Construction of wavelets with multiplicity

T.N.T. GOODMAN

Riassunto: Sia X un sottoinsieme di r elementi di uno spazio di Hilbert H e sia V_{0} il sottospazio chiuso generato dall'iterazione di X mediante l'operatore unitario $U=\left(U_{1}, \ldots, U_{d}\right)$. Analogamente sia $V_{1} \supset V_{0}$ il sottospazio generato da un insieme Y con $s>r$ elementi. Si descrivono alcuni metodi per costruire un insieme Γ con $s-r$ elementi che generi in modo simile il complemento ortogonale di V_{0} in V_{1}. Come caso particolare si considerano $H=L^{2}\left(\mathbb{R}_{d}\right), U^{n} f=f(.-n)$ e $V_{1}=\left\{f(A):. f \in V_{0}\right\}$ per una matrice A di interi. Le costruzioni sono illustrate con alcuni esempi dove V_{0} è uno spazio di splines di grado arbitrario su di una griglia a 4 direzioni in \mathbb{R}^{2}

Abstract: Let V_{0} be the closed span in Hilbert space H of all iterates under commuting unitary operators $U=\left(U_{1}, \ldots, U_{d}\right)$ of a set X with r elements. Similarly let $V_{1} \supset V_{0}$ be generated by a set Y with $s>r$ elements. We give methods for constructing a set Γ with $s-r$ elements which similarly generates the orthogonal complement of V_{0} in V_{1}. As a special case we consider $H=L^{2}\left(\mathbb{R}^{d}\right), U^{n} f=f(.-n)$ and $V_{1}=\{f(A$.$) :$ $\left.f \in V_{0}\right\}$ for an integer matrix A. The constructions are illustrated with examples where V_{0} is a space of splines of arbitrary degree on a 4-direction mesh in \mathbb{R}^{2}.

1 - Introduction

Orthogonal wavelets have been much studied, see the monograph of MEYER [18], and wavelets, in particular those of DAUBECHIES [6], have found many important applications. Recently the theory has been generalised in a number of directions to create a richer theory and provide

[^0]more flexibility in applications. The conditions of orthogonality between translates at a given scale has been dropped, see Battle [1] and Jia and Micchelli [11]. (Although the resulting functions are sometimes called prewavelets, we shall use the term wavelets as distinct from orthogonal wavelets.) A general framework for the construction of wavelets has been given by the concept of multiresolution due to Mallat [17]. This has been extended to tensor-product construction by Lemarie and Meyer [15] and dyadic scaling has been extended to more general dilation matrices in [9]. In [7] and [8], more than one scaling function is allowed, while in [3] the scaling function may vary with level of scale.

The whole theory has been extended to general Hilbert spaces in [13] and [9], and it is this level of generality that we now describe.

Let H be a complex Hilbert space and $U=\left(U_{1}, \ldots, U_{d}\right)$ be distinct, pairwise commuting, unitary operators on H. For n in \mathbb{Z}^{d}, U^{n} will denote $U_{1}^{n_{1}}, \ldots, U_{d}^{n_{d}}$. For $S \subset H,\langle S\rangle$ will denote its closed linear space in H. For a set $X=\left\{x_{1}, \ldots, x_{r}\right\} \subset H$, we write

$$
U^{\mathbb{Z}^{d}} X:=\left\{U^{n} x: x \in X, \quad n \in \mathbb{Z}^{d}\right\} .
$$

We say $U^{\mathbb{Z}^{d}} X$ is a Riesz basis if it is a Riesz basis for $\left\langle U^{\mathbb{Z}^{d}} X\right\rangle$, i.e. there are strictly positive constants A and B such that for any c_{1}, \ldots, c_{r} in $\ell^{2}\left(\mathbb{Z}^{d}\right)$,

$$
A \sum_{j=1}^{r}\left\|c_{j}\right\|_{2} \leq\left\|\sum_{j=1}^{r} \sum_{n \in \mathbb{Z}^{d}} c_{j}(n) U^{n} x_{j}\right\| \leq B \sum_{j=1}^{r}\left\|c_{j}\right\|_{2} .
$$

Now suppose that $X_{r}=\left\{x_{1}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, \ldots, y_{s}\right\}, r<s, U^{\mathbb{Z}^{d}} X$ and $U^{\mathbb{Z}^{d}} Y$ are Riesz basis and $\left\langle U^{\mathbb{Z}^{d}} X\right\rangle \subset\left\langle U^{\mathbb{Z}^{d}} Y\right\rangle$. It is shown in [13], [9] that there is a set $\Gamma=\left\{z_{1}, \ldots, z_{s-r}\right\} \subset\left\langle U^{\mathbb{Z}^{d}} Y\right\rangle$ such that $\left\langle U^{\mathbb{Z}^{d}} \Gamma\right\rangle$ is orthogonal to $\left\langle U^{\mathbb{Z}^{d}} X\right\rangle$ and $U^{\mathbb{Z}^{d}}(X \cup \Gamma)$ is a Riesz basis of $\left\langle U^{\mathbb{Z}^{d}} Y\right\rangle$.

This result can be applied in the following context. Suppose that D is a unitary operator on H satisfying

$$
\begin{equation*}
U^{n} D=D U^{A n}, \quad n \in \mathbb{Z}^{d}, \tag{1.1}
\end{equation*}
$$

where A is a $d \times d$ matrix with integer entries and

$$
\Delta:=|\operatorname{det} A| \geq 2 .
$$

Suppose that for each integer k, there is a set $X_{k}=\left\{x_{k, 1}, \ldots, x_{k, r}\right\}$ such that $U^{\mathbb{Z}^{d}} X_{k}$ is a Riesz basis. Writing $V_{k}:=\left\langle D^{k} U^{\mathbb{Z}^{d}} X_{k}\right\rangle$, we assume

$$
\begin{equation*}
V_{k} \subset V_{k+1}, \quad k \in \mathbb{Z} \tag{1.2}
\end{equation*}
$$

Then for each integer k, there is a set $\Gamma_{k}=\left\{z_{k, 1}, \ldots, z_{k, r(\Delta-1)}\right\}$ such that $D^{k} U^{\mathbb{Z}^{d}} \Gamma_{k}$ is a Riesz basis for the orthogonal complement W_{k} of V_{k} in V_{k+1}, and the sequence $\left(D^{k} U^{\mathbb{Z}^{d}} \Gamma_{k}\right)_{k=-\infty}^{\infty}$ is a Riesz basis of $\bigcup_{-\infty}^{\infty} V_{k} \Theta \bigcap_{-\infty}^{\infty} V_{k}$. The spaces W_{k} are clearly mutually orthogonal and indeed we can choose Γ_{k} so that $\left(D^{k} U^{\mathbb{Z}^{d}} \Gamma_{k}\right)_{k=-\infty}^{\infty}$ forms an orthonormal basis, but in applications it is often useful to sacrifice orthogonality within W_{k} for other properties of the elements of $\Gamma_{k}, k \in \mathbb{Z}$.

We shall refer to D as a dilation operator because in practice we are most interested in the case

$$
\begin{equation*}
H=L^{2}\left(R^{d}\right), \quad U^{n} f=f(.-n), \quad D f=\Delta^{1 / 2} f(A .) \tag{1.3}
\end{equation*}
$$

In this case we say the spaces $\left(V_{k}\right)_{k=-\infty}^{\infty}$ form a multiresolution of $L^{2}\left(\mathbb{R}^{d}\right)$ if in addition to (1.2) we have

$$
\begin{align*}
& \bigcup_{-\infty}^{\infty} V_{k}=L^{2}\left(\mathbb{R}^{d}\right), \tag{1.4}\\
& \bigcap_{-\infty}^{\infty} V_{k}=\{0\} .
\end{align*}
$$

Thus in this case $\left(D^{k} U^{\mathbb{Z}^{d}} \Gamma_{k}\right)_{k=-\infty}^{\infty}$ is a Riesz basis of $L^{2}\left(\mathbb{R}^{d}\right)$. For conditions under which (1.4) and (1.5) are satisfied, see [12].

In this paper we are concerned with explicit construction for the wavelet set Γ which, under certain conditions, will give wavelets with small support. We are particularly motivated by the construction of multivariate spline wavelets. Orthonormal box spline wavelets were constructed by Riemenschneider and Shen [19], extending a univariate construction of LEMARIE [14]. In this paper, however, we do not consider orthonormal wavelets and our constructions extend those of CHUI and Wang [4] for B-spline wavelets which were extended to box splines in [20] and [5]. For further constructions, see [10], [16] and [21].

In section 2 we describe two methods for constructing wavelets and these are illustrated in section 3 with piecewise linear wavelets on a 4 direction mesh in \mathbb{R}^{2}, for which one method gives wavelets which are derived by Lee, Tang and the author [9] by an hoc method. In section 4 we consider our constructions for a dilation operator as in (1.1) and show that for $r=1$ and $A=2 I$ it reduces to a construction of DE Boor, DeVore and Ron in [3].

In order to extend the range of examples we consider in section 5 the construction of Riesz bases by applying convolution operators and illustrate this in section 6 by constructing spline wavelets of arbitrary degree on a 4-direction mesh.

2 - Methods of Construction

We first recall and extend some of the theory of [13], [9]. We fix $d \geq 1$ and denote $L_{r \times s}^{2}$ the space of all $r \times s$ matrices with entries in $L^{2}\left(\mathbb{R}^{d} / 2 \pi \mathbb{Z}^{d}\right)$. We say a matrix M in $L_{s \times s}^{2}$ is invertible if $\|M\|_{2}$ and $\left\|M^{-1}\right\|_{2}$ are essentially bounded functions on $(0,2 \pi)^{d}$. This is equivalent to the elements of M being essentially bounded in $(0,2 \pi)^{d}$ and $\operatorname{det} M$ being essentially bounded away from 0 . If M is Hermitian, then it is equivalent to the existence of strictly positive constants A, B with

$$
A \leq\left|\lambda_{j}(\theta)\right| \leq B, \quad j=1, \ldots, s
$$

for almost all θ in $(0,2 \pi)^{d}$, where $\lambda_{1}(\theta), \ldots, \lambda_{s}(\theta)$ are the eigenvalues of $M(\theta)$. The case we are most interested in is when the entries of M are trigonometric polynomials. In this case M is continuous and so M is invertible if and only if $M(\theta)$ is non-singular for all θ in $[0,2 \pi]^{d}$.

For $Y=\left\{y_{1}, \ldots, y_{s}\right\} \subset H$ we define Φ_{Y} in $L_{s \times s}^{2}$ by

$$
\begin{equation*}
\Phi_{Y}(\theta):=\sum_{n \in \mathbb{Z}^{d}}\left(y_{j}, U^{n} y_{k}\right) \mathrm{e}^{\mathrm{in} \theta} \tag{2.1}
\end{equation*}
$$

Then Φ_{Y} is a Hermitian matrix which is positive, semi-definite for almost all θ in $(0,2 \pi)^{d}$. Moreover $U^{\mathbb{Z}^{d}} Y$ is a Riesz basis if and only if Φ_{Y} is invertible.

Henceforward we assume that $U^{\mathbb{Z}^{d}} Y$ is a Riesz basis for $V_{1}:=\left\langle U^{\mathbb{Z}^{d}} Y\right\rangle$. Take $X=\left\{x_{1}, \ldots, x_{r}\right\} \subset V_{1}, r \leq s$.

Then we can write uniquely

$$
\begin{equation*}
x_{j}=\sum_{k=1}^{s} \sum_{n \in \mathbb{Z}^{d}} a_{j}^{k}(n) U^{n} y_{k}, \quad j=1, \ldots, r \tag{2.2}
\end{equation*}
$$

and we define $P:=P_{X, Y} \in L_{r \times s}^{2}$ by

$$
\begin{equation*}
P(\theta)_{j, k}=\sum_{n \in \mathbb{Z}^{d}} a_{j}^{k}(n) \mathrm{e}^{\text {in } \theta} \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Phi_{X}=P \Phi_{Y}^{*} P^{*} \tag{2.4}
\end{equation*}
$$

If $r=s$ and $U^{\mathbb{Z}^{d}} X$ is a Riesz basis, then $\left\langle U^{\mathbb{Z}^{d}} X\right\rangle=V_{1}$. Now suppose $r<s$ and $U^{\mathbb{Z}^{d}} X$ is a Riesz basis for $V_{0}:=\left\langle U^{\mathbb{Z}^{d}} X\right\rangle$. Let W_{0} be the orthogonal complement of V_{0} in V_{1}. Then there exists a set $\Gamma=\left\{z_{1}, \ldots, z_{s-r}\right\} \subset V_{1}$ such that $U^{\mathbb{Z}^{d}} \Gamma$ is a Riesz basis for W_{0}. The set Γ is not unique and we shall be concerned with constructing such sets Γ.

TheOrem 1. Take $Y=\left\{y_{1}, \ldots, y_{s}\right\} \subset H$ and suppose that $U^{\mathbb{Z}^{d}} Y$ is a Riesz basis for $V_{1}:=\left\langle U^{\mathbb{Z}^{d}} Y\right\rangle$. Take $X=\left\{x_{1}, \ldots, x_{r}\right\} \subset V_{1}, r<$ s and suppose $U^{\mathbb{Z}^{d}} X$ is a Riesz basis for $V_{0}:=\left\langle U^{\mathbb{Z}^{d}} X\right\rangle$. Take $\Gamma=$ $\left\{z_{1}, \ldots, z_{s-r}\right\} \subset V_{1}$. Then $\Gamma \subset W_{0}$, the orthogonal complement of V_{0} in V_{1}, if and only if

$$
\begin{equation*}
P_{\Gamma, Y} \Phi_{Y} P_{X, Y}^{*}=0 \tag{2.5}
\end{equation*}
$$

Moreover if (2.5) is satisfied, then $U^{\mathbb{Z}^{d}} \Gamma$ is a Riesz basis for W_{0} if there is a set $T=\left\{t_{1}, \ldots, t_{r}\right\} \subset V_{1}$ such that $P_{T \cup \Gamma, Y}$ is invertible.

Proof. That $\Gamma \subset W_{0}$ iff (2.5) holds is shown in [13], [9]. Suppose that (2.5) holds and that there is a set $T=\left\{t_{1}, \ldots, t_{r}\right\} \subset V_{1}$ such that $P:=P_{T \cup \Gamma, Y}$ is invertible. Since $\Phi_{T \cup \Gamma}=P \Phi_{Y} P^{*}, \Phi_{T \cup \Gamma}$ is invertible and so $U^{\mathbb{Z}^{d}}(T \cup \Gamma)$ is a Riesz basis. Hence $U^{\mathbb{Z}^{d}} \Gamma$ is a Riesz basis for $\left\langle U^{\mathbb{Z}^{d}} \Gamma\right\rangle \subset W_{0}$. But there exists a set $\Gamma^{\prime}=\left\{z_{1}^{\prime}, \ldots, z_{s-r}^{\prime}\right\}$ such that $U^{\mathbb{Z}^{d}} \Gamma^{\prime}$ is a Riesz basis for W_{0}.

Since Γ and Γ^{\prime} have the same number of elements, we must have $\left\langle U^{\mathbb{Z}^{d}} \Gamma\right\rangle=W_{0}$.

As in Theorem 1, we take $Y=\left\{y_{1}, \ldots, y_{s}\right\} \subset H$, where $U^{\mathbb{Z}^{d}}$ is a Riesz basis for $V_{1}:=\left\langle U^{\mathbb{Z}^{d}} Y\right\rangle$, and $X=\left\{x_{1}, \ldots, x_{r}\right\} \subset V_{1}, r<s$, where $U^{\mathbb{Z}^{d}} X$ is a Riesz basis for $V_{0}:=\left\langle U^{\mathbb{Z}^{d}} X\right\rangle$. We wish to construct $\Gamma=\left\{z_{1}, \ldots, z_{s-r}\right\} \subset V_{1}$ so that $U^{\mathbb{Z}^{d}} \Gamma$ is a Riesz basis for W_{0}. We shall give two explicit methods of construction which ensure, in particular, that if the entries of Φ_{Y} and $P_{X, Y}$ are trigonometric polynomials, then the entries of $P_{\Gamma, Y}$ will also be trigonometric polynomials. Each method works only under certain assumptions.

While we could construct Γ by a standard orthogonalisation procedure, this would give trigonometric polynomials of much higher degree and therefore, in most cases of interest, wavelets with much larger support.

To construct Γ is equivalent to constructing $P_{\Gamma, Y}$ in $L_{s-r \times s}^{2}$ and we shall write

$$
\begin{equation*}
\left(P_{\Gamma, Y}\right)_{j, k}=P_{j, k}, \quad j=1, \ldots, s-r, \quad k=1, \ldots, s \tag{2.6}
\end{equation*}
$$

Method 1 Let B in $L_{r \times r}^{2}$ denote the matrix formed by the first r rows of $\Phi_{Y} P_{X, Y}^{*}$. Letting $\left[k_{1}, \ldots, k_{r}\right]$ denote the determinant of the matrix in $L_{r \times r}^{2}$ formed from the rows k_{1}, \ldots, k_{r} of $\Phi_{Y} P_{X, Y}^{*}$, we define

$$
\left\{\begin{array}{l}
P_{j, k}=(-1)^{r+k+1}[1, \ldots, k-1, k+1, \ldots, r, r+j] \tag{2.7}\\
\quad j=1, \ldots, s-r, \quad k=1, \ldots, r \\
P_{j, r+j}=[1, \ldots, r]=\operatorname{det} B, \quad j=1, \ldots, s-r \\
P_{j, k}=0, \quad \text { otherwise }
\end{array}\right.
$$

Theorem 2. If $P_{X, Y}$ is essentially bounded, B is invertible and Γ is defined by (2.6), (2.7), then $U^{\mathbb{Z}^{d}} \Gamma$ is a Riesz basis for W_{0}.

Proof. Take $1 \leq j \leq s-r$ and $1 \leq k \leq r$. Then

$$
\begin{aligned}
& \left(P_{\Gamma, Y} \Phi_{Y} P_{X, Y}^{*}\right)_{j, k}= \\
& \quad=\sum_{l=1}^{r}(-1)^{r+l+1}[1, \ldots, l-1, l+1, \ldots, r, r+j]\left(\Phi_{Y} P_{X, Y}^{*}\right)_{l, k}+ \\
& \quad+[1, \ldots, r]\left(\Phi_{Y} P_{X, Y}^{*}\right)_{r+j, k^{\prime}}
\end{aligned}
$$

which is the expansion by the last column of the determinant of the $(r+1) \times(r+1)$ matrix formed from the rows $1, \ldots, r, r+j$ and columns $1, \ldots, r, k$ of $\Phi_{Y} P_{X, Y}^{*}$, and hence vanishes. Thus (2.5) is satisfied.

Now taking $T=\left\{y_{1}, \ldots, y_{r}\right\}$ we see that for $k=1, \ldots, s$,

$$
\left(P_{T \cup \Gamma, Y}\right)_{j, k}= \begin{cases}\delta_{j, k}, & j=1, \ldots, r, \\ P_{j-r, k^{\prime}}, & j=r+1, \ldots, s\end{cases}
$$

Thus

$$
\operatorname{det} P_{T \cup \Gamma, Y}=(\operatorname{det} B)^{s-r} .
$$

Since $U^{\mathbb{Z}^{d}} Y$ is a Riesz basis, the elements of Φ_{Y} are essentially bounded on $(0,2 \pi)^{d}$, and hence so are the elements of $P_{T \cup \Gamma, Y}$. Since B is invertible, det B is essentially bounded away from zero and hence so is $\operatorname{det} P_{T \cup \Gamma, Y}$. Thus $P_{T \cup \Gamma, Y}$ is invertible and by Theorem $1, U^{\mathbb{Z}^{d}} \Gamma$ is a Riesz basis for W_{0}.

Of course by making a permutation of the elements of Y we can replace the matrix B of Method 1 by the matrix formed by any r rows of $\Phi_{Y} P_{X, Y}^{*}$.

We remark that if the entries of $\Phi_{Y} P_{X, Y}^{*}$ are trigonometric polynomials of degree n, then the entries of $P_{\Gamma, Y}$ will be trigonometric polynomials of degree $r n$, whereas a standard orthogonalisation procedure would give, in general, trigonometric polynomials of degree $2.3^{r-1} n$.

To illustrate Method 1 we consider the simplest case $r=1$ and write

$$
\left(\Phi_{Y} P_{X, Y}^{*}\right)_{j, 1}=b_{j} \quad j=1, \ldots, s .
$$

Then the assumption of Theorem 4 is that b_{1} is essentially bounded away from zero, while (2.7) becomes

$$
\begin{array}{ll}
P_{j, 1}=-b_{j+1}, & j=1, \ldots, s-1, \\
P_{j, j+1}=b_{1}, & j=1, \ldots, s-1, \\
P_{j, k}=0, & \text { otherwise } .
\end{array}
$$

If, in addition, we have $s=2$, then

$$
P_{\Gamma, Y}=\left(-b_{2} b_{1}\right) .
$$

For this case $(r=1, s=2)$ we can define T by $P_{T, Y}=\left(\bar{b}_{1}, \bar{b}_{2}\right)$ which gives $\operatorname{det} P_{T \cup \Gamma, Y}=\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}$. Now $U^{\mathbb{Z}^{d}} X$ is a Riesz basis and so $P_{X, Y} \Phi_{Y} P_{X, Y}^{*}$ is invertible, by (2.4), and since $P_{X, Y}$ is essentially bounded (by assumption) and $\Phi_{Y} P_{X, Y}^{*}=\left(b_{1} b_{2}\right)^{T},\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}$ must be essentially bounded away from zero. Thus $P_{T \cup \Gamma, Y}$ is invertible and we can deduce from theorem 1 that $U^{\mathbb{Z}^{d}} \Gamma$ is a Riesz basis for W_{0} without the need for the assumption that b_{1} is essentially bounded away from zero.

This construction for $r=1, s=2$ can be extended to the case $r=1$ and $s=4$ or 8 in the following way, which is different from Method 1. We require that $\Phi_{Y} P_{X, Y}^{*}$ is real-valued and (as before) that $P_{X, Y}$ is essentially bounded but, unlike Method 1 , we do not require that B is invertible.

For $t=2$ or 3 , let $I=\mathbb{Z}^{t} / 2 \mathbb{Z}^{t}$ and write

$$
\begin{equation*}
\left(\Phi_{Y} P_{X, Y}^{*}\right)_{j, 1}=b_{j}, \quad j \in I \tag{2.8}
\end{equation*}
$$

Let $\alpha: I \rightarrow I$ be a bijection satisfying
(2.9) $\alpha(0)=0, \quad(i-j)(\alpha(i)-\alpha(j))=1 \quad(\bmod 2), \quad i, j \in I, \quad i \neq j$.

Then we define $P_{\Gamma, Y}$ by

$$
\begin{equation*}
\left(P_{\Gamma, Y}\right)_{j, k}=(-1)^{j k} b_{k+\alpha(j)}, \quad j, k \in I, \quad j \neq 0 \tag{2.10}
\end{equation*}
$$

Here we define T by $\left(P_{T, Y}\right)_{j}=b_{j}, j \in I$, and thus

$$
\begin{equation*}
\left(P_{T \cup \Gamma, Y}\right)_{j, k}=(-1)^{j k} b_{k+\alpha(j)}, \quad j, k \in I \tag{2.11}
\end{equation*}
$$

It easily follows from (2.9) and (2.11) that the rows of $P_{T \cup \Gamma, Y}$ are mutually orthogonal and of the same magnitude. Thus (2.5) is satisfied. Since $U^{\mathbb{Z}^{d}} X$ is a Riesz basis, $P_{X, Y} \Phi_{Y} P_{X, Y}^{*}$ is invertible and so, from (2.8), $\sum_{j \in I}\left|b_{j}\right|^{2}$ is essentially bounded away from zero. Thus $P_{T \cup \Gamma, Y}$ is a Riesz basis for W_{0}.

Bijections α satisfying (2.9) can easily be constructed for $t=1,2$ and 3 but do not exist for $t \geq 4$. This was pointed out by Riemenschneider ans SHEN [20], who gave this construction for the special case of (1.3) with $A=2 I$ and $d=t$, see also [5] and [3, theorem 7.13].

We shall see in section 4 that for the special case of (1.3) with $A=2 I$ and $r=1$ (but general s), our Method 1 reduces to a construction in [3]. Now we consider an alternative construction to Method 1.

Method 2 The condition in theorem 2 that the matrix B, formed from the first r rows of $\Phi_{Y} P_{X, Y}^{*}$, is invertible may be difficult to verify in practice. So we give an alternative method which depends on the matrix formed from the first r rows of $P_{X, Y}^{*}$ being invertible. In this case we first construct a matrix C in $L_{s-r \times s}^{2}$, by the same method as the construction of $P_{\Gamma, Y}$ in Method 1, but with $\Phi_{Y} P_{X, Y}^{*}$ replaced by $P_{X, Y}^{*}$. As in the first part of the proof of theorem 2, this ensures that $C P_{X, Y}^{*}=0$. We now define

$$
\begin{equation*}
P_{\Gamma, Y}=C \operatorname{adj} \Phi_{Y} \tag{2.12}
\end{equation*}
$$

so that

$$
P_{\Gamma, Y} \Phi_{Y} P_{X, Y}^{*}=C a d j \Phi_{Y} \Phi_{Y} P_{X, Y}^{*}=\operatorname{det} \Phi_{Y} C P_{X, Y}^{*}=0
$$

and (2.5) is satisfied. As in Method 1, we can extend C to an invertible matrix in $L_{s \times s}^{2}$ and, since Φ_{Y} is invertible, (2.12) shows that $P_{\Gamma, Y}$ can also be extended to an invertible matrix in $L_{s \times s}^{2}$. Then once again it follows from theorem 1 that $U^{\mathbb{Z}^{d}} \Gamma$ is a Riesz basis for W_{0}.

3 - An example

We now illustrate the constructions of $\S 3$ with a simple but hopefully useful example. We shall take the case (1.3) with $d=2$ and $A=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$, so that $\Delta=2$. Now consider the 4-direction mesh in \mathbb{R}^{2} generated by the lines $x=i, y=i, x-y=i, x+y=i, i \in \mathbb{Z}$. These lines intersect in the mesh points $\mathbb{Z}^{2} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{2}$. We define V_{0} to be the space of all continuous functions in $H=L^{2}\left(\mathbb{R}^{2}\right)$ which are linear on any region not intersected by mesh lines. We define $X=\left\{x_{1}, x_{2}\right\} \subset V_{0}$ by requiring $x_{1}(0,0)=x_{2}\left(\frac{1}{2}, \frac{1}{2}\right)=1$, while x_{1} and x_{2} vanish at all other mesh points. Clearly $U^{\mathbb{Z}^{2}} X$ is a Riesz basis for V_{0} : indeed any function
f in V_{0} can be written uniquely as

$$
\begin{equation*}
f=\sum_{n \in \mathbb{Z}^{2}} f(n) U^{n} x_{1}+\sum_{n \in \mathbb{Z}^{2}} f\left(n+\left(\frac{1}{2}, \frac{1}{2}\right)\right) U^{n} x_{2} \tag{3.1}
\end{equation*}
$$

Defining the dilation operator D as in (1.3), we define $V_{1}=D V_{0}$. Clearly V_{1} comprises all continuous functions in $L^{2}\left(\mathbb{R}^{2}\right)$ which are linear in any region not intersected by the lines $x=\frac{1}{2} i, y=\frac{1}{2} i, x-y=i, x+y=$ $i, i \in \mathbb{Z}$, and thus $V_{0} \subset V_{1}$. We now define $Y=\left\{y_{1}, \ldots, y_{4}\right\} \subset V_{1}$ by requiring $y_{1}(0,0)=y_{2}\left(\frac{1}{2}, \frac{1}{2}\right)=y_{3}\left(\frac{1}{2}, 0\right)=y_{4}\left(0, \frac{1}{2}\right)=1$ and y_{1}, \ldots, y_{4} vanish at all other points in $\left(\frac{1}{2} \mathbb{Z}\right)^{2}$. Clearly $U^{\mathbb{Z}^{2}} Y$ is a Riesz basis for V_{1}. We are thus in the situation of $\S 2$ and, as there, we define W_{0} to be the orthogonal complement of V_{0} in V_{1} and we shall construct $\Gamma=\left\{z_{1}, z_{2}\right\}$ so that $U^{\mathbb{Z}^{2}} \Gamma$ is a Riesz basis for W_{0}.

Putting $\alpha:=1+\mathrm{e}^{i \theta_{1}}, \beta:=1+\mathrm{e}^{i \theta_{2}}$, a simple calculation shows that

$$
\begin{align*}
\Phi_{Y}(\theta) & =\left[\begin{array}{rrrr}
8 & \bar{\alpha} \bar{\beta} & \bar{\alpha} & \bar{\beta} \\
\alpha \beta & 8 & \beta & \alpha \\
\alpha & \bar{\beta} & 4 & 0 \\
\beta & \bar{\alpha} & 0 & 4
\end{array}\right], \tag{3.2}\\
P_{X, Y}(\theta) & =\left[\begin{array}{ccccc}
1 & 1 & \frac{1}{2} \bar{\alpha} & \frac{1}{2} \bar{\beta} \\
0 & 1 & 0 & 0
\end{array}\right],
\end{align*}
$$

where, for simplicity, we have omitted a factor of 48^{-1} in Φ_{Y}.
We first construct Γ by Method 1. By (3.2) and (3.3),

$$
\Phi_{Y} P_{X, Y}^{*}=\left[\begin{array}{cccc}
8+\frac{1}{2}(\alpha+\bar{\alpha}+\beta+\bar{\beta}) & 2 \alpha \beta & 3 \alpha & 3 \beta \\
\bar{\alpha} \bar{\beta} & 8 & \bar{\beta} & \bar{\alpha}
\end{array}\right]^{T}
$$

Then

$$
\operatorname{det} B(\theta)=\left|\begin{array}{cc}
8+\frac{1}{2}(\alpha+\bar{\alpha}+\beta+\bar{\beta}) & \bar{\alpha} \bar{\beta} \\
2 \alpha \beta & 8
\end{array}\right|=72-8 \cos \theta_{1} \cos \theta_{2}>0
$$

and so B is invertible and the construction works. From (2.6), (2.7), a simple calculation gives

$$
\begin{aligned}
& P_{\Gamma, Y}(\theta)= \\
& =\left[\begin{array}{cccc}
2 \alpha(\beta+\bar{\beta}-12) & \frac{1}{2} \bar{\beta}(5(\alpha+\bar{\alpha})-\beta-\bar{\beta}-16) & \operatorname{det} B(\theta) & 0 \\
2 \beta(\alpha+\bar{\alpha}-12) & \frac{1}{2} \bar{\alpha}(5(\beta+\bar{\beta})-\alpha-\bar{\alpha}-16) & 0 & \operatorname{det} B(\theta)
\end{array}\right] .
\end{aligned}
$$

These wavelets were described in the final section of [9], when they were derived by directly solving equation (2.5), rather then using Method 1. Note that

$$
\begin{equation*}
z_{2}(x, y)=z_{1}(y, x) . \tag{3.4}
\end{equation*}
$$

The support of z_{1} is shown in fig. 1 with its boundary indicated by a solid line and the origin denoted by a dot.

fig. 1

We now construct wavelets $\Gamma=\left\{z_{1}, z_{2}\right\}$ by Method 2. In this case the matrix is formed from the first two rows of $P_{X, Y}^{*}$ is the identity and the matrix C is given by

$$
C(\theta)=\left[\begin{array}{llll}
-\frac{1}{2} \alpha & 0 & 1 & 0 \\
-\frac{1}{2} \beta & 0 & 0 & 1
\end{array}\right]
$$

After some calculation we find that (3.3) gives
$P_{\Gamma, Y}(\theta)=$

$$
=\left[\begin{array}{ccc}
\alpha(3 \tilde{\alpha}+5 \tilde{\beta}-96) \bar{\beta}(7 \tilde{\alpha}+\tilde{\beta}-32) & 256+8(\tilde{\alpha}-\tilde{\beta})-\frac{1}{2} \tilde{\alpha}(\tilde{\alpha}+7 \tilde{\beta}) & \frac{1}{2} \alpha \bar{\beta}(64-5 \tilde{\alpha}-3 \tilde{\beta}) \\
\beta(3 \tilde{\beta}+5 \tilde{\alpha}-96) \bar{\alpha}(7 \tilde{\beta}+\tilde{\alpha}-32) & \frac{1}{2} \bar{\alpha} \beta(64-5 \tilde{\beta}-3 \tilde{\alpha}) & 256+8(\tilde{\beta}-\tilde{\alpha})-\frac{1}{2} \tilde{\beta}(\tilde{\beta}+7 \tilde{\alpha})
\end{array}\right],
$$

where we have written $\tilde{\alpha}:=\alpha+\bar{\alpha}, \tilde{\beta}:=\beta+\bar{\beta}$.
Once again (3.4) holds and in both constructions z_{1} is symmetric about the lines $y=0$ and $x=\frac{1}{2}$. The support of z_{1} for Method 2 is shown in fig. 1 with its boundary indicated by a broken line. The values of z_{1} on $\frac{1}{2} \mathbb{Z}^{2}$ are also shown in fig. 1. As we might expect, Method 2 gives wavelets with larger support than does Method 1, but in this case difference is small.

4-Dilation

We now consider the case of a dilation operator D satisfying (1.1) and take $X_{0}=\left\{x_{1}, \ldots, x_{r}\right\}, X_{1}=\left\{v_{1}, \ldots, v_{r}\right\}$ in H. We suppose that for $k=0,1, U^{\mathbb{Z}^{d}} X_{k}$ is a Riesz basis and write $V_{k}:=\left\langle D^{k} U^{\mathbb{Z}^{d}} X_{k}\right\rangle$, where $V_{0} \subset V_{1}$. The index of $A \mathbb{Z}^{d}$ in \mathbb{Z}^{d} is $\Delta[9$, Proposition 3.1] and so we can partition \mathbb{Z}^{d} into disjoint cosets $\gamma_{j}+A \mathbb{Z}^{d}, j=0, \ldots, \Delta-1$, where $\gamma_{0}=0$. We shall write $I=\left\{\gamma_{0}, \ldots, \gamma_{\Delta-1}\right\}$. For each n in \mathbb{Z}^{d}, there are unique m in \mathbb{Z}^{d} and γ in I with $n=A m+\gamma$ and so by (1.1),

$$
\begin{equation*}
D U^{n} v_{j}=D U^{A m+\gamma} v_{j}=U^{m} D U^{\gamma} v_{j}, \quad j=1, \ldots, r \tag{4.1}
\end{equation*}
$$

Thus in the notation of theorem $1, V_{1}:=\left\langle U^{\mathbb{Z}^{d}} Y\right\rangle$, where

$$
Y=\left\{D U^{\gamma} v_{j}: j=1, \ldots, r, \quad \gamma \in I\right\} .
$$

We define $J:=\{1, \ldots, r\} \times I$ and, as in (2.1)-(2.3), write

$$
\begin{align*}
\Phi_{Y}(\theta)_{(j, \alpha),(k, \beta)} & =\sum_{n \in \mathbb{Z}^{d}}\left(D U^{\alpha} v_{j}, U^{n} D U^{\beta} v_{k}\right) \mathrm{e}^{i n \theta}= \tag{4.2}\\
& =\sum_{n \in \mathbb{Z}^{d}}\left(v_{j}, U^{A n+\beta-\alpha} v_{k}\right) \mathrm{e}^{i n \theta}, \quad(j, \alpha),(k, \beta) \in J \\
x_{j} & =\sum_{(k, \gamma) \in J} \sum_{n \in \mathbb{Z}^{d}} a_{j}^{(k, \gamma)}(n) U^{n} D U^{\gamma} v_{k}= \tag{4.3}\\
& =\sum_{(k, \gamma) \in J} \sum_{n \in \mathbb{Z}^{d}} a_{j}^{(k, \gamma)}(n) D U^{A n+\gamma} v_{k}, j=1, \ldots, r \\
P(\theta)_{j, k} & =\sum_{n \in \mathbb{Z}^{d}} a_{j}^{k}(n) \mathrm{e}^{i n \theta}, \quad j=1, \ldots, r, \quad k \in J \tag{4.4}
\end{align*}
$$

Now we can also express X_{0} directly in terms of $D U^{\mathbb{Z}^{d}} X_{1}$ in the form

$$
\begin{equation*}
x_{j}=\sum_{k=1}^{r} \sum_{n \in \mathbb{Z}^{d}} b_{j}^{k}(n) D U^{n} v_{k}, \quad j=1, \ldots, r \tag{4.5}
\end{equation*}
$$

We denote by $L_{r \times s}^{2}$ the space of all $r \times s$ matrices with entries in $L^{2}\left(\mathbb{R}^{d} / 2 \pi A^{T} \mathbb{Z}^{d}\right)$ and define Q in $\widetilde{L}_{r \times r}^{2}$ by

$$
\begin{equation*}
Q(\theta)_{j, k}=\sum_{n \in \mathbb{Z}^{d}} b_{j}^{k}(n) \mathrm{e}^{i\left(A^{-1} n\right) \theta} \tag{4.6}
\end{equation*}
$$

These two representation can easily be related as follows. From (4.3) and (4.5) we have for $j, k=1, \ldots, r$,

$$
\begin{equation*}
a_{j}^{(k, \gamma)}(n)=b_{j}^{k}(A n+\gamma), \quad \gamma \in I, \quad n \in \mathbb{Z}^{d} \tag{4.7}
\end{equation*}
$$

Then (4.6) gives

$$
\begin{align*}
Q(\theta)_{j, k} & =\sum_{n \in \mathbb{Z}^{d}} \sum_{\gamma \in I} b_{j}^{k}(A n+\gamma)^{i A^{-1}(A n+\gamma) \theta}= \\
& =\sum_{\gamma \in I} \mathrm{e}^{i\left(A^{-1} \gamma\right) \theta} \sum_{n \in \mathbb{Z}^{d}} a_{j}^{(k, \gamma)}(n) \mathrm{e}^{i n \theta}= \tag{4.8}\\
& =\sum_{\gamma \in I} P(\theta)_{j,(k, \gamma)} \mathrm{e}^{i\left(A^{-1} \gamma\right) \theta}
\end{align*}
$$

by (4.4). In a similar manner to (2.1) we can also define Ψ in $\tilde{L}_{r \times r}^{2}$ by

$$
\Psi(\theta)_{j, k}=\sum_{n \in \mathbb{Z}^{d}}\left(v_{j}, U^{n} v_{k}\right) \mathrm{e}^{i\left(A^{-1} n\right) \theta}
$$

Then we have

$$
\begin{align*}
\Psi(\theta)_{j, k} & =\sum_{\gamma \in I} \sum_{n \in \mathbb{Z}^{d}}\left(v_{j}, U^{A n+\gamma} v_{k}\right) \mathrm{e}^{i A^{-1}(A n+\gamma) \theta}= \\
& =\sum_{\gamma \in I} \mathrm{e}^{i\left(A^{-1} \gamma\right) \theta} \sum_{n \in \mathbb{Z}^{d}}\left(D v_{j}, U^{n} D U^{\gamma} v_{k}\right) \mathrm{e}^{i n \theta}= \tag{4.9}\\
& =\sum_{\gamma \in I} \Phi_{Y}(\theta)_{(j, 0),(k, \gamma)} \mathrm{e}^{i\left(A^{-1} \gamma\right) \theta}
\end{align*}
$$

Recall that our construction of Method 1 depends crucially on the matrix $\Phi_{Y} P^{*}$. We shall express $\Phi_{Y} P^{*}$ in terms of ΨQ^{*}. First we need

Lemma 1. Let A be an integer $d \times d$ matrix with $|\operatorname{det} A|=\Delta \geq 1$. Let $I^{\prime}=\left\{\alpha_{0}, \ldots, \alpha_{\Delta-1}\right\}$ denote representatives of the cosets of $\mathbb{Z}^{d} / A^{T} \mathbb{Z}^{d}$. Then

$$
\sum_{\alpha \in I^{\prime}} \mathrm{e}^{2 \pi i\left(A^{-1} j\right) \alpha}= \begin{cases}\Delta, & j \in A \mathbb{Z}^{d} \\ 0, & j \in \mathbb{Z}^{d} \backslash A \mathbb{Z}^{d}\end{cases}
$$

Proof. If j is in $A \mathbb{Z}^{d}$, then for α in $I^{\prime},\left(A^{-1} j\right) \alpha$ is in \mathbb{Z} and so

$$
\sum_{\alpha \in I^{\prime}} \mathrm{e}^{2 \pi i\left(A^{-1} j\right) \alpha}=\sum_{\alpha \in I^{\prime}} 1=\Delta
$$

Now suppose that j is in $\mathbb{Z}^{d} \backslash A \mathbb{Z}^{d}$, and write $(\operatorname{adj} A) j=k \in \mathbb{Z}^{d}$. Since $A^{-1} j \notin \mathbb{Z}^{d}, k_{1}, \ldots, k_{d}$ do not have a common factor of Δ. Denote by ℓ the highest common factor of $k_{1}, \ldots, k_{d}, \Delta$, and let $\Delta / \ell=r \geq 2$. By the Archimedean property, there are integers $\beta_{1}, \ldots, \beta_{d}$ and γ with

$$
\beta_{1} k+\ldots+\beta_{d} k_{d}+\gamma \Delta=\ell
$$

and so

$$
k \beta=\ell \quad(\bmod \Delta)
$$

For any α in \mathbb{Z}^{d} and γ in $\mathbb{Z}, k \alpha+\gamma \Delta$ is a multiple of ℓ. Thus the map $T: \mathbb{Z}^{d} \rightarrow\{0, \ldots, \Delta-1\}$ defined by $T(\alpha)=k \alpha(\bmod \Delta)$ is a homomorphism onto $K:=\{s \ell: 0 \leq s \leq r-1\}$.

Now if α is in $A^{T} \mathbb{Z}^{d}$, then

$$
\left(A^{-1} j\right) \alpha=j\left(\left(A^{-1}\right)^{T} \alpha\right)=j\left(A^{T}\right)^{-1} \alpha \in \mathbb{Z}
$$

and so

$$
k \alpha=(\operatorname{adj} A j) \alpha=\operatorname{det} A\left(A^{-1} j\right) \alpha=0 \quad(\bmod \Delta)
$$

Thus we can define a homomorphism S from $\mathbb{Z}^{d} / A^{T} \mathbb{Z}^{d}$ onto K by $S\left(\alpha+A^{T} \mathbb{Z}^{d}\right)=k \alpha(\bmod \Delta)$. So for $0 \leq s \leq r-1, T$ maps precisely ℓ elements of I^{\prime} onto $s \ell$. Hence

$$
\begin{aligned}
\sum_{\alpha \in I^{\prime}} \mathrm{e}^{2 \pi i\left(A^{-1} j\right) \alpha} & =\sum_{\alpha \in I^{\prime}} \mathrm{e}^{2 \pi i(\operatorname{det} A)^{-1} k \alpha}= \\
& =\sum_{\alpha \in I^{\prime}} \mathrm{e}^{2 \pi i(\operatorname{det} A)^{-1} T(\alpha)}= \\
& =\ell \sum_{s=0}^{r-1} \mathrm{e}^{2 \pi i(\operatorname{det} A)^{-1} s \ell}=\ell \sum_{s=1}^{r-1} w^{s}
\end{aligned}
$$

where $w=\mathrm{e}^{2 \pi i(\operatorname{det} A)^{-1} \ell}$. Since $w^{r}=1$ and $w \neq 1$, it follows that

$$
\sum_{\alpha \in I^{\prime}} \mathrm{e}^{2 \pi i\left(A^{-1} j\right) \alpha}=0
$$

THEOREM 3. For the above situation and I^{\prime} as in Lemma 1, we have for (j, α) in J and $k=1, \ldots, r$,

$$
\left(\Phi_{Y} P^{*}\right)(\theta)_{(j, k), k}=\Delta^{-1} \sum_{\beta \in I^{\prime}} \mathrm{e}^{i\left(A^{-1} \alpha\right)(\beta+2 \pi \beta)}\left(\Psi Q^{*}\right)(\theta+2 \pi \beta)_{j, k}
$$

Proof. By (4.9), (4.8), (4.2) and Lemma 1,

$$
\begin{aligned}
& \Delta^{-1} \sum_{\beta \in I^{\prime}} \mathrm{e}^{i\left(A^{-1} \alpha\right)(\theta+2 \pi \beta)}\left(\Psi Q^{*}\right)(\theta+2 \pi \beta)_{j, k}= \\
& =\Delta^{-1} \sum_{\beta \in I^{\prime}} \mathrm{e}^{i\left(A^{-1} \alpha\right)(\theta+2 \pi \beta)} \sum_{\ell=1}^{r} \sum_{\gamma \in I} \mathrm{e}^{i\left(A^{-1} \gamma\right)(\theta+2 \pi \beta)} \Phi_{Y}(\theta)_{(j, 0),(\ell, \gamma)} \times \\
& \times \sum_{\delta \in I} \mathrm{e}^{-i\left(A^{-1} \delta\right)(\theta+2 \pi \beta)} \overline{P(\theta)}_{k,(\ell, \delta)}= \\
& =\sum_{\ell=1}^{r} \sum_{\gamma, \delta \in I} \mathrm{e}^{i\left(A^{-1}(\alpha+\gamma-\delta)\right) \theta} \overline{P(\theta)}{ }_{k,(\ell, \delta)} \sum_{n \in \mathbb{Z}^{d}}\left(v_{j}, U^{A n+\gamma} v_{\ell}\right) \mathrm{e}^{i n \theta} \times \\
& \times \Delta^{-1} \sum_{\beta \in I^{\prime}} \mathrm{e}^{2 \pi i A^{-1}(\alpha+\gamma-\delta) \beta}= \\
& =\sum_{\ell=1}^{r} \sum_{\substack{\gamma, \delta \in I \\
\alpha+\gamma-\delta \in A \mathbb{Z}^{d}}} \overline{P(\theta)}_{k,(\ell, \delta)} \sum_{n \in \mathbb{Z}^{d}}\left(U^{\alpha} v_{j}, U^{(A n+\alpha+\gamma-\delta)} U^{\delta} v_{\ell}\right) \times \\
& \times \mathrm{e}^{i\left(n+A^{-1}(\alpha+\gamma-\delta)\right) \theta}= \\
& =\sum_{\ell=1}^{r} \sum_{\gamma \in I} \overline{P(\theta)}_{k,(\ell, \delta)} \sum_{n \in \mathbb{Z}^{d}}\left(U^{\alpha} v_{j}, U^{A n+\delta} v_{\ell}\right) \mathrm{e}^{i n \theta}= \\
& =\sum_{\ell=1}^{r} \sum_{\gamma \in I} \overline{P(\theta)}_{k,(\ell, \delta)} \Phi_{Y}(\theta)_{(j, \alpha),(\ell, \delta)}=\left(\Phi_{Y} P^{*}\right)(\theta)_{(j, \alpha), k} .
\end{aligned}
$$

Recalling theorem 2, we see that Method 1 works if the matrix B in $L_{r \times r}^{2}$ is invertible, where

$$
\begin{equation*}
B_{j, k}(\theta)=\left(\Phi_{Y} P^{*}\right)(\theta)_{(j, 0), k}=\Delta^{-1} \sum_{\beta \in I^{\prime}}\left(\Psi Q^{*}\right)(\theta+2 \pi \beta)_{j, k} \tag{4.10}
\end{equation*}
$$

As before we illustrate the construction with the case $r=1$, when Ψ and Q are in $L^{2}\left((0,2 \pi)^{d}\right)$, and write

$$
\left(\Phi_{Y} P^{*}\right)_{(1, \gamma), 1}=b_{\gamma}, \quad \gamma \in I
$$

Then the assumption of theorem 2 is that b_{0} is essentially bounded
away from zero, while (2.6), (2.7) become

$$
\begin{aligned}
\left(P_{\Gamma, Y}\right)_{\alpha, \beta} & =P_{\alpha, \beta}, & & \alpha \in I \backslash\{0\}, \quad \beta \in I \\
P_{\alpha, 0} & =-b_{\alpha}, & & \alpha \in I \backslash\{0\}, \\
P_{\alpha, \alpha} & =b_{0}, & & \alpha \in I \backslash\{0\}, \\
P_{\alpha, \beta} & =0, & & \text { otherwise } .
\end{aligned}
$$

In the case (1.3) for the particular choice $A=2 I$, the above construction (for $r=1$) reduces to that of [3, theorem 7.8], which in turn generalises a construction used by [16], see also [11] and [21].

We now return to the general case and derive condition on Ψ and Q that will ensure that the matrix B given by (4.10) is invertible and hence that Method 1 works. First we need

Lemma 2. The matrix $\Phi_{X_{0}}$ in $L_{r \times r}^{2}$ is given by

$$
\Phi_{X_{0}}(\theta)=\Delta^{-1} \sum_{\beta \in I^{\prime}}\left(Q \Psi Q^{*}\right)(\theta+2 \pi \beta)
$$

Proof. By the definition of Q and Ψ,

$$
\begin{aligned}
& \left(Q \Psi Q^{*}\right)(\theta)_{j, k}= \\
& \quad=\sum_{\alpha, \gamma, \delta \in \mathbb{Z}^{d}}^{r} \sum_{\ell, m=1}^{r} b_{j}^{\ell}(\alpha) \mathrm{e}^{i\left(A^{-1} \alpha\right) \theta}\left(v_{\ell}, U^{\gamma} v_{m}\right) \mathrm{e}^{i\left(A^{-1} \gamma\right) \theta} \overline{b_{k}^{m}(\delta)} \mathrm{e}^{-i\left(A^{-1} \gamma\right) \theta} .
\end{aligned}
$$

So applying lemma 1 gives

$$
\begin{aligned}
\Delta^{-1} \sum_{\beta \in I^{\prime}} & \left(Q \Psi Q^{*}\right)(\theta+2 \pi \beta)= \\
& =\sum_{\substack{\alpha, \gamma, \delta \in \mathbb{Z}^{d} \\
\alpha+\gamma-\delta \in A \mathbb{Z}^{d}}} \mathrm{e}^{i\left(A^{-1}(\alpha+\gamma-\delta)\right) \theta} \sum_{\ell, m=1}^{r} b_{j}^{\ell}(\alpha) \overline{b_{k}^{m}(\delta)}\left(v_{\ell}, U^{\gamma} v_{m}\right)= \\
& =\sum_{\alpha, \delta \in \mathbb{Z}^{d}} \sum_{n \in \mathbb{Z}^{d}} \mathrm{e}^{i n \theta} \sum_{\ell, m=1}^{r} b_{j}^{\ell}(\alpha) \overline{b^{m}(\delta)}\left(U^{\alpha} v_{\ell}, U^{A n+\delta} v_{m}\right)= \\
& =\sum_{n \in \mathbb{Z}^{d}}\left(x_{j}, U^{n} x_{k}\right) \mathrm{e}^{i n \theta}=\Phi_{X_{0}}(\theta)_{j, k}
\end{aligned}
$$

by (4.5).

Theorem 4. Suppose that $\left(\Psi Q^{*}\right)(\theta)$ is Hermitian, positive semidefinite for almost all θ. Then the matrix B in $L_{r \times r}^{2}$ given by (4.10) is invertible.

Proof. Since $U^{\mathbb{Z}^{d}} X_{0}$ is a Riesz basis, $\Phi_{X_{0}}$ is invertible. So by Lemma 2, there is a constant K such that for almost θ and for each non-zero v in \mathbb{R}^{r} with $|v|=1$, there is some β in I^{\prime} with

$$
v\left(Q \Psi Q^{*}\right)(\theta+2 \pi \beta) v^{T}>K>0
$$

Hence there is a constant K_{1} such that for almost all θ and for each non-zero v in \mathbb{R}^{r} with $|v|=1$,

$$
\left|\left(\Psi Q^{*}\right)(\theta+2 \pi \beta) v^{T}\right|>K_{1}>0
$$

Since $\left(\Psi Q^{*}\right)(\theta)$ is Hermitian, positive semi-definite for almost all θ, it follows that there is a constant K_{2} such that for almost all θ and for each non-zero v in \mathbb{R}^{r} with $|v|=1$,

$$
v\left(\Psi Q^{*}\right)(\theta+2 \pi \beta) v^{T}>K_{2}>0
$$

Since for almost all θ the right-hand side of (4.10) is a sum of positive semi-definite matrices, it follows that for all v with $|v|=1$,

$$
v B(\theta) v^{T}>\Delta^{-1} K_{2}
$$

Hence is invertible.
In the special case $r=1, \Psi$ and Q are scalar functions and $\Psi(\theta)>0$ for almost all θ. Thus the condition that $\Psi Q^{*}(\theta)$ be Hermitian positive semi-definite reduces to $Q(\theta) \geq 0$. This holds in particular in the following case.

Suppose that (1.3) holds and that $x_{1}=\phi * \overline{\phi(-.)}, v_{1}=\eta * \overline{\eta(-.)}$, for some ϕ, η in $L^{2}\left(\mathbb{R}^{d}\right)$ with ϕ in $\left\langle D U^{\mathbb{Z}^{d}} \eta\right\rangle$. Then taking Fourier transforms gives $\hat{\phi}=\tau \hat{\eta}\left(\left(A^{T}\right)^{-1}.\right)$, for some measurable function τ with $\tau(.+\lambda)=\tau$, for all λ in $2 \pi A^{T} \mathbb{Z}^{d}$. Now $\hat{x}_{1}=|\hat{\phi}|^{2}, \hat{v}_{1}=|\hat{\eta}|^{2}$ and so

$$
\begin{equation*}
\hat{x}_{1}=|\tau|^{2} \hat{v}_{1}\left(\left(A^{T}\right)^{-1} .\right) \tag{4.11}
\end{equation*}
$$

But from (4.5) and (4.6),

$$
\begin{equation*}
\hat{x}_{1}=Q(-.) \hat{v}_{1}\left(\left(A^{T}\right)^{-1} .\right) . \tag{4.12}
\end{equation*}
$$

Since $U^{\mathbb{Z}^{d}} v_{1}$ forms a Riesz basis, $Q(-$.$) is the unique function f$ in $L^{2}\left(\mathbb{R}^{d} / 2 \pi A^{T} \mathbb{Z}^{d}\right)$ with $\hat{x}_{1}=f \hat{v}_{1}\left(\left(A^{T}\right)^{-1}.\right)$. So for almost all x in \mathbb{R}^{d}, there is some n in $2 \pi A^{T} \mathbb{Z}^{d}$ so that $v_{1}\left(\left(A^{T}\right)^{-1}(x+n)\right) \neq 0$ and thus, from (4.11) and (4.12),

$$
Q(-x)=|\tau(x)|^{2} \geq 0
$$

This case is considered for $A=2 I$ in corollary 7.10 of [3].
To return to the case of general r, we recall that theorem 4 gives conditions under which we can apply Method 1. To apply Method 2 we require instead that the matrix \widetilde{P} in $L_{r \times r}^{2}$ is invertible, where

$$
\begin{equation*}
\widetilde{P}_{j, k}=P_{j,(k, 0)} \tag{4.13}
\end{equation*}
$$

In a similar, but simpler, manner to the proof of theorem 5 we can show that for (j, α) in J and $k=1, \ldots, r$,

$$
\begin{equation*}
P(\theta)_{j,(k, \alpha)}=\Delta^{-1} \sum_{\beta \in I^{\prime}} \mathrm{e}^{-i\left(A^{-1}(\theta+2 \pi \beta)\right.} Q(\theta+2 \pi \beta)_{j, k} \tag{4.14}
\end{equation*}
$$

We can then show, as in the proof of theorem 4 , that \widetilde{P} is invertible provided that $Q(\theta)$ is Hermitian, positive semi-definite for almost all θ.

5 - Riesz Bases and Convolution

In order to apply the constructions of section 2 we need to have Riesz bases $U^{\mathbb{Z}^{d}} X$ and $U^{\mathbb{Z}^{d}} Y$. We considered the case of linear splines on a 4-direction mesh in section 3 . Other examples can be gained by taking piecewise constant functions on a tesselation of \mathbb{R}^{d}. In order to construct higher degree splines one can consider successive convolution of lower degree splines, as we now describe. For ϕ in $L^{2}\left(\mathbb{R}^{d}\right)$ with compact support and v in \mathbb{R}^{d}, we define

$$
\begin{equation*}
P_{v} \phi(x)=\int_{0}^{1} \phi(x-t v) d t, \quad x \in \mathbb{R}^{d} \tag{5.1}
\end{equation*}
$$

It is well-known that box splines can be constructed by successively applying operators P_{v} to piecewise constant functions. We shall take $H=L^{2}\left(\mathbb{R}^{d}\right), U^{n} f=f(.-)$ and consider the constrction of a Riesz basis $U^{\mathbb{Z}^{d}} P_{v}^{j} X$ from a Riesz basis $U^{\mathbb{Z}^{d}} X$. For simplicity we consider only the case $r=2$, i.e. X comprises two functions. First we need

Lemma 3. If $X=\left\{x_{1}, x_{2}\right\} \subset L^{2}\left(\mathbb{R}^{d}\right)$ and x_{1}, x_{2} have compact support, then $U^{\mathbb{Z}^{d}} X$ forms a Riesz basis if and only if the vectors $\left(\hat{x}_{1}(\theta+\right.$ $2 \pi n))_{n \in \mathbb{Z}^{d}}$ and $\left(\hat{x}_{2}(\theta+2 \pi n)\right)_{n \in \mathbb{Z}^{d}}$ are linearly independent for all θ.

Proof. For f, g in $L^{2}\left(\mathbb{R}^{d}\right)$ we define $[f, g]$ in $L^{1}\left(\mathbb{R}^{d} / 2 \pi \mathbb{Z}^{d}\right)$ by

$$
\begin{equation*}
[f, g]:=\sum_{\beta \in \mathbb{Z}^{d}} f(.+2 \pi \beta) \bar{g}(.+2 \pi \beta) \tag{5.2}
\end{equation*}
$$

For $X=\left\{x_{1}, x_{2}\right\} \subset L^{2}\left(\mathbb{R}^{d}\right)$ with compact support,

$$
\begin{align*}
\Phi_{x}(\theta)_{j, k}: & =\sum_{n \in \mathbb{Z}^{d}}\left(x_{j}, U^{n} x_{k}\right) \mathrm{e}^{i n \theta}= \tag{5.3}\\
& =\left[\hat{x}_{j}, \hat{x}_{k}\right](-\theta), \quad j, k=1, \quad \theta \in \mathbb{R}^{d}
\end{align*}
$$

by Poisson's summation formula. Now $U^{\mathbb{Z}^{d}}$ is a Riesz basis if and only if Φ_{x} is invertible and, since the elements of Φ_{x} are trigonometric polynomials, Φ_{x} is invertible if and only $\Phi_{x}(\theta)$ is non-singular for each θ. But by (5.2), (5.3) and the Schwartz inequality for $\ell^{2}\left(\mathbb{Z}^{d}\right), \operatorname{det} \Phi_{x}(\theta)=0$ iff the vectors $\left(\hat{x}_{1}(-\theta+2 \pi n)\right)_{n \in \mathbb{Z}^{d}}$ and $\left(\hat{x}_{2}(-\theta+2 \pi n)\right)_{n \in \mathbb{Z}^{d}}$ are linearly dependent.

Henceforward we shall assume $d=2$. Recalling (5.1) we write $P_{1}:=$ $P_{(1,0)}, P_{2}=P_{(0,1)}$ and define, for ϕ in $L^{2}\left(\mathbb{R}^{2}\right)$ with compact support

$$
Q_{1} \phi(x):=\int_{-\infty}^{\infty} \phi(t, x) d t, \quad Q_{2} \phi(x):=\int_{-\infty}^{\infty} \phi(x, t) d t, \quad x \in \mathbb{R} .
$$

THEOREM 5. Suppose that $X=\left\{x_{1}, x_{2}\right\} \subset L^{2}\left(\mathbb{R}^{2}\right)$ and x_{1}, x_{2} have compact support. Then for $k=1,2$ and any $j \geq 1, U^{\mathbb{Z}^{2}} P_{k}^{j} X$ forms a Riesz basis if and only if both $U^{\mathbb{Z}^{2}} X$ and $U^{\mathbb{Z}} Q_{k} X$ form Riesz bases.

Proof. Without loss of generality we may take $k=1$. First suppose that $U^{\mathbb{Z}^{2}} X$ and $U^{\mathbb{Z}} Q_{1} X$ form Riesz bases. We shall suppose that for some $j \geq 1, U^{\mathbb{Z}^{2}} P_{1}^{j} X$ does not form Riesz basis and reach a contradiction. By Lemma 3, there is some θ and some λ_{1}, λ_{2}, not both zero, such that for all n in \mathbb{Z}^{2},

$$
\lambda_{1}\left(P_{1}^{j} x_{1}\right)^{\wedge}(\theta+2 \pi n)=\lambda_{2}\left(P_{1}^{j} x_{2}\right)^{\wedge}(\theta+2 \pi n),
$$

or equivalently,
(5.4) $\lambda_{1}\left(\frac{1-\mathrm{e}^{-i \theta_{1}}}{i\left(\theta_{1}+2 \pi n_{1}\right)}\right)^{j} \hat{x}_{1}(\theta+2 \pi n)=\lambda_{2}\left(\frac{1-\mathrm{e}^{-i \theta_{1}}}{i\left(\theta_{1}+2 \pi n_{1}\right)}\right)^{j} \hat{x}_{2}(\theta+2 \pi n)$,
where we adopt the convention that $\frac{1-\mathrm{e}^{-i \theta}}{i \theta}=1$ when $\theta=0$.
If $\theta_{1} \neq 0(\bmod 2 \pi)$, then $1-\mathrm{e}^{-i \theta} \neq 0$ and so

$$
\begin{equation*}
\lambda_{1} \hat{x}_{1}(\theta+2 \pi n)=\lambda_{2} \hat{x}_{2}(\theta+2 \pi n), \quad n \in \mathbb{Z}^{2}, \tag{5.5}
\end{equation*}
$$

which, by lemma 3 , contradicts $U^{\mathbb{Z}^{2}} X$ being a Riesz basis. So $\theta_{1}=0$ $(\bmod 2 \pi)$ and (5.4) becomes

$$
\begin{equation*}
\lambda_{1} \hat{x}_{1}\left(0, \theta_{2}+2 \pi n\right)=\lambda_{2} \hat{x}_{2}\left(0, \theta_{2}+2 \pi n\right), \quad n \in \mathbb{Z}, \tag{5.6}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\lambda_{1}\left(Q_{1} x_{1}\right)^{\wedge}\left(\theta_{2}+2 \pi n\right)=\lambda_{2}\left(Q_{1} x_{2}\right)^{\wedge}\left(\theta_{2}+2 \pi n\right), \quad n \in \mathbb{Z}, \tag{5.7}
\end{equation*}
$$

which contradicts $U^{\mathbb{Z}} Q_{1} X$ being a Riesz basis, by lemma 3 .
Conversely if $U^{\mathbb{Z}} Q_{1}$ does not form a Riesz basis, then (5.7) holds for some θ_{2} and some λ_{1}, λ_{2}, not both zero, and hence so does (5.5). This means (5.4) holds for $\theta=\left(0, \theta_{2}\right)$ and hence $U^{\mathbb{Z}^{2}} P_{1}^{j} X$ does not form a Riesz basis.

Similarly if $U^{\mathbb{Z}^{2}} X$ does not form a Riesz basis, then (5.5) holds for some θ and some λ_{1}, λ_{2}, not both zero, which implies that (5.4) holds and again that $U^{\mathbb{Z}^{2}} P_{1}^{j} X$ does not form a Riesz basis.

We now extend the results to convolution in directions other than the coordinate directions.

THEOREM 6. For ϕ in $L^{2}\left(\mathbb{R}^{2}\right)$ with compact support, and co-prime non-zero integers p and q, let $P=P_{(p, q)}$ and define

$$
\begin{equation*}
Q \phi(x, y):=\int_{-\infty}^{\infty} \phi\left(\frac{x}{q}+p t, q t\right) d t \tag{5.8}
\end{equation*}
$$

If $X=\left\{x_{1}, x_{2}\right\} \subset L^{2}\left(\mathbb{R}^{2}\right)$ and x_{1}, x_{2} have compact support, then for $j \geq 1, U^{\mathbb{Z}^{2}} P^{j} X$ forms a Riesz basis if and only if $U^{\mathbb{Z}^{2}} X$ and $U^{\mathbb{Z}} Q X$ form Riesz bases.

Proof. As in the proof of theorem 5 we suppose that $U^{\mathbb{Z}^{2}} X$ and $U^{\mathbb{Z}} Q X$ form Riesz bases but that for some $j \geq 1, U^{\mathbb{Z}^{2}} P^{j} X$ does not. Then there is some θ and λ_{1}, λ_{2}, not both zero, such that

$$
\begin{align*}
& \lambda_{1}\left(\frac{1-\mathrm{e}^{-i\left(p \theta_{1}+q \theta_{2}\right)}}{i\left(p \theta_{1}+q \theta_{2}+2 \pi\left(p n_{1}+q n_{2}\right)\right)}\right)^{j} \hat{x}_{1}(\theta+2 \pi n)= \\
& \quad=\lambda_{2}\left(\frac{1-\mathrm{e}^{-i\left(p \theta_{1}+q \theta_{2}\right)}}{i\left(p \theta_{1}+q \theta_{2}+2 \pi\left(p n_{1}+q n_{2}\right)\right)}\right)^{j} \hat{x}_{2}(\theta+2 \pi n), \quad n \in \mathbb{Z}^{2} \tag{5.9}
\end{align*}
$$

If $p \theta_{1}+q \theta_{2} \neq 0(\bmod 2 \pi)$ we shall reach a contradiction to $U^{\mathbb{Z}^{2}} X$ being a Riesz basis. So for some ℓ in \mathbb{Z},

$$
\begin{equation*}
p \theta_{1}+q \theta_{2}=2 \ell \pi \tag{5.10}
\end{equation*}
$$

Since p and q are co-prime, there are integers r, s with

$$
\begin{equation*}
p r+q s=-\ell \tag{5.11}
\end{equation*}
$$

and integers n_{1}, n_{2} satisfy $p n_{1}+q n_{2}=-\ell$ if and only if $n_{1}=r+q m$, $n_{2}=s-p m$, for some integer m. So (5.9) becomes

$$
\begin{align*}
& \lambda_{1} \hat{x}_{1}\left(\theta_{1}+2 \pi r+2 \pi q m, \quad \theta_{2}+2 \pi s-2 \pi p m\right)= \\
& \quad=\lambda_{2} \hat{x}_{2}\left(\theta_{1}+2 \pi r+2 \pi q m, \quad \theta_{2}+2 \pi s-2 \pi p m\right), \quad m \in \mathbb{Z} \tag{5.12}
\end{align*}
$$

Putting $\alpha=\left(\theta_{1}+2 \pi r\right) / q,(5.10)$ and (5.11) give $\theta_{2}+2 \pi s=-p \alpha$. So (5.12) becomes

$$
\begin{array}{r}
\lambda_{1} \hat{x}_{1}(q(\alpha+2 \pi m),-p(\alpha+2 \pi m))=\lambda_{2} \hat{x}_{2}(q(\alpha+2 \pi m),-p(\alpha+2 \pi m)), \\
m \in \mathbb{Z}
\end{array}
$$

or equivalently

$$
\lambda_{1}\left(Q x_{1}\right)^{\wedge}(\alpha+2 \pi m)=\lambda_{2}\left(Q x_{2}\right)^{\wedge}(\alpha+2 \pi m), \quad m \in \mathbb{Z}
$$

which contradicts $U^{\mathbb{Z}} Q X$ being a Riesz basis.
The converse follows as in the proof of theorem 5 .
We note that for any $X=\left\{x_{1}, x_{2}\right\} \subset L^{2}\left(\mathbb{R}^{2}\right)$ with compact support, and any linearly independent vectors v, w in $\mathbb{Z}^{2}, U^{\mathbb{Z}^{2}} P_{v} P_{w} X$ does not form a Riesz basis. In this case for $k=1,2$,

$$
\left(P_{v} P_{w} x_{k}\right)^{\wedge}(\theta)=\frac{\left(1-\mathrm{e}^{-i v \theta}\right)\left(1-\mathrm{e}^{-i w \theta}\right)}{i v \theta} \hat{x}_{k}(\theta)
$$

and so for n in $\mathbb{Z}^{2},\left(P_{v} P_{w} x_{k}\right)^{\wedge}(2 \pi n)=0$ except when $v n=0$ and $w n=$ 0 , i.e. except when $n=0$. Thus the vectors $\left(P_{v} P_{w} x_{1}\right)^{\wedge}(2 \pi n)_{n \in \mathbb{Z}^{2}}$ and $\left(P_{v} P_{w} x_{2}\right)^{\wedge}(2 \pi n)_{n \in \mathbb{Z}^{2}}$ are linearly dependent and the result follows from lemma 3.

6 - The 4-direction mesh revisited

We now apply the convolution operators considered in $\S 5$ to the basis functions considered in $\S 3$. Let $X=\left\{x_{1}, x_{2}\right\}$ comprise the linear splines on the 4 -direction mesh as defined in $\S 3$. We saw there that $U^{\mathbb{Z}^{2}} X$ was a Riesz basis. A simple calculation shows that for $k=1,2$,

$$
\begin{aligned}
& Q_{k} x_{1}(x)= \begin{cases}(1+x)^{2}, & -1 \leq x \leq 0 \\
(1-x)^{2}, & 0 \leq x \leq 1 \\
0, & \text { otherwise }\end{cases} \\
& Q_{k} x_{2}(x)= \begin{cases}2 x(1-x), & 0 \leq x \leq 1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

It can be easily seen that $U^{\mathbb{Z}}\left(Q_{k} x_{1}, Q_{k} x_{2}\right)$ forms a Riesz basis. (In fact $Q_{k} x_{1}$ and $Q_{k} x_{2}$ are consecutive quadratic B-splines with double knots, and wavelets for B splines with multiple knots were discussed in [8]). So by theorem $5, U^{\mathbb{Z}^{2}} P_{k}^{j} X$ is a Riesz basis for $k=1,2$ and any $j \geq 1$.

Now defining Q as in (5.8) with $p=q=1$, we find that

$$
\begin{aligned}
Q x_{1}(x) & = \begin{cases}\frac{1}{2}\left(1-x^{2}\right), & -1 \leq x \leq 1 \\
0, & \text { otherwise }\end{cases} \\
Q x_{2} & =\frac{1}{2} Q_{k} x_{1}
\end{aligned}
$$

In this case some calculation shows that the matrix $\Phi_{Q X}(\pi)$ is singular and so $U^{\mathbb{Z}} Q X$ does not form a Riesz basis. A corresponding result holds when $p=-1, q=1$. So by theorem $6, U^{\mathbb{Z}^{2}} P_{v}^{j} X$ does not form a Riesz basis for any $j \geq 1$, for $v=(1,1)$ or for $v=(-1,1)$.

We now take $j \geq 0$ and consider constructing wavelets by Method 2 for the case $V_{0}=\left\langle U^{\mathbb{Z}^{2}}\left\{P_{k}^{j} x_{1}, P_{k}^{j} x_{2}\right\}\right\rangle, V_{1}=D V_{0}$, where $D f(x)=2 f(2 x)$.

Without loss of generality we assume $k=1$. It will be convenient to make a translation and define the following functions for $\ell=1,2$:

$$
\begin{array}{ll}
\phi_{\ell}^{2 r}:=U_{1}^{-r} P_{1}^{2 r} x_{\ell}, & r=0,1,2, \ldots \\
\phi_{\ell}^{2 r-1}:=U_{1}^{-r} P_{1}^{2 r-1} x_{\ell}, & r=1,2, \ldots
\end{array}
$$

Thus $\phi_{1}^{2 r}$ has support on the convex hull of the 6 points $(\pm(r+1), 0)$, $(\pm r, \pm 1)$, with centre the origin. Similarly $\phi_{2}^{2 r}$ has support on the convex hull of $(-r, 0),(-r, 1),(r+1,0),(r+1,1), \phi_{1}^{2 r-1}$ has support on the convex hull of $(-r-1,0),(r, 0),(-r, \pm 1),(r-1, \pm 1)$, and $\phi_{2}^{2 r-1}$ has support on the convex hull of $(\pm r, 0),(\pm r, 1)$.

Clearly $V_{0}=\left\langle U^{\mathbb{Z}^{2}}\left\{\phi_{1}^{j}, \phi_{2}^{j}\right\}\right\rangle$ and for $\ell=1,2$,

$$
\begin{align*}
& \phi_{\ell}^{2 r}=P_{1}^{r} P_{-1}^{r} x_{\ell} \tag{6.1}\\
& \phi_{\ell}^{2 r-1}=P_{1}^{r-1} P_{-1}^{r} x_{\ell}
\end{align*}
$$

where $P_{-1}=P_{(-1,0)}$.

Now recall that we are in the situation of $\oint 4$ with $A=2 I$ and $X_{0}=X_{1}=\left\{\phi_{1}^{j}, \phi_{2}^{j}\right\}$.

We shall denote the matrix Q in $\widetilde{L}_{2 \times 2}^{2}$ given by (4.5), (4.6) by Q_{j}.
A simple calculation shows that Q_{0} is given by

$$
Q_{0}(\theta)=\frac{1}{4}\left[\begin{array}{ll}
2+z+\bar{z}+w+\bar{w} & (1+\bar{z})(1+\bar{w}) \tag{6.3}\\
2 z w & (1+z)(1+w)
\end{array}\right]
$$

where $z=\mathrm{e}^{\frac{1}{2} i \theta_{1}}, w=\mathrm{e}^{\frac{1}{2} \theta_{2}}$. From the definitions of P and D we see that

$$
P_{1} D=\frac{1}{2} D P_{1}+\frac{1}{2} D P_{1} U_{1}
$$

and (6.1), (6.2) give

$$
\begin{equation*}
Q_{2 r}(\theta)=2^{-2 r}(1+z)^{r}(1+\bar{z})^{r} Q_{0}(\theta) \tag{6.4}
\end{equation*}
$$

$$
Q_{2 r-1}(\theta)=2^{-2 r+1}(1+z)^{r-1}(1+\bar{z})^{r} Q_{0}(\theta)
$$

Now Method 2 works if the matrix \widetilde{P} in $L_{2 \times 2}^{2}$ is invertible, where by (4.13) and (4.14),

$$
\begin{align*}
\widetilde{P}(\theta) & =\frac{1}{4} \sum_{\beta \in I^{\prime}} Q_{j}(\theta+2 \pi \beta)= \tag{6.5}\\
& =\frac{1}{4}\left\{Q_{j}(z, w)+Q_{j}(-z, w)+Q_{j}(z,-w)+Q_{j}(-z,-w)\right\} .
\end{align*}
$$

We first consider the case $j=2 r$. Then from (6.3), (6.4) and (6.5),

$$
\begin{aligned}
\widetilde{P}(\theta)_{2,1} & =0 \\
2^{2 r+3} \widetilde{P}(\theta)_{1,1} & =(1+z)^{r+1}(1+\bar{z})^{r+1}+(1-z)^{r+1}(1-\bar{z})^{r+1}= \\
& =|1+z|^{2 r+2}+|1-z|^{2 r+2} \\
2^{2 r+3} \widetilde{P}(\theta)_{2,2} & =(1+z)^{r+1}(1+\bar{z})^{r}+(1-z)^{r+1}(1-\bar{z})^{r}= \\
& =|1+z|^{2 r}(1+z)+|1-z|^{2 r}(1-z)
\end{aligned}
$$

Thus for all $\theta, \widetilde{P}(\theta)_{1,1}>0$ and $4 \operatorname{Re} \widetilde{P}(\theta)_{2,2}=\left(\cos \frac{\theta}{4}\right)^{2 r+2}+\left(\sin \frac{\theta}{4}\right)^{2 r+2}>0$.
So for all θ,

$$
\begin{equation*}
\operatorname{det} \widetilde{P}(\theta)=\widetilde{P}(\theta)_{1,1} \widetilde{P}(\theta)_{2,2} \neq 0 \tag{6.7}
\end{equation*}
$$

and \widetilde{P} is invertible.
Finally we consider the case $j=2 r-1$. Then from (6.3), (6.5) and (6.6),

$$
\begin{aligned}
\widetilde{P}(\theta)_{2,1} & =0 \\
2^{2 r+2} \widetilde{P}(\theta)_{1,1} & =|1+z|^{2 r}(1+\bar{z})+|1-z|^{2 r}(1-\bar{z}), \\
2^{2 r+2} \widetilde{P}(\theta)_{2,2} & =|1+z|^{2 r}+|1-z|^{2 r}
\end{aligned}
$$

For all θ as before, $\operatorname{Re} \widetilde{P}(\theta)_{1,1}>0$ and $\widetilde{P}(\theta)_{2,2}>0$ and so (6.7) holds. Thus for all values of j, we can construct wavelets by Method 2.

REFERENCES

[1] G. Battle: A block spin construction of ondelettes, Part 1: Lemarie functions, Comunication Math. Phys. 110 (1987), 601-615.
[2] C. de Boor - R. DeVore - A. Ron: The structure of finitely generated shiftinvariant spaces in $L_{2}\left(\mathbb{R}^{d}\right)$, J. Func. Analysis 119 (1994), 37-78.
[3] C. De Boor - R. DeVore - A. Ron: On the construction of multivariate (pre)wavelets, Constr. Approx. 9 (1993), 123-166.
[4] C.K. Chui - J.Z. Wang: A cardinal spline approach to wavelets, Proc. Amer. Math. Soc. 113 (1991), 785-793.
[5] C.J. Chui - J. Stöckler - J.D. Ward: Compactly supported box spline wavelets, Approximation Theory and its Applications 8 (1992), 77-100.
[6] I. Daubechies: Orthonormal bases of compactly supported wavelets, Comm. on Pure and Appl. Math. 41 (1988), 909-996.
[7] T.N.T. Goodman - S.L. Lee - W.S. Tang: Wavelets in wandering subspaces, Trans. Amer. Math. Soc. 338 (1993), 639-654.
[8] T.N.T. Goodman - S.L. Lee: Wavelets of multiplicity r, Report AA/921 University of Dundee (1992), to appear Trans. Amer. Math. Soc.
[9] T.N.T. Goodman - S.L. Lee - W.S. Tang: Wavelet bases for a set of commuting unitary operators, Advances in Computational Maths. 1 (1993), 109-125.
[10] S. Jaffard: Wavelets and applications, Proc. 5th European Conf. on Mathematics in Industry (Lahti, 1990), 25-34 Eur. Consort. Math. Indust., 7, Teubner, Stuttgart, (1991).
[11] R.Q. Jia - C.A. Micchelli: Using the refinement equation for the construction of pre-wavelets II, power of two, in "Curves and Surfaces" (P.J. Laurent, A. Le Mehauté and L.L. Schumaker, eds.), Academic Press, New York, (1991), 209-246.
[12] R.Q. Jia - Z. Shen: Multiresolution and wavelets, Proc. Edinburgh Math. Soc. 37 (1994), 271-300.
[13] S.L. Lee - H.H. Tan - W.S. Tang: Wavelet bases for a unitary operator, to appear Proc. Edinburgh Math. Soc..
[14] P.G. Lemarie: Ondelettes a localisation exponentielles, J. de Math. Pures et Appl. 67 (1988), 227-236.
[15] P.G. Lemarie - Y. Meyer: Ondelettes et bases Hilbertiennes, Rev. Mat. Iberoamericana 2 (1986), 1-8.
[16] R.A.H. Lorentz - W.R. Madych: Wavelets and generalised box splines, Applicable Analysis 44 (1992), 51-76.
[17] S.G. Mallat: Multiresolution approximations and wavelet orthonormal bases of $L^{2}(\mathbb{R})$, Trans. Amer. Math. Soc. 315 (1988), 69-87.
[18] Y. Meyer: Ondelettes et Opérateurs I, Ondelettes, Hermann Éditeurs, (1990).
[19] S.D. Riemenschneider - Z.W. Shen: Box splines series and wavelets, in "Approximation Theory and Functional Analysis" (C.K. Chui, ed.) Academic. Press, New York, (1991), 133-149.
[20] S.D. Riemenschneider - Z.W. Shen: Wavelets and prewavelets in low dimensions, J. Approximation Theory, 71 (1992), 18-38.
[21] J. Stöckler: Multivariate wavelets, in "Wavelets - A Tutorial Theory and Applications" (C.K. Chui, ed.), Academic Press, New York, (1992), 325-355.

Lavoro pervenuto alla redazione il 2 marzo 1994 ed accettato per la pubblicazione il 13 luglio 1994

Indirizzo DELL'AUTORE:

T.N.T. Goodman - Department of Mathematics and Computer Science - The University Dundeee DD1 4HN - Scotland

[^0]: Key Words and Phrases: Wavelet - Unitary operator - Spline
 A.M.S. Classification: $42 \mathrm{C} 15-41 \mathrm{~A} 15-41 \mathrm{~A} 63$

