark explicitely that the following fact: u(0) = max{u(x) / |x| ≤ 1}
is essential in the proofs in [1, 2].

In contrast with this, in the case Ω = C(0, R, R̂), it is not true [5] that

the positive solutions of (1) are radial. In addition, even if u(x) = u(r),

(r = |x|), is a radially positive solution of (1), we do not know what is the

radius r ∈ (R, R̂) in which u attains its maximum. These facts make our

study more difficult and force us to apply the shooting method in a more

careful way to extend the results in [1, 2] to the case in which Ω is an

A.M.S. Classification: 35J65 – 34B15
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annulus (and f(0) < 0). In concrete, if we denote by F (u) =
∫ u

0 f(s)ds,

a primitive of f , we shall prove the following theorem:

Theorem I. Let Ω = C(0, R, R̂) (0 < R < R̂) and assume:

(f1) f ∈ C1([0,+∞)) is such that there exists β > 0 with f |[0,β) < 0 and

f |(β,+∞) > 0.

(f2) lim
u→+∞

f(u)

u
= +∞.

Then there exists λ∗ > 0 such that problem (1) has not any non-

negative radially symmetric solution for all λ ≥ λ∗.

In addition, if f satisfies also:

(f3) The function h(u) = NF (u) − N−2
2

uf(u) is bounded from below in

[0,+∞)

(f4) f is strictly increasing in (β,+∞)

then there exists λ∗ > 0 such that problem (1) has at least one positive

radially symmetric solution for all λ ∈ (0, λ∗).

We must observe that our arguments also work in the case Ω =

B(0, R), improving slightly the results in [1, 2]. In fact, in [1], moreover

of imposing that f is increasing these authors need (f1) and that

(2) lim inf
u→+∞

f(u)

uα
> 0

for some α > 1. Observe that this hypothesis (2) is more restrictive that

(f2). On the other hand, their existence result in [2] requires (f1), (f2),

(f4) and

(3) lim
u→+∞

(
u

f(u)
)

N
2 [F (ku) − N − 2

2N
uf(u)] = +∞

for some k ∈ (0, 1). By (f2), it is clear that our hypothesis (f3) is more

general than (3).

The paper is organized as follows. The part of Theorem I about

the existence of solutions will be proved in section 2 (see Theorem 2.4 be-

low). The non-existence result will be given in section 3 (see Theorem 3.1

below). We reserve section 1 for some technical preliminaries.
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2 – Preliminaries

The problem of the existence of positive radially symmetric solutions

of (1) is equivalent to the existence of positive solutions of the problem

(4)





−u′′(r) − N − 1

r
u′(r) = λf(u(r)), R < r < R̂

u(R) = u(R̂) = 0
.

In our study of (4), we apply the shooting method. This technique is

based in considering the initial value problem

(5)





−u′′(r) − N − 1

r
u′(r) = λf(u(r)), R < r

u(R) = 0, u′(R) = d

to show that, for a convenient d > 0, this admits a solution u(.) =

u(., d, λ) (which depends on d and λ) such that u > 0 in (R, R̂) and

u(R̂) = 0. So, such a solution u of (5) is also a positive solution of (4).

In the sequel we suppose that the nonlinearity f ∈ C1([0, +∞)) is always

extended to IR by

f |(−∞,0) ≡ f(0).

In this section we present some technical results about the solutions

of (5). These are standard in the literature. However, by definitiness

of the reader, we include here the details. We begin with the following

lemma which assure the existence of a unique solution u(r, d, λ) of (5) in

[R, +∞) for all λ, d > 0.

Lemma 1.1. Let λ, d > 0 and f ∈ C1([0, +∞)) a function which

is bounded from below. Then problem (5) has a unique solution u(r, d, λ)

defined in [R, +∞). In addition, for every d > 0 there exist M = M(d) >

0 and λ(d) > 0 such that

max
r∈[R,R̂]

|u(r, d, λ)| ≤ M, ∀λ ∈ (0, λ(d))
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Proof. The proof of the first part of the lemma is given in two steps.

First we show the existence and uniqueness of a local solution of (5), i.e,

the existence of ε = ε(d, λ) > 0 such that (5) has a unique solution in

[R, R + ε]. In the second step we prove that this unique solution can be

extended to [R, +∞).

Step 1: (Local solution). Because in step 2 we need the local existence

and uniqueness of solutions of the equation of (5) with more general initial

conditions, we directly show the local existence and uniqueness for the

problem

(6)





−u′′(r) − N − 1

r
u′(r) = λf(u(r)), r > R1

u(R1) = a, u′(R1) = b

with R1 ≥ R fixed. Note that if u is a solution of (6), multiplying the

equation by rN−1 and using the initial conditions, we obtain

(7) u′(r) =
1

rN−1

[
RN−1

1 b − λ

∫ r

R1

sN−1f(u(s))ds

]

from which u satisfies

(8)

u(r) = a +
bRN−1

1

N − 2

(
1

RN−2
1

− 1

rN−2

)
+

− λ

∫ r

R1

1

tN−1

[∫ t

R1

sN−1f(u(s))ds

]
dt .

Conversely, if u is a continuous function satisfying (8) then u is a solution

of (6). Hence, in order to prove the existence and uniqueness of a solution

u of (6) defined in some interval [R1, R1 + ε], it is sufficient to show

the existence of a unique fixed point of the operator T defined on X =

C([R1, R1 + ε], IR) (the Banach space of the real continuous functions on

[R1, R1 + ε] with the uniform norm) by

(9)

(Tv)(r) = a +
bRN−1

1

N − 2

(
1

RN−2
1

− 1

rN−2

)
+

− λ

∫ r

R1

1

tN−1

[∫ t

R1

sN−1f(u(s))ds

]
dt,
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for all r ∈ [R1, R1 + ε], and v ∈ X. To check this, let δ > 0 such that

δ > |a| and consider the closed ball B̄(0, δ) = {u ∈ X : ‖u‖ ≤ δ}. For

all u, v ∈ B(0, δ), we have:

(10) ‖Tu − Tv‖ ≤ λ

N
sup

ξ∈(0,δ]

|f ′(ξ)| ε(R1 + ε)‖u − v‖

and

(11)

‖Tu‖ ≤ |a| +
|b|RN−1

1

N − 2

(
1

RN−2
1

− 1

(R1 + ε)N−2

)
+

+
λ

N
ε(R1 + ε) sup

ξ∈[0,δ]

|f(ξ)|

Now, by (10) and (11), we can choose ε = ε(δ) > 0 (depending on δ)

sufficiently small such that T is a contraction from B(0, δ) to B(0, δ).

Hence T has a fixed point u in B(0, δ). The fixed point u is unique in X

because we can choose δ as large as we wanted.

Step 2: Let u(r) = u(r, d, λ) be the unique solution of (5) (we take

a = 0, b = d and R1 = R in (6)) and denote by [R, R(d, λ)) its maximal

domain. We shall prove by contradiction that R(d, λ) = +∞. For it,

assume R∗ = R(d, λ) < +∞. Then we claim that u is bounded in [R, R∗).

In fact, using (8) and that f is bounded from below, we have

dR

N − 2
≥ dRN−1

N − 2

(
1

RN−2
− 1

rN−2

)

= u(r) + λ

∫ r

R

1

tN−1

[∫ t

R

sN−1f(u(s))ds

]
dt

≥ u(r) + λ inf
ξ∈[0,+∞)

f(ξ)

∫ R∗

R

[
1

tN−1

∫ t

R

sN−1ds

]
dt,

for all r ∈ [R, R∗), and we deduce that there exists K1 > 0 such that

u(r) ≤ K1, ∀r ∈ [R, R∗)



[7] Existence and non-existence of radially symmetric etc. 631

On the other hand, using again (8) we obtain also

u(r) ≥ dRN−1

N − 2

(
1

RN−2
− 1

rN−2

)

− λ max
ξ∈[0,K1]

f(ξ)

∫ R∗

R

[
1

tN−1

∫ t

R

sN−1ds

]
dt

≥ −K2 , ∀r ∈ [R, R∗)

for convenient K2 > 0. These last inequalities imply that u is bounded.

By using this and (7) and (8) we deduce that {u(rn)} and {u′(rn)}
are Cauchy sequences for all sequence {rn} ⊂ [R, R∗) converging to R∗.

This is equivalent to the existence of the finite limits

lim
r→R∗−

u(r) = a, lim
r→R∗−

u′(r) = b.

Considering the initial value problem

(12)





−v′′(r) − N − 1

r
v′(r) = λf(v(r)), R∗ < r

v(R∗) = a, v′(R∗) = b

and by step 1, we deduce the existence of a positive number ε > 0 and a

solution v(r) of this problem in [R∗, R∗ + ε].

Now, it is easy to see that

ũ(r) =

{
u(r), if R ≤ r < R∗

v(r), if R∗ ≤ r ≤ R∗ + ε

is a solution of (5) in [R, R∗ + ε], an interval which contains the maximal

domain [R, R1). Clearly this is a contradiction, so R∗ = +∞ and we have

finished the proof of the existence and uniqueness of a solution u(r, d, λ)

of (5) in [R, +∞).

In order to prove the second part of the lemma we consider again the

operator T defined in (9) on X0 = C([R, R̂], IR), with R1 = R, a = 0 and

b = d. Taking M = δ >
2dR

N − 2
and

λ(d) = min

{
M

2M1 maxξ∈[0,M ] |f(ξ)| ,
1

M1 maxξ∈[0,M ] |f ′(ξ)|

}
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with M1 =
∫ R̂

R
1

tN−1 {∫ t

R sN−1ds}dt, we deduce from (10) and (11) that T

is a contraction from B̄(0, M, X0) = {u ∈ X0 : max
r∈[R,R̂]

|u(r)| ≤ M} into

B̄(0, M, X0). So, the unique corresponding fixed point of T , i.e., u(r, d, λ),

belongs to B̄(0, M, X0) and the lemma is proved.

Remark 1.2. The solution u(., d, λ) depends continuously on (d, λ)

in the sense that if {dn} converges to d and {λn} to λ, then the sequence of

the functions u(., dn, λn) converges uniformly to u(., d, λ) on any bounded

interval. A similar property is also true for u′(., d, λ).

3 – Results of existence

In this section we are interested in giving sufficient conditions for the

existence of positive solutions of (4). To do this, we prove the following

lemmas about the behaviour of the solution u(·, d0, λ) of (5).

Lemma 2.1. Assume (f1, f4) and let d0 > 0. Then there exists

λ1 = λ1(d0) > 0 such that the unique solution u(r, d0, λ) of (5) satisfies

u(r, d0, λ) > 0, ∀r ∈ (R, R̂], ∀λ ∈ (0, λ1).

Proof. For λ > 0 we consider the set

E = {r ∈ (R, R̂)/ u(.) = u(., d0, λ) is nondecreasing in (R, r)}

Since u′(R) = d0 > 0, E is nonempty and clearly bounded from above.

Let r1 = sup E (which depends on λ). It may occur two cases:

1. r1 = R̂

2. r1 < R̂

In the first case, it is clear that u(r) = u(r, d0, λ) > 0 for all r ∈ (R, R̂].

In the second case, we shall also prove that u(r, d0, λ) > 0, ∀r ∈ (R, R̂]

for λ > 0 sufficiently small, which concludes the proof of the Lemma 2.1.

In order to show it, assume that r1 < R̂. Then u′(r1) = 0 and by (f1)

and (7), u(r1) > β.

Hence the set

F = {r ∈ [r1, R̂]/ u(t) ≥ β ∀t ∈ [r1, r]}
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is nonempty and bounded. Take r2 = supF > r1. The proof will be

finished if we can show that, for λ sufficiently small, r2 = R̂. To do it,

using again (f1) and (7), we observe:

(13) u′(r) = − λ

rN−1

∫ r

r1

tN−1f(u(t))dt < 0, ∀r ∈ F \ {r1}

and

u(r) ≤ u(r1), ∀r ∈ [R, r2]

Therefore, by the mean value theorem and (f4), there exists c ∈
(r1, r2) such that

u(r2) = u(r1) + u′(c)(r2 − r1)

≥ u(r1) − λR̂

N
f(u(r1))(r2 − r1)

> u(r1) − λR̂

N
f(u(r1))(R̂ − R) .

If M = M(d0) > 0 and λ(d0) > 0 are given by Lemma 1.1, we have that

β < u(r1) ≤ M for all λ ∈ (0, λ(d0)). Taking K = K(d0) > 0 such that

f(ξ) < K(ξ − β), ∀ξ ∈ (β, M ]

we deduce:

u(r2) > u(r1) − λKR̂

N
(R̂ − R)(u(r1) − β), ∀λ ∈ (0, λ(d0)).

Thus, if λ ∈ (0, λ1) with λ1 = min
{
λ(d0),

N

R̂(R̂ − R)K

}
, we have

u(r2) > u(r1) − (u(r1) − β) = β

which implies that r2 = R̂.

Our following result concerns the asymptotic behaviour of r1(d, λ) =

Sup{r ∈ (R, R̂)/u(.) = u(., d, λ) is nondecreasing in (R, r)}.
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Lemma 2.2. Assume (f1, f2, f4). Let λ > 0. Then

(14) lim
d→+∞

r1(d, λ) = R

and

(15) lim
d→+∞

u(r1, d, λ) = +∞

Proof. We prove the first part of this lemma by contradiction. If

(14) is not true, then there exist R0 ∈ (R, R̂) and a sequence {dn} ⊂
(0, +∞) converging to infinity such that un = u(., dn, λ) satisfies

(16) un(r) > 0, u′
n(r) ≥ 0, ∀r ∈ (R, R0], ∀n ∈ IN

Let r̄ =
R0 + R

2
. Observe that by (f4) and (8) (with R1 = R, a = 0 and

b = dn), the sequence {un(r̄)} is unbounded. Passing to a subsequence

of {dn}, if it is necessary, we can suppose lim
n→+∞

un(r̄) = +∞. Consider

Mn = inf

{
f(un(r))

un(r)
/r ∈ (r̄, R0)

}

In virtue of (f2),

lim
n→+∞

Mn = +∞,

and we may take n0 ∈ IN such that

λMn0
> µ3

where µ3 is the third eigenvalue of −
[ d2

dr2
+

N − 1

r

d

dr

]
in (r̄, R0) with

Dirichlet boundary conditions. Now we take a nonzero eigenfunction φ3

asociated to this µ3, i.e.,





φ′′
3(r) +

N − 1

r
φ′

3(r) + µ3φ3(r) = 0, r̄ < r < R0

φ3(r̄) = 0 = φ3(R0) .
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Since φ3 has two zeros in (r̄, R0), we deduce from the Sturm compari-

son theorem [7] that un0
has at least one zero in (r̄, R0). But this is a

contradiction with (16). Then (14) is true.

On the other hand, let r2 be the same number as in the proof of

Lemma 2.1 and taking into account (f4) and (13), we deduce u(r1) =

max
r∈[R,r2]

u(r) > β and

0 > u′(r) =
1

rN−1
[dRN−1 − λ

∫ r

R

tN−1f(u(t))dt]

≥ dRN−1

R̂N−1
− λr

N
f(u(r1)), ∀r ∈ (r1, r2)

from which we obtain

f(u(r1)) ≥ NdRN−1

λR̂N

and the proof of (15) is also concluded.

Lemma 2.3. Assume (f1 − f4) and let γ1 > 0 be a positive number.

Then there exists λ2 > 0 such that

a) For all λ ∈ (0, λ2) the unique solution u(r, d, λ) of (5) satisfies

u2(r, d, λ) + u′2(r, d, λ) > 0, ∀r ∈ [R, R̂],∀d ≥ γ1

b) For all λ ∈ (0, λ2) there exists d > γ1 such that u(r, d, λ) < 0 for

some r ∈ (R, R̂].

Proof. Let λ, d > 0 and consider u(r) = u(r, d, λ) the unique solu-

tion of (5). We define the auxiliary function H on [R, +∞) by setting

H(r) =
ru′2(r)

2
+ λrF (u(r)) +

N − 2

2
u(r)u′(r), ∀r ∈ [R, +∞).

It can be proved, as in [2], the next identity of Pohozaev-type:

rN−1H(r) = tN−1H(t) + λ

∫ r

t

sN−1[NF (u(s)) − N − 2

2
f(u(s))u(s)]ds
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for all R ≤ t ≤ r. Taking t = R in this identity we obtain

(17)

rN−1H(r) =
RNd2

2
+ λ

∫ r

R

sN−1

[
NF (u(s)) − N − 2

2
f(u(s))u(s)

]
ds

≥ RNd2

2
+ λm

(
rN

N
− RN

N

)

≥ RNγ2
1

2
+ λm

(
R̂N

N
− RN

N

)
, ∀r ∈ [R, R̂]

where m is a strictly negative number satisfying

NF (u) − N − 2

2
uf(u) ≥ m, ∀u ∈ IR

(remark that m exists by (f3))

Hence there exists λ2 > 0 such that

(18) H(r) > 0, ∀r ∈ [R, R̂], ∀d ≥ γ1, ∀λ ∈ (0, λ2)

As a consequence

u2(r) + u′2(r) > 0, ∀r ∈ [R, R̂], ∀d ≥ γ1, ∀λ ∈ (0, λ2),

and we have finished the proof of part a) of this lemma.

To prove the part b) we argue by contradiction: fix λ ∈ (0, λ2) and

let us suppose that u(r, d, λ) ≥ 0, ∀r ∈ [R, R̂], ∀d ≥ γ1. Choose ρ > 0

such that there exists a solution ω of

ω′′ +
N − 1

r
ω′ + ρω = 0

satisfying ω(0) = 1, ω′(0) = 0 and that
R̂ − R

4
is the first zero of ω. Note

that by [5], ω(r) ≥ 0 and ω′(r) < 0 for all r ∈
(
0,

R̂ − R

4

]
. Since (f2) is

satisfied, there exists d0 = d0(λ) > γ1 such that

(19)
f(u)

u
≥ ρ

λ
, ∀u ≥ d0 .
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On the other hand, let r1 = r1(d, λ) and r2 = r2(d, λ) be the same

numbers as in the proof of Lemma 2.1. By Lemma 2.2 we can suppose

that r1(d, λ) < R +
R̂ − R

4
< R̂ with u(r1, d, λ) > d0 for all d ≥ d0.

Let r ∈ [r1, R̂] such that u′(r, d, λ) = 0 (d ≥ d0). Observe that

by (18), H(r) = λrF (u(r)) > 0. Then, if, by (f1), θ denotes the

unique zero of F , we obtain u(r) > θ and by (5) we have u′′(r, d, λ) =

−λf(u(r, d, λ)) < 0. Thus, every critical point r ∈ [r1, R̂] of u(., d, λ) is

a strict local maximum of this function. So, the definitions of r1 and r2

imply

(20) u′(r, d, λ) < 0, ∀r ∈ (r1, R̂], ∀ d ≥ d0

Define v(r) = u(r1)w(r − r1) and observe that v satisfies

v′′(r) +
N − 1

r − r1

v′(r) + ρv(r) = 0, r1 < r < r1 +
R̂ − R

4

with v(r1) = u(r1), v
′(r1) = 0, v

(
r1 +

R̂ − R

4

)
= 0 and

v(r) > 0, v′(r) ≤ 0, ∀r ∈
(

r1, r1 +
R̂ − R

4

)
.

Then

v′′(r) +
N − 1

r
v′(r) + ρv(r) ≥ 0, ∀r ∈

(
r1, r1 +

R̂ − R

4

)

and by (19), the Sturm comparison theorem [7] implies that if u(r) ≥ d0,

for all r ∈
(
r1, r1 +

R̂ − R

4

)
, then u will have a zero in

(
r1, r1 +

R̂ − R

4

)
.

Since this is impossible we obtain that for any d ≥ d0 there exists r∗ ∈
(
r1, r1 +

R̂ − R

4

)
satisfying u(r∗, d, λ) = d0 (remind that u(r1, d, λ) >

d0, ∀d ≥ d0).

Consider now the energy function

E(r, d, λ) =
u′(r, d, λ)2

2
+ λF (u(r, d, λ)), ∀r ≥ R
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By (17), (20) and the equality H(r) = rE(r) +
N − 2

2
u(r)u′(r) we have

rNE(r, d, λ) ≥ rN−1H(r, d, λ)

≥ RNd2

2
+ λm

(
R̂N

N
− RN

N

)
, ∀ r ∈ [r1, R̂]

and so there exists d1 = d1(λ) ≥ d0 such that

E(r, d, λ) ≥ λF (d0) +
2

(R̂ − R)2
d2

0, ∀r ∈ [r1, R̂], ∀ d ≥ d1.

Using that E′(r) = −N − 1

r
u′(r)2 ≤ 0, ∀r ∈ [R, R̂], we deduce

u′(r)2

2
≥ 2d2

0

(R̂ − R)2
, ∀r ∈ [r∗, R̂], ∀d ≥ d1

i.e., by (20),

u′(r) ≤ − 2d0

(R̂ − R)
, ∀r ∈ [r∗, R̂], ∀d ≥ d1 .

This bound and the mean value theorem imply

u

(
r∗ +

R̂ − R

2

)
≤ u(r∗) − d0 = 0

with u′
(
r∗ +

R̂ − R

2

)
< 0. This is a contradiction with the fact that u is

non-negative in [R, R̂]. Therefore, the second part of the lemma is also

proved.

Now as a consequence of Lemmas 2.1 and 2.3, we have the following

result of the existence of a positive solution of (4) and so a radial positive

solution of (1).

Theorem 2.4. Assume (f1 − f4). Then there exists λ∗ > 0 such

that problem (1) has at least one positive radially symmetric solution for

all λ ∈ (0, λ∗).
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Proof. Let d0 > 0. By Lemmas 2.1 and 2.3, there exist λ∗ > 0 such

that if λ ∈ (0, λ∗) then

i) u(r, d, λ) > 0, ∀r ∈ (R, R̂],

ii) u′2(r, d, λ) + u2(r, d, λ) > 0, ∀r ∈ [R, R̂], ∀d ≥ d0,

iii) There exist d1 > d0 and r ∈ (R, R̂] such that u(r, d1, λ) < 0.

Define G = {d ≥ d0 / u(r, d, λ) > 0, ∀r ∈ (R, R̂), ∀d ∈ [d0, d]}.

Observe that d0 ∈ G (by i)) and so G -= ∅. In addition, by iii), G is

bounded from above by d1. Take d∗ = supG.

By Remark 1.2 it is clear that:

u(r, d∗, λ) ≥ 0, ∀r ∈ [R, R̂]

from which d∗ < d1 and using ii), we deduce

(21) u(r, d∗, λ) > 0, ∀r ∈ (R, R̂) .

The lemma will be proved (with u(., d∗, λ) as a solution) if we can

show that u(R̂, d∗, λ) = 0. This will be done by contradiction. Assume

that u(R̂, d∗, λ) > 0. Then by Remark 1.2, by (21) and the fact that

u′(R, d∗, λ) = d∗ > 0 we have that

u(r, d, λ) > 0, ∀r ∈ (R, R̂], ∀d ∈ [d∗, d∗ + δ]

where δ > 0 is sufficiently small. Hence d∗+δ ∈ G which is a contradiction

with the definition of d∗. So u(R̂, d∗, λ) = 0 and the proof is finished.

4 – Results of non-existence

In this section we give sufficient conditions to assure the non-existence

of non-negative radially symmetric solution of (1), for λ > 0 sufficiently

greater. Our main result is the following:

Theorem 3.1. Assume (f1, f2). Then there exists λ∗ > 0 such that

(1) has no non-negative radially symmetric solution for all λ ≥ λ∗.



640 D. ARCOYA – A. ZERTITI [16]

In order to prove Theorem 3.1, we observe that it is equivalent to

show the non-existence of non-negative solutions for (4) where λ > 0 is

sufficiently greater. We shall need some previous lemmas. Denote by

uλ(r) a non-negative solution of (4) (if there exists) and let R0 =
R + R̂

2
.

Lemma 3.2. Let f ∈ C1([0,+∞)) satisfying (f2) and consider λ >

2. If uλ(r) is a non-negative solution of (4), then for every r ∈ (R0, R̂]

there exists a positive number M = M(r) > 0 (which is independent on

λ > 2) such that

uλ(r) ≤ M .

Proof. Let φ1 be a positive eigenfunction associated to the first

eigenvalue µ1 > 0 of the eigenvalue problem

{
−(rN−1v′)′ = µrN−1v, R < r < R̂

v(R) = v(R̂) = 0 .

Multiplying the equation in (4) by rN−1φ1(r) and integrating from R to

R̂, we obtain

(22)

∫ R̂

R

rN−1u′
λ(r)φ′

1(r)dr = −
∫ R̂

R

(rN−1u′
λ(r))′φ1(r)dr

= λ

∫ R̂

R

rN−1f(uλ(r))φ1(r)dr .

On the other hand, multiplying the equation −(rN−1φ′
1(r))

′=µ1r
N−1φ1(r),

(R < r < R̂) by uλ and integrating from R to R̂ again, we obtain

∫ R̂

R

rN−1u′
λ(r)φ′

1(r)dr = −
∫ R̂

R

(rN−1φ′
1)

′uλ(r)dr

= µ1

∫ R̂

R

rN−1φ1(r)uλ(r)dr .

Now, combining this with (22) and choosing µ >
µ1

2
, c > 0 such that

f(ξ) ≥ µξ − c, ∀ξ ≥ 0
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(remind that f is superlinear), we deduce

µ1

∫ R̂

R

rN−1φ1(r)uλ(r)dr = λ

∫ R̂

R

rN−1f(uλ(r))φ1(r)dr

≥ λµ

∫ R̂

R

rN−1uλ(r)φ1(r)dr − λc

∫ R̂

R

rN−1φ1(r)dr

from which

∫ R̂

R

rN−1uλ(r)φ1(r)dr ≤ λk

λµ − µ1

≤ k

µ − µ1
2

≡ A, ∀λ > 2

with k = c
∫ R̂

R rN−1φ1(r)dr > 0 and A > 0 independent on λ > 2.

Now, taking an arbitrary r ∈ (R0, R̂] and choosing δ > 0 such that

R0 < r−δ, the fact that uλ(r) is nonincreasing in (R0, R̂) (see [5]) implies

uλ(r) ≤
∫ r

r−δ tN−1uλ(t)φ1(t)dt∫ r

r−δ tN−1φ1(t)dt

≤
∫ R̂

R tN−1uλ(t)φ1(t)dt∫ r

r−δ tN−1φ1(t)dt

≤ A∫ r

r−δ tN−1φ1(t)dt
≡ M, ∀λ > 2

and the proof is concluded.

Lemma 3.3. Assume (f1, f2) and let R1 ∈ (R0, R̂], c ∈ (β, θ), where

θ denotes the unique zero of the primitive F of f (by (f1)). Then there

exists λ1 > 0 such that for all non-negative solution uλ of (4) with λ ≥ λ1,

there is t1 = t1(λ) ∈ (R0, R1] satisfying uλ(t1) < c.

Proof. We argue by contradiction. Suppose that there exists a

sequence {λn} ⊂ (0,+∞) converging to +∞ such that

uλn(r) ≥ c, ∀r ∈ (R0, R1], ∀n ∈ IN.

Consider

tn = Max{r ∈ (R, R̂) : u′
λn

(r) = 0 }.
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By [5], tn ≤ R0 and uλn is decreasing in (tn, R̂). Using (7) (with R1 = R,

a = 0 and b = d) and the fact that u′
λn

(t̄n) = 0, we deduce

(23)

u′
λn

(r) = − λn

rN−1

∫ r

tn

sN−1f(uλn(s))ds

≤ − λn

rN−1
m

∫ r

tn

sN−1ds

≤ − λn

rN−1
m

∫ r

R0

sN−1ds

= − λn

rN−1
m[

rN

N
− RN

0

N
], ∀n ∈ IN, ∀r ∈ (R0, R1]

where

m = min{f(ξ)/ ξ ≥ c} > 0.

Let r1, r2 ∈ (R0.R1] be such that R0 < r1 < r2 ≤ R1. By the mean

value theorem, there exists sn = s(λn) ∈ (r1, r2) satisfying

uλn(r2) = uλn(r1) + u′
λn

(sn)(r2 − r1) .

Observe that by Lemma 3.2 the first summand in the last equality satisfies

uλn(r1) ≤ M, ∀n ∈ IN

for some M = M(r1) > 0. In addition, by (23), the second summand

tends to −∞. Hence we deduce

lim
n→+∞

uλn(r2) = −∞

which clearly is a contradiction with uλn ≥ 0, ∀n ∈ IN . Then Lemma

3.3 is proved.

Lemma 3.4. Assume (f1). Let R2 ∈ (R0, R̂] and c > 1. Then there

exists λ2 > 0 such that every non-negative solution uλ of (4) with λ ≥ λ2

satisfies
β

c̄
∈ uλ([R2, R̂]).
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Proof. If u = uλ is a non-negative solution of (4), we denote by

bλ = max{r ∈ (R, R̂) / u(r) =
β

c̄
}.

The lemma will be proved if we can show

(24) lim
λ→+∞

bλ = R̂.

To do it, we multiply the equation in (4) by rN−1, integrate it from bλ to

R̂ and use that

u(r) <
β

c̄
, ∀r ∈ (bλ, R̂]

to deduce:

∫ R̂

bλ

(rN−1u′(r))′dr = −
∫ R̂

bλ

λrN−1f(u(r))dr

≥
∫ R̂

bλ

λrN−1Kdr

where

K = − max{f(ξ)/ ξ ∈ [0, β]} > 0

Hence

(25) R̂N−1u′(R̂) − bN−1
λ u′(bλ) ≥ λ

N
K(R̂N − bN

λ ) > 0

On the other hand, multiplying now the same equation by r2(N−1)u′(r)

and integrating from bλ to R̂, we have

−
∫ R̂

bλ

[u′′(r)u′(r)r2(N−1) − (N − 1)r2N−3u′(r)2]dr =

= λ

∫ R̂

bλ

f(u(r))r2(N−1)u′(r)dr .

That is

−
∫ R̂

bλ

[rN−1u′(r)]′u′(r)rN−1dr = λ

∫ R̂

bλ

[F (u(r))]′r2(N−1)dr
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Computing the two integrals by parts, we obtain

1

2
[b

2(N−1)
λ u′(bλ)2 − R̂2(N−1)u′(R̂)2] = −λb

2(N−1)
λ F (

β

c̄
)

− 2(N − 1)λ

∫ R̂

bλ

F (u(r))r2N−3dr

Since u(r) <
β

c̄
, ∀r ∈ (bλ, R̂] and F is decreasing in (0, β) by (f1), we

deduce

1

2
[b

2(N−1)
λ u′(bλ)2 − R̂2(N−1)u′(R̂)2] ≤ −λb

2(N−1)
λ F

(β

c̄

)

− 2(N − 1)F
(β

c̄

)
λ

∫ R̂

bλ

r2N−3dr

= −λR̂2(N−1)F
(β

c̄

)

Observe that (25) implies that the left hand of this inequality is

positive (because u′(bλ) ≤ 0 by the definition of bλ and u′(R̂) ≤ 0 by [5]).

Consequently we can take square roots:

1√
2

√
[bλ

N−1u′(bλ)]2 − [R̂N−1u′(R̂]2 ≤ R̂N−1

√

−λF
(β

c̄

)

and using that A − B ≤
√

A2 − B2, ∀A ≥ B ≥ 0 we get

1√
2
[|bN−1

λ u′(bλ)| − |R̂N−1u′(R̂)|] ≤ R̂N−1

√

−λF
(β

c̄

)

which, by (25) again, implies

λ

N
√

2
K(R̂N − bN

λ ) ≤ R̂N−1

√

−λF
(β

c̄

)

i.e.,

− 1

N
√

2
K

1√
−F (β

c̄
)

√
λ(R̂N − bN

λ ) ≤ R̂N−1
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and as a consequence (24) is satisfied. So the proof is finished.

Proof of Theorem 3.1: Let us consider c ∈ (β, θ), c̄ > 1 and

R1, R2 ∈ (R0, R̂) such that R1 < R2. Let λ1, λ2 > 0 be given, respectively,

by Lemmas 3.3 and 3.4. Take µ =
(β

c̄
+ c

)
(R2 − R1)

−1 and choose

λ∗ ≥ max{λ1, λ2}

such that

λ∗M +
µ2

2
< 0

where

M = max

{
F (ξ) :

β

c̄
≤ ξ ≤ c

}
< 0 .

We claim that (4) has no non-negative solutions for λ ≥ λ∗. Otherwise

there exists λ ≥ λ∗ such that (4) has at least one non-negative solution

uλ. Since λ ≥ λi, i = 1, 2, we deduce from Lemmas 3.3 and 3.4 the

existence of t1 = t1(λ) ∈ (R0, R1] and t2 = t2(λ) ∈ [R2, R̂] satisfying

uλ(t1) < c and uλ(t2) =
β

c̄
. Then, by the mean value theorem there is

t3 = t3(λ) ∈ (t1, t2) such that

uλ(t2) − uλ(t1) = u′
λ(t3)(t2 − t1) .

Hence

(26) |u′
λ(t3)| =

|uλ(t2) − uλ(t1)|
t2 − t1

≤ µ

On the other hand, by [5] , uλ is strictly decreasing in [R0, R̂). Then

(27) uλ(t3) ∈ [
β

c̄
, c] .

The expressions (26) and (27) imply that the energy function E(r) =

λF (uλ(r)) +
u′

λ(r)2

2
(considered in the proof of Lemma 2.3) satisfies

E(t3) ≤ λM +
µ2

2
≤ λ∗M +

µ2

2
< 0
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But this is impossible because E is a nonincreasing function (remind

that E′(r) = −N − 1

r
u′(r)2 ≤ 0) with E(R̂) =

u′(R̂)2

2
≥ 0. Therefore

the claim is true.
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