Rendiconti di Matematica, Serie VII Volume 15, Roma (1995), 647-663

Developable spaces and cleavability

F. CAMMAROTO – Lj. KOČINAC

RIASSUNTO: Sia \mathcal{P} una classe di spazi topologici, diciamo che uno spazio topologico X è spezzabile su \mathcal{P} se per ogni $A \subset X$ esistono uno spazio $Y \in \mathcal{P}$ ed una funzione continua $f : X \to Y$ tale che f(X) = Y ed $f^{-1}f(A) = A$. Diciamo inoltre che uno spazio X è divisibile se per ogni $A \subset X$ esiste una collezione numerabile S di sottoinsiemi chiusi di X tale che per ogni $x \in A$ ed ogni $y \notin A$ esiste un elemento $S \in S$ con $x \in S$ ed $y \notin S$. Studiamo in questo lavoro la spezzabilità sulla classe degli spazi sviluppabili (secondo numerabili) e determiniamo alcune relazioni tra la spezzabilità e la divisibilità.

ABSTRACT: If \mathcal{P} is a class of topological spaces, then a topological space X is said to be cleavable over \mathcal{P} if for every $A \subset X$ there are a space $Y \in \mathcal{P}$ and a continuous mapping $f: X \to Y$ such that f(X) = Y and $f^{-1}f(A) = A$. The space X is called divisible if for every $A \subset X$ there exists a countable collection S of closed subsets of X such that for every $x \in A$ and every $y \notin A$ there is a member S in S with $x \in S$ and $y \notin S$. We investigate cleavability over the class of (second countable) developable spaces and some relations between that cleavability and divisibility.

- Introduction

In 1985, ARHANGEL'SKII [1], [2] introduced various types of cleavability (originally called splittability) of a topological space as follows.

KEY WORDS AND PHRASES: Cleavability – Divisibility – Cardinal functions – Developable space – Subdevelopable space – Perfect space – (Weakly) D-regularity – (Weakly) D-completely regular space – D-normal space – D-paracompact space – H-closed space – Minimal Hausdorff space

A.M.S. Classification: 54A25 - 54C10 - 54D20 - 54E30

Supported by MURST "Fondi 40%", Italy; and by the Science Fund of Serbia, grant N. 0401A through Matematički institut, Beograd.

Let \mathcal{P} be a class of topological spaces and \mathcal{M} a class of continuous mappings (containing all homeomorphisms). Let A be a subset of a space X. X is said to be \mathcal{M} -cleavable over \mathcal{P} along A if there exist a space $Y \in \mathcal{P}$ and a mapping $f \in \mathcal{M}, f : X \to Y$, such that Y = f(X) and $f^{-1}f(A) = A$. If \mathcal{A} is a family of subsets of X, then we shall say that X is \mathcal{M} -cleavable over \mathcal{P} along \mathcal{A} if it is \mathcal{M} -cleavable over \mathcal{P} along each $A \in \mathcal{A}$. X is \mathcal{M} -cleavable over \mathcal{P} if it is \mathcal{M} -cleavable over \mathcal{P} along each $A \subset X$. When \mathcal{P} is the family of all subsets of a given space Y we speak about \mathcal{M} -cleavable over \mathcal{P} along all singletons $\{x\}, x \in X$, one speaks about pointwise \mathcal{M} -cleavability (of X) over \mathcal{P} . When \mathcal{M} is the class of all continuous [open, closed, perfect, ...] mappings we use the term cleavable [open cleavable, closed cleavable, perfectly cleavable ...] over \mathcal{P} instead of \mathcal{M} -cleavable over \mathcal{P} .

Many papers concerning different types of cleavability were published in the last year (see references, especially [5], [25]).

In particular, a cleavable space is a space which is cleavable over the class of all separable metrizable spaces (or equivalently over \mathbb{R}^{ω} , because every separable metrizable space can be embedded into \mathbb{R}^{ω}). This case is of particular interest. The paper [8] studies cleavability in details and contains many interesting results in this connection.

The following two questions concerning cleavability are quite natural.

GENERAL QUESTION A. Which spaces X are \mathcal{M} -cleavable over a class \mathcal{P} (along subset of X or along a collection of subsets of X)?

GENERAL QUESTION B. If a space X is \mathcal{M} -cleavable over \mathcal{P} , which properties X has? Does X belong to \mathcal{P} ?

Let us denote that if there exists a continuous bijection from X onto a space $X \in \mathcal{P}$, then, obviously, X is cleavable over \mathcal{P} . In this case one can say that X is absolutely cleavable over \mathcal{P} . So, cleavability (over \mathcal{P}) may be viewed as a generalization of continuous bijection (onto some $Y \in \mathcal{P}$). A natural question in this connection is: when cleavability over \mathcal{P} implies the existence of a continuous bijection from X onto some $Y \in \mathcal{P}$? Here is the lemma (which is often used for the proofs of many theorems concerning cleavability) about this: LEMMA 0.1 ([2]). Let τ be a cardinal, \mathcal{P} a class of spaces. Let a space X be cleavable over \mathcal{P} . If $\{A_{\alpha} : \alpha \in 2^{\tau}\}$ is a collection of pairwise disjoint subsets of X, then there is a family $\{Y_{\beta} : \beta \in \tau\} \subset \mathcal{P}$ and a continuous mapping $f : X \to \prod\{Y_{\beta} : \beta \in \tau\}$ such that $A_{\alpha} = f^{-1}f(A_{\alpha})$ for each $\alpha \in 2^{\tau}$.

In particular, if \mathcal{P} is a hereditary and τ -multiplicative class, then if a space X of cardinality $\leq 2^{\tau}$ is cleavable over \mathcal{P} , then it is absolutely cleavable over \mathcal{P} .

We also need the following well known lemma (which is used in the proof of Lemma 0.1).

LEMMA 0.2. If A is a set of cardinality $\leq 2^{\tau}$, then there exists a point separating family γ of subsets of A such that $|\gamma| \leq \tau$.

 (γ) is point separating if for any $x, y \in A, x \neq y$, there exists $B \in \gamma$ for which $x \in B, y \notin B$.

One of the most important and useful generalizations of metrizable spaces are developable spaces. Recall that a space X is developable if there exists a countable collection $\{\mathcal{U}_i : i \in \omega\}$ of open covers of X such that for every $x \in X$ the family $\{St(x, \mathcal{U}_i) : i \in \omega\}$ is a local base for X at x. (Here $St(x, \mathcal{U}_i)$ is the union of all members of \mathcal{U}_i containing x). A space X is subdevelopable if it admits a continuous bijection onto a developable T_1 -space. In 1978, H. Brandenburg began the systematic investigation of topological spaces generated by developable spaces (instead of metrizable spaces) and obtained some new classes of spaces, as D-completely regular, D-compact, D-paracompact and so on (for details see BRANDENBURG's nice survey [10] on this area in which many undefined notions can be found; see also [11]). Besides, among developable spaces there is an analogue of the real line, in fact a spaces, denoted by \mathbb{D}_1 , of cardinality (exactly) 2^{ω} whose countable power \mathbb{D}_1^{ω} is universal for the class \mathcal{D}_c of all second countable developable T_1 -spaces (i.e. every second countable developable T_1 -space can be embedded into \mathbb{D}_1^{ω} [10]. We shall denote by $O \in \mathbb{D}_1$ the analogue of $0 \in \mathbb{R}$.

In this paper we continue the previous two lines of investigation and study cleavability over the class of developable T_1 -spaces (that generalize metrizable spaces) and over the class of second countable developable T_1 -spaces (which generalize separable metrizable spaces); these classes of spaces we shall denote by \mathcal{D} and \mathcal{D}_c , respectively. We clarify which results concerning cleavability over \mathbb{R}^{ω} can be or cannot be generalized to the case of cleavability over \mathcal{D} and over \mathcal{D}_c .

In Section 4 we investigate relations between cleavability and divisibility introduced by ARHANGEL'SKII in [3], (see also [22], [23], [24]).

1 – Notation and terminology

Throughout the paper we shall use the usual topological notation and terminology as in [13] (for general concepts and theorems) and [16], [17] (for cardinal functions); undefined concepts can be found there. w, pw, ψ , Δ , L, hL, c, s, e, t denote the following cardinal functions: the weight, pseudoweight, pseudocharacter, diagonal number, Lindelöf number, hereditary Lindelöf number, cellularity, spread, extend and tightness. $iw(X) = \min{\{\tau: \text{ there exists a continuous bijection from X onto a space}$ Y with $w(Y) \leq \tau$ }. $\Psi(X)$ is the smallest cardinal τ such that every closed set in X is the intersection of $\leq \tau$ open sets. A space X is perfect if $\Psi(X)$ is countable.

All spaces are T_1 , all mappings are continuous and all cardinals τ are infinite.

DEFINITION 1.1 ([10]). A space X is called:

(1) *D*-regular if each point $x \in X$ has a local base consisting of F_{σ} -sets (not necessarily open);

(2) weakly D-completely regular if it has a base consisting of open F_{σ} -sets;

(3) *D*-completely regular if it can be embedded into a product of developable T_1 -spaces;

(4) D-normal (weakly D-normal) if for every two disjoint closed subsets A and B of X there exists a continuous mapping f from X into some developable T_1 -space such that $\overline{f(A)} \cap \overline{f(B)} = \emptyset$ ($f(A) \cap f(B) = \emptyset$);

(5) *D*-compact if every open cover of X has a finite refinement consisting of open F_{σ} -sets;

(6) D-paracompact if for every open cover \mathcal{U} of X there exists a \mathcal{U} -mapping from X into some developable T_1 -space.

2 – Separation axioms and cleavability

It is known that if a space X admits a continuous bijection onto a regular (*D*-regular) space, then X need not be regular (*D*-regular). In this connection we have the following result.

PROPOSITION 2.1. A space X is cleavable over the class \mathcal{P} of D-regular (resp. D-completely regular, weakly D-completely regular) spaces if and only if X admits a continuous bijection onto some space in \mathcal{P} (but X need not be in \mathcal{P}).

This results follows from Lemma 0.1 of one takes into account that the previous three classes of spaces are hereditary and productive.

It is known that *D*-complete regularity is not inversely preserved even under open perfect mappings and that weak *D*-complete regularity is not preserved in the preimage direction by perfect mappings [15; Ex. 3.13]. Perfect preimages of *D*-normal spaces are not necessarily *D*-normal (see [10; p. 42]). If a T_2 -space admits a perfect mapping onto a *D*-regular space *Y*, then *X* is also *D*-regular [15; Th. 5.10]. However we have the following result.

PROPOSITION 2.2. If a space X is closed pointwise cleavable over the class \mathcal{P} of D-regular (resp. weakly D-completely regular) spaces, then $X \in \mathcal{P}$. If X is closed cleavable over the class of all D-completely regular (D-normal) spaces, then X is also D-completely regular (D-normal).

For one class of spaces the previous result concerning cleavability over the class of weakly *D*-completely regular spaces may be improved.

THEOREM 2.3. If a hereditary Lindelöf space X is closed pointwise cleavable over the class of all weakly D-completely regular space, then Xis subdevelopable.

PROOF. Let us prove that X has a base consisting of open F_{σ} -sets. Let $x \in X$, U a neighbourhood of x. Take a closed mapping f from X onto a weakly D-completely regular space Y such that $f^{-1}f(x) = \{x\}$. Since f is closed and $U \supset f^{-1}f(x)$, there exists a neighbourhood V of f(x)with $f^{-1}(V) \subset U$. Take an open F_{σ} -set $H \subset V$ such that $f(x) \in H \subset V$. Then $f^{-1}(H)$ is an open F_{σ} -set in X and $x \in f^{-1}(H) \subset U$, i.e. X has a base consisting of open F_{σ} -sets. So, X is weakly D-completely regular. Since X is a hereditarily Lindelöf space, it is easy to show that every open set in X is an F_{σ} -set, i.e. X is a perfect space. Every weakly Dcompletely regular Lindelöf space is D-paracompact [10]. The space X^2 is also perfect and thus X has a G_{δ} -diagonal. But every D-paracompact space with a G_{δ} -diagonal is subdevelapable (see Example 3.1.(b)).

3 – Concerning cleavability over \mathcal{D} and over \mathcal{D}_c

As was mentioned, cleavability of a space over the class \mathcal{D}_c of second countable developable T_1 -spaces is equivalent to cleavability of that space over \mathbb{D}_1^{ω} . However, this cleavability is equivalent to cleavability over each of the following two classes of spaces: (i) the class of all second countable weakly *D*-completely regular T_1 -spaces; (ii) the class of all second countable *D*-regular T_1 -spaces. That follows from the fact that these two classes of spaces coincide with the class \mathcal{D}_c (see [15; Prop. 6.1]).

EXAMPLE 3.1 (a) Every semi-metrizable space of cardinality $\leq 2^{\omega}$ is (absolutely) cleavable over \mathcal{D} . (It follows from the fact that every semi-metrizable space having cardinality $\leq 2^{\omega}$ is subdevelopable [10; Cor. 4.17]).

(b) Every *D*-paracompact space with a G_{δ} -diagonal is (absolutely) cleavable over \mathcal{D} . (It follows from [10; p. 52]).

We shall give now some simple but useful facts regarding cleavability over \mathbb{ID}_1 , \mathcal{D} and \mathcal{D}_c which are actually special cases of some more general results.

PROPOSITION 3.2. If a space X is pointwise cleavable over the class \mathcal{D} (or over \mathbb{D}_1), then X is a T_1 -space of countable pseudocharacter. If X is closed pointwise cleavable over \mathbb{D}_1 , then X is a first countable space.

It is known that if a space X is perfectly cleavable over a class of developable spaces (over a class of spaces having countable base), then X is developable (X has a countable base) [5], [7], [19], [25]. The following proposition can be derived from this result.

PROPOSITION 3.2'. If a space X is perfectly cleavable over \mathcal{D} (over \mathcal{D}_c or over \mathbb{D}_1), then X belongs to $\mathcal{D}(\mathcal{D}_c)$.

Let us mention that if a space X is perfectly cleavable over the real line \mathbb{R} , then X is a developable (actually metrizable) space [5], [20]. But, the following assertion is true.

PROPOSITION 3.2". There exists a metacompact Moore space X which is not cleavable over \mathbb{R} .

This follows from the fact that there exists a metacompact Moore space X such that every continuous mapping $f : X \to \mathbb{R}$ is continuous [10; Th. 3.1].

The following five results are related to General Question A.

PROPOSITION 3.3. Every space X is cleavable over \mathcal{D} (over \mathbb{D}_1) along each D-closed set [10] (and thus along each D-open set).

PROOF. Let A be a D-closed subset of X. According to Proposition 1.4 in [10] there exist a space $Y \in \mathcal{D}$, a closed set $B \subset Y$ and a continuous mapping $f : X \to Y$ such that $A = f^{-1}(B)$ (equivalently, there exists a continuous mapping $g : X \to \mathbb{D}_1$ such that $A = g^{-1}(0)$). This means $f^{-1}f(A) = A$ (resp. $A = g^{-1}g(A)$), i.e. X is cleavable over \mathcal{D} (resp. over \mathbb{D}_1) along A.

Every closed set in a perfect space is *D*-closed (in fact, a G_{δ} -set). Therefore, we have

PROPOSITION 3.3'. Every perfect space is cleavable over \mathcal{D} along each closed set (and thus, along each open set).

Recall the following definition [10], [13]. Let X and Y be topological spaces and \mathcal{U} a cover of X. A mapping $f: X \to Y$ is called a \mathcal{U} -mapping if for each $y \in Y$ there exist a neighbourhood V of y and a member U in \mathcal{U} such that $f^{-1}(y) \subset f^{-1}(V) \subset U$. It is known that if \mathcal{U} is a cover of X and $f_{\alpha}: X \to Y_{\alpha}, \alpha \in \Lambda$, is a family of mappings and at least one f_{α} is a \mathcal{U} -mapping, then the diagonal product of all f_{α} is also a \mathcal{U} -mapping.

THEOREM 3.4. Every perfect D-paracompact space X is cleavable over \mathcal{D} along any disjoint collection of open subsets of X. PROOF. Let \mathcal{A} be a disjoint family of open subsets of X. Put $U = \bigcup \mathcal{A}$, $F = X \setminus U$. As X is perfect, there exists a countable collection $\{V_i : i \in \omega\}$ of open subsets of X such that $F = \bigcap \{V_i : i \in \omega\}$. For every $i \in \omega$ the family $\mathcal{V}_i = \mathcal{A} \cup \{V_i\}$ is an open cover of X. Since X is a D-paracompact space, then for each $i \in \omega$ there exists a \mathcal{V}_i -mapping f_i from X onto a space $Y_i \in \mathcal{D}$ [10; p. 43]. The diagonal product $f = \Delta\{f_i : i \in \omega\} : X \to$ $\prod\{Y_i : i \in \omega\} = Y \in \mathcal{D}$ is a \mathcal{V}_i -mapping for every $i \in \omega$. We are going to prove that f cleavs X (over Y) along every $A \in \mathcal{A}$. Let A be any member in \mathcal{A} and let $x \in A$. There exists some $k \in \omega$ such that $x \notin V_k$, because otherwise x would belong to F which is impossible. Since f is a \mathcal{U}_k -mapping, there exists some $G \in \mathcal{V}_i$ with $f^{-1}f(x) \subset G$. On the other hand, $x \in A$ and as \mathcal{A} is a disjoint collection we have G = A. Therefore, $f^{-1}f(X) \subset A$ and because x was an arbitrary element in A one concludes $f^{-1}f(A) = A$. The theorem is proved.

COROLLARY 3.5. Every stratifiable and every perfect metacompact space X is cleavable over \mathcal{D} along any disjoint family of open subsets of X.

For one subclass of the class of perfect D-paracompact spaces we have the following similar result.

THEOREM 3.6. Every perfect weakly D-completely regular Lindelöf space X is cleavable over \mathcal{D}_c along any disjoint family of open subsets of X.

PROOF. We argue as in the proof of the theorem above by using the fact that for every perfect weakly *D*-completely regular Lindelöf space X and every open cover \mathcal{U} of X there exists a \mathcal{U} -mapping onto some second countable developable T_1 -space [10; Th. 5.11].

As a nice application of this theorem we have the following result.

COROLLARY 3.7. Let a perfect weakly *D*-completely regular Lindelöf space X admits a perfect mapping onto a space in \mathcal{D}_c . Then $c(X) \leq \omega$.

PROOF. Let \mathcal{U} be a collection of pairwise disjoint open subsets of X. According to the previous theorem there exists a mapping f from X onto some space $Y \in \mathcal{D}_c$ such that $f^{-1}f(U) = U$ for every $U \in \mathcal{U}$. Let g be a perfect mapping from X onto some space $Z \in \mathcal{D}_c$. Then the diagonal product $\varphi = f\Delta g : X \to Y \times Z \in \mathcal{D}_c$ is a perfect mapping satisfying $\varphi^{-1}\varphi(U) = U$ for each $U \in \mathcal{U}$. The last condition together with the fact that φ is a closed mapping gives that all the sets $\varphi(U), U \in \mathcal{U}$, are open and disjoint in $Y \times Z$. Since $c(Y \times Z) \leq w(Y \times Z) \leq \omega$, we have that $\{\varphi(U) : U \in \mathcal{U}\}$ is countable. But then the family $\{U = \varphi^{-1}\varphi(U) : U \in \mathcal{U}\}$ is also countable, i.e. $c(X) \leq \omega$.

Every semi-stratifiable space is perfect and weakly D-completely regular. So we have:

COROLLARY 3.7'. If a semi-stratifiable Lindelöf space X admits a perfect mapping onto some second countable developable T_1 -space, then $c(X) \leq \omega$.

The rest of this section is devoted to General Question B.

Denote by cL(X) the smallest cardinal τ such that for any closed $A \subset X$ and any family \mathcal{U} of open subsets of X for which $A \subset \cup \mathcal{U}$ there is a subfamily \mathcal{V} of \mathcal{U} with $|\mathcal{V}| \leq \tau$ and $A \subset \cup \overline{\mathcal{V}}$ (see, for example, [9], [25]). If $cL(X) \leq \omega$ we say that X is almost Lindelöf. Denote by \mathcal{M}_{cL} the class of all continuous mappings with almost Lindelöf fibers.

THEOREM 3.8. If a T_2 -space X is \mathcal{M}_{cL} -cleavable over the class \mathcal{D}_c , then $iw(X) \leq 2^{\omega}$.

PROOF. Let us note first that X is a space countable pseudocharacter: $\psi(X) \leq \omega$. Let A be a subset of X. Choose a space $Y \in \mathcal{D}_c$ and a mapping $f \in \mathcal{M}_{cL}$ from X onto Y such that $f^{-1}f(A) = A$. Since $|f(A)| \leq |Y| \leq 2^{\omega}$ and for every $y \in f(A)$, $cL(f^{-1}(y)) \leq \omega$, we have $cL(A) = cL(\cup \{f^{-1}(y) : y \in f(A)\}) \leq 2^{\omega} \cdot \omega = 2^{\omega}$ which means that $hcL(X) \leq 2^{\omega}$. Using the fact that X is Hausdorff space it is easy to check that $s(X) \leq hcL(X)$ (see [9], [23]) and so $s(X) \leq 2^{\omega}$. As X is a T_1 space, by the well known theorem of Hajanal-Juhász [13], [16], [17] we get $|X| \leq 2^{s(X)\psi(X)} \leq 2^{2^{\omega}}$. According to Lemma 0.1 there exists a continuous bijection $f: X \to \prod \{Y_{\alpha} : \alpha \in 2^{\omega}\}$, where every $Y_{\alpha} \in \mathcal{D}_{c}$. It is clear that $w(\prod \{Y_{\alpha} : \alpha \in 2^{\omega}\} \le 2^{\omega})$ and therefore we conclude $iw(X) \le 2^{\omega}$.

REMARK 3.9 Theorem 3.8 remains true if the class \mathcal{M}_{cL} is replaced by the class \mathcal{M}_e of all closed continuous mappings with fibers having countable extend and cleavability of X over \mathcal{D}_c is replaced by cleavability over \mathcal{D}_c along all open subsets. In the proof we have to use the facts: (i) for each open set $U \subset X$ one has $e(U) \leq 2^{\omega}$ and thus $e(X) \leq 2^{\omega}$; (ii) $\Psi(X) \leq \omega$ (because if U is open in X, then f(U) is open in f(X)); (iii) $|Z| \leq 2^{e(Z)\Psi(Z)}$ for every T_1 -space Z (see [17; 2.31]), and consequently, $|X| \leq 2^{2^{\omega}}$. It remains to work as in the proof of the previous theorem.

COROLLARY 3.10. If a Lindelöf space X is cleavable over \mathcal{D}_c , then X is a subdevelopable T_1 -space (and thus has a G_{δ} -diagonal).

PROOF. For every $y \in Y \in \mathcal{D}_c$ we have $L(f^{-1}(y)) \leq \omega$ and thus $cL(f^{-1}(y)) \leq \omega$. Hence, by theorem 3.8, we have $iw(X) \leq 2^{\omega}$ and so $pw(X) \leq 2^{\omega}$. Since X is a T_1 -space, we have [16]: $|X| \leq pw(X)^{L(X)\psi(X)} \leq (2^{\omega})^{\omega \cdot \omega} = 2^{\omega}$. Applying now Lemma 0.1 and taking into account that \mathcal{D}_c is a hereditary and countably multiplicative class of spaces we obtain that there exists a continuous bijection from X onto some space from \mathcal{D}_c . So, X is subdevelopable. It is known that every subdevelopable space has a G_{δ} -diagonal.

In [8], it is shown that every regular Lindelöf space with a G_{δ} -diagonal is cleavable over \mathbb{R}^{ω} (or, equivalently, over the class of separable metrizable spaces). So, we have this

COROLLARY 3.10'. A regular Lindelöf space is cleavable over the class \mathcal{D}_c if and only if it is cleavable over the class of separable metrizable spaces.

It is known that a cleavable paracompact p-space is metrizable [5], [8], [20]. Since every regular Lindelöf space is paracompact, we have

COROLLARY 3.10". Every regular Lindelöf p-space which is cleavable over \mathcal{D}_c is metrizable. In [8] was shown that every compact cleavable space is metrizable. Now we are going to give a generalization of that result.

THEOREM 3.11. If a H-closed space X [13] is closed cleavable over the class \mathcal{D}_c , then X is subdevelopable.

PROOF. Since X is closed cleavable over a class of spaces having table character, X also has countable character [2], [6], [20]. By a result in [14] we have $|X| \leq 2^{\omega}$. According to Lemma 0.1 there is a continuous bijection from X onto a space in \mathcal{D}_c , i.e. X is subdevelopable.

COROLLARY 3.12. If a minimal Hausdorff space X is closed cleavable over the class of second countable developable T_2 -spaces, then X is developable.

PROOF. It is known that X is minimal Hausdorff if and only if it is Hclosed and semiregular [13]. By Theorem 3.11 there exists a continuous bijection from X onto a second countable developable T_2 -space. Since X is minimal Hausdorff that bijection is a homeomorphism, i.e. X is a developable space.

Recall that a subset A of a space X is called D-embedded if every continuous mapping f from A into \mathbb{D}_1 can be extended to a continuous mapping $F: X \to \mathbb{D}_1$ such that F|A = f. The following three results should be compared with the corresponding results in [8] concerning cleavability over \mathbb{R}^{ω} (see Theorems 5.1 and 2.16

and Corollary 5.2 in [8]).

THEOREM 3.13. Let X be the union of an increasing sequence $X_0 \subset X_1 \subset \ldots \subset X_n \subset \ldots$ of D-closed of X. If every X_n is cleavable over \mathcal{D}_c , then X is also cleavable over \mathcal{D}_c .

PROOF. Let A be any subset of X. Put $A_i = A \cap X_i$ for $i \in \omega$. As X_i is cleavable over \mathcal{D}_c , there exists a continuous mapping $f_i : X_i \to \mathbb{D}_1^{\omega}$ such that $f_i^{-1}f_i(A_i) = A_i$. Put now $g_k = \pi_k \circ f_i : X_i \to \mathbb{D}_1, k \in \omega$, where $\pi_k : \mathbb{D}_1^{\omega} \to \mathbb{D}_1$ denotes the projection. As every D-closed subset of X is D-embedded [10; 1.6], there exists a continuous extension $\varphi_k : X \to \mathbb{D}_1$ of g_k . Let $\varphi_i = \Delta\{\varphi_k : k \in \omega\} : X \to \mathbb{D}_i^{\omega}$. Then φ_i is a continuous

extension of f_i . Finally, $\varphi = \Delta \{ \varphi_i : i \in \omega \}$ is a continuous mapping from X into $(\mathbb{D}_i^{\omega})^{\omega} \cong \mathbb{D}_i^{\omega}$ which satisfies $\varphi^{-1}\varphi(A) = A$ as is easily seen. The theorem is proved.

Every closed subset of a perfect space is D-closed and thus D-embedded, so that from Theorem 3.13 we obtain

COROLLARY 3.14. If a perfect space is the union of an increasing sequence of closed subsets of X which are cleavable over \mathcal{D}_c , then X is also cleavable over \mathcal{D}_c .

THEOREM 3.15. Let X be a D-completely regular space. If $X = \bigoplus \{X_{\alpha} : \alpha \in 2^{\omega}\}$ and every X_{α} is cleavable over \mathcal{D}_{c} , then X is also cleavable over \mathcal{D}_{c} .

PROOF. Let A be a subset of X and $A_{\alpha} = A \cap X_{\alpha}$, $\alpha \in 2^{\omega}$. For every $\alpha \in 2^{\omega}$ choose a continuous mapping f_{α} from X_{α} onto some space $Y_{\alpha} \in \mathcal{D}_{c}$ such that $f_{\alpha}^{-1}f_{\alpha}(A_{\alpha}) = A_{\alpha}$. (Without loss of generality one can suppose that $Y_{\alpha} \cap Y_{\beta} = \emptyset$ for $\alpha \neq \beta$). Being developable all the spaces Y_{α} are D-completely regular so that D-open sets form bases for their topologies [10]. Hence, for every $\alpha \in 2^{\omega}$ one can find a countable collection of continuous mappings $g_{\alpha,i} : Y_{\alpha} \to \mathbb{D}_{1}$ such that $\{g_{\alpha,i}^{-1}(\mathbb{D}_{1} \setminus 0) : i \in \omega\}$ is a base for Y_{α} . For the set of indecies there exists a countable point-separating family $\gamma = \{P_{k} : k \in \omega\}$ (see Lemma 02.). For every $P \in \gamma$ and every $i \in \omega$ define $\varphi_{P,i} : Y_{\alpha} \to \mathbb{D}_{1}$ by

$$\varphi_{P,i}(y) = \begin{cases} g_{\alpha,i}(y) , & \alpha \in P \\ \pi(0) , & \alpha \notin P \end{cases}$$

The mappings $\varphi_{P,i}$, $P \in \gamma$, $i \in \omega$, generate the smallest topology Ton $Y = \bigcup \{Y_{\alpha} : \alpha \in 2^{\omega}\}$ with respect to which all these mappings are continuous. (Y,T) is a second countable developable T_1 -space. Finally, let $f : X \to (Y,T)$ be defined so that $f|X_{\alpha} = f_{\alpha}$ for each $\alpha \in 2^{\omega}$. Then f is continuous and satisfies $f^{-1}f(A) = A$ so the theorem is proved. \Box

4 – Cleavability and divisibility

Let X be a topological space and A a subset of X. Following [3] we say that a family S_A of subsets of X is a divisor (or separator [3], [22], [23]) for A if for every $x \in A$ and every $y \in X \setminus A$ there exists $S \in S_A$ such that $X \in S$ and $y \notin S$. If all members of S_A are closed (open) in X, then we say that S_A is a closed (open) divisor for A. In [3], A. ARHANGEL'SKII defined a space X to be divisible if for every $A \subset X$ there is a countable closed divisor for A.

For a space X and a subset A of X we define $dvs(A, X) = min\{\tau: \text{ there is a closed divisor } S_A \text{ for } A \text{ of cardinality } \leq \tau\}$ and

$$\operatorname{dvs}(X) = \sup\left\{\operatorname{dvs}(A) : A \subset X\right\}.$$

The cardinal number dvs(X) we shall call the divisibility degree of X [22]. In [3], [22], [23], [24] one can find some interesting results involving the divisibility degree of a space.

Now we shall see some relations between divisibility and cleavability over the class \mathcal{D}_c . In [23] it was remarked that a perfectly normal space is divisible if and only if it is cleavable (over \mathbb{R}^{ω}). Here we prove the following similar result.

THEOREM 4.1. A perfect space X is divisible if and only if X is cleavable over \mathcal{D}_c .

PROOF. (\Rightarrow) Let A be a subset of X. Take countable closed divisor $S_A = \{F_i : i \in \omega\}$, for A. Since X is a perfect space, according to [10; Th. 4.4] (which says that in a perfect space every closed set is D-closed) for every $i \in \omega$ there exist a space $Y_i \in \mathcal{D}_c$, a closed set $B \subset Y_i$ and a continuous mapping $f_i : X \to Y_1$ such that $F_i = f^{-1}(B)$. Then the diagonal product $f = \Delta\{f_i : i \in \omega\} : X \to \prod\{Y_i : i \in \omega\} \in \mathcal{D}_c$ is a continuous mapping which cleaves X over \mathcal{D}_c along A which follows from the definition of a divisor (and can be verified without difficulties).

 (\Leftarrow) Let A be a subset of X. Take a space $Y \in \mathcal{D}_c$ and a continuous mapping $f : X \to Y$ such that f(X) = Y and $f^{-1}f(A) = A$. Let $x \in A, y \in X \setminus A$. The space Y is perfect so that f(y) is a G_{δ} -point: $\{f(y)\} = \cap \{V_i : i \in \omega\}$, where each V_i is an open set. Then the collection $\{f^{-1}(Y \setminus V_i) : i \in \omega\}$ is a countable closed divisor for A. Indeed, $f(x) \notin V_k$ for some $k \in \omega$, so that $f(x) \in Y \setminus V_k$ and thus $x \in f^{-1}(Y \setminus V_k)$; on the other hand, $y \notin f^{-1}(Y \setminus V_k)$

EXAMPLE 4.2 The Sorgenfrey line S and all its powers S^n , $n \leq \omega$, are perfect Tychonoff spaces of countable pseudoweight and so divisible; therefore all these spaces are cleavable over \mathcal{D}_c .

Every perfect space is *D*-normal. For *D*-normal spaces we have the following result (which is a generalization of a result from [24] concerning normal spaces). $w_c(X)$ denotes the cleavable weight of a space X, that is the smallest cardinal τ such that X is cleavable over the class of spaces having weight $\leq \tau$.

THEOREM 4.3. For every D-normal T_1 -space X we have

$$\operatorname{dvs}(X) \le w_c(X) \le \Psi(X) \operatorname{dvs}(X).$$

PROOF. Let $\Psi(X) \operatorname{dvs}(X) = \tau$ and let A be a subset of X. Take a closed divisor $S_A = \{F_\alpha : \alpha \in \tau\}$ for A of cardinality $\leq \tau$. Since $\Psi(X) \leq \tau$ every F_α can be represented in the form

$$F_{\alpha} = \cap \{ U_{\alpha,\beta} : \beta \in \tau \} \,,$$

where each $U_{\alpha,\beta}$ is open in X. Using D-normality of X, for every pair α, β of elements of τ one can choose a continuous mapping $f_{\alpha,\beta} : X \to \mathbb{D}_1$ such that $f_{\alpha,\beta}(F_{\alpha}) \subset \{p\}, f_{\alpha,\beta}(X \setminus U_{\alpha,\beta}) \subset \{q\}$, where p and q are arbitrary but fixed points in \mathbb{D}_1 [10]. From the definition of \mathcal{S}_A it follows that the diagonal product $\varphi = \Delta\{f_{\alpha,\beta} : \alpha, \beta \in \tau\} : X \to \mathbb{D}_1^{\tau}$ satisfies $\varphi^{-1}\varphi(A) = A$. Since $w(\mathbb{D}_1^{\tau}) \leq \tau$ this means that X is cleavable over a class of spaces of weight $\leq \tau$, i.e. $w_c(X) \leq \tau$.

The Sorgenfrey line S shows $\Psi(S) \operatorname{dvs}(S) = \omega < w(S) = 2^{\omega}$.

In [8] (see also [5]) the following characterization of cleavability (over \mathbb{R}^{ω}) was given: a space X is cleavable if and only if it is weakly normal and for every subset A of X there is a countable closed Hausdorff divisor for A. (A family \mathcal{S}_A of subsets of X is called a Hausdorff divisor (or separator) for A if for each $x \in A$ and each $y \in X \setminus A$ there exist members P and Q in \mathcal{S}_A such that $x \in P, y \in Q$ and $P \cap Q = \emptyset$. A space X is said to

be weakly normal if for any two disjoint closed subsets A and B of X there exists a continuous mapping $f: X \to \mathbb{R}^{\omega}$ such that $f(A) \cap f(B) = \emptyset$.

We have the following assertion.

THEOREM 4.4. If a space X is weakly D-normal and X has a countable closed Hausdorff divisor for every $A \subset X$, then X is cleavable over \mathcal{D}_c .

PROOF. Let $A \subset X$. Take a countable Hausdorff divisor S_A for A: $S_A = \{F_i : i \in \omega\}$. Consider the set $\mathcal{K} = \{(F_i, F_j) : F_i, F_j \in S_A\}$. Clearly, \mathcal{K} is countable. Since X is weakly D-normal, for every $(F_i, F_j) \in \mathcal{K}$ there exist a space $Y_{ij} \in \mathcal{D}_c$ and a continuous mapping $f_{ij} : X \to Y_{ij}$ such that $f_{ij}(F_i)$ and $f_{ij}(F_j)$ are disjoint. From the definition of a Hausdorff divisor it is easy to check that the diagonal product $f = \Delta\{f_{ij} : i, j \in \omega\} : X \to \prod\{Y_{ij}; i, j \in \omega\} \in \mathcal{D}_c$ satisfies $f^{-1}f(A) = A$. Hence, X is cleavable over \mathcal{D}_c .

5 – Open problems

The following questions remain open.

QUESTION 5.1. Characterize spaces which are cleavable over \mathbb{D}_1 or over the class \mathcal{D}_c . In particular, what about the converse of Theorem 4.4?

QUESTION 5.2. If spaces X and Y are cleavable over \mathcal{D} or over \mathcal{D}_c , is then the product $X \times Y$ cleavable over the same class?

As was mentioned *D*-normality is not an inverse invariant of perfect mappings. It is also known that the space S^{ω} (*S* is the Sorgenfrey line) is hereditary *D*-normal. So the following question can be connected with the problems considered here.

QUESTION 5.3. Characterize spaces which are cleavable over S^{ω} .

It is known that every *D*-completely regular space has a T_1 -compactification (= a *D*-compact space in which it is dense) [10].

QUESTION 5.4. Characterize D-completely regular spaces X whose D-compactification is cleavable over \mathcal{D}_c or over \mathbb{R}^{ω} along X.

REFERENCES

- A.V. ARHANGEL'SKII: A general concept of cleavability of topological spaces over a class of spaces, Abstracts Tirasp. Symp. (1985), Štiinca, Kišinev, (1985), 8.10 (in Russian).
- [2] A.V. ARHANGEL'SKII: Some new trends in the theory of continuous mapping, In: Continuous functions on topological spaces, LGU, Riga, (1986), 5-35 (in Russian).
- [3] A.V. ARHANGEL'SKII: Some problems and lines of investigation in general topology, Comment. Math. Univ. Carolinae 29 (1988), 611-629.
- [4] A.V. ARHANGEL'SKII: The general concept of cleavability of a topological space, Proc. Oxford Conf. on General Topology, (1990), Topology Appl. (1992) (to appear).
- [5] A.V. ARHANGEL'SKII: A survey on cleavability, (to appear).
- [6] A.V. ARHANGEL'SKII F. CAMMAROTO: On different types of cleavability of topological spaces: pointwise, closed, open and pseudopen, J. Austral. Math. Soc. (to appear).
- [7] A.V. ARHANGEL'SKII LJ.D. KOČINAC: Concerning splittability and perfect mappings, Publ. Inst. Math. (Beograd) 47 (61) (1990), 127-131.
- [8] A.V. ARHANGEL'SKII D.B. SHAKHMATOV: On pointwise approximation of arbitrary functions by countable families of continuous functions, Trudy Sem. I.G. Petrovskogo 13 (1988), 206-227 (in Russian) (English transl. in: Journ. of Soviet Math. 50 (1990), 1497-1511).
- [9] A. BELLA F. CAMMAROTO LJ. KOČINAC: Remarks on splittability of topological spaces, Q & A in General Topology 9 (1991), 89-99.
- [10] H. BRANDENBURG: Separation axioms, covering properties and inverse limits generated by developable topological spaces, Dissertationes Mathematicae 284 (1989), 88.
- [11] F. CAMMAROTO: On D-completely regular spaces, Supl. Rend. Circolo Mat. Palermo, Ser. II 24 (1990), 35-50.
- [12] F. CAMMAROTO: On splittability of topological spaces, Proc. Brasil Topological Conf. (1990) (to appear).
- [13] R. ENGELKING: General topology, PWN, Warsawa, (1977).
- [14] A.A. GRYZLOV: Two theorems on the cardinality of topological spaces, Doklady AN SSSR 251 (1980), 780-783 (in Russian).
- [15] N.C. HELDERMANN: Developability and some new regularity axioms, Can. J. Math. 33 (1981), 641-663.
- [16] R.E. HODEL: Cardinal functions I, In: K. Kunen & J.E. Vaughan (eds), Handbook of Set-theoretic Topology, North Holland, Amsterdam, (1984), 3-61.

- [17] I. JUHÁSZ: Cardinal functions in topology ten years later, Mathematical Centre Tracts 123, Amsterdam, (1980).
- [18] LJ. KOČINAC: On (M, P)-splittability of topological spaces, Supl. Rend. Circolo Mat. Palermo, Ser. II 24 (1990), 397-404.
- [19] LJ. KOČINAC: Perfect *P*-splittability of topological spaces, Zbornik rad. Fil.fak. (Niš), Ser. Mat. **3** (1989), 19-24.
- [20] LJ. KOČINAC: Metrizability and cardinal invariants using splittability, Compt. Rend. Acad. Bulg. Sci. 43 (1990), 9-12.
- [21] LJ. KOČINAC: On monotone and pointwise splittability, Matem. vesnik (to appear).
- [22] LJ. KOČINAC: Compact divisible spaces are metrizable, Abstracts Amer. Math. Soc. (1992).
- [23] LJ. KOČINAC: The pseudoweight and splittability of a topological space, Zbornik rad. Fil.fak. (Niš), Ser. Mat. 6 (1992).
- [24] LJ. KOČINAC: Cleavability and divisibility of topological spaces, Atti Accademia Pelor. dei Pericolanti 70 (1992), 1-16.
- [25] LJ. KOČINAC F. CAMMAROTO A. BELLA: Some results on splittability of topological spaces, Atti Accademia Pelor. dei Pericolanti 68 (1990), 41-60.

Lavoro pervenuto alla redazione il 19 gennaio 1994 ed accettato per la pubblicazione il 21 settembre 1994

INDIRIZZO DEGLI AUTORI:

F. Cammaroto – Dipartimento di Matematica – Università di Messina – Italy

Lj. Kočinac - 29. Novembra 132 - 37230 - Aleksandrovac - Yugoslavia

663