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Examples of differential geometric behaviour of

projective varieties in positive characteristic

E. BALLICO – F. GIOVANETTI – B. RUSSO

Riassunto: Studiamo tre esempi di proprietà di carattere geometrico-differenziale
delle varietà proiettive in caratteristica p: (1) classificazione di superfici in P2n+1 il cui
m-esimo spazio osculatore ha sempre dimensione 2m (1 ≤ m ≤ n); (2) ipersuperfici
con rango Hessiano 0; (3) ipersuperfici singolari di spazi proiettivi pesati con fascio
tangente localmente libero.

Abstract: Here we study three examples of differential geometric behaviour of
projective varieties in positive characteristic: (1) the classification of smooth surfaces
in P2n+1 whose m-th osculating spaces have everywhere dimension 2m (1 ≤ m ≤ n);
(2) hypersurfaces with Hessian rank 0; (3) singular hypersurfaces in weighted projective
spaces whose tangent sheaf is locally free and a subbundle of the restricted tangent
bundle.

1 – Introduction

In the last few years an active field of research was the study of pro-

jective properties of subvarieties of Pn under the assumption that the

algebraically closed base field K has positive characteristic. In this paper

we give three independent results on this topic. In the second section we
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show how to extend to positive characteristic the classification theorem

in [6] on surfaces in P2n+1 with extremal osculating behaviour. Most of

section three is devoted to a refinement of the non enumerative part of

[18] about hypersurfaces with “pathological” (i.e. impossible in charac-

teristic 0) differential geometric behaviour (see Theorems 3.1, 3.2, 3.3, 3.4

and 3.5). The proofs of these five theorems (i.e. a reduction to the case of

plane curves) are simpler the the ones used in [18]. At the end of this sec-

tion (just to give another example of funny behaviour of the derivatives

in positive characteristic) we give the very easy extension of [4], Th. 0.1,

from the case of hypersurfaces of Pn to the case of hypersurfaces of a

weighted projective space (see Theorem 3.6). In each case we use freely

background and proofs of the quoted references.

2 – Surfaces with extremal osculating behaviour

In this section we show that only very minor changes (given below)

will be sufficient to extend the theorem of [6] in positive characteristic

under the assumption that p := char(K) ≥ n, i.e. to prove the following

result.

Theorem 2.1. Assume p := char(K) ≥ n, and p ≥ 7 if n = 2.

Let X ⊂ P2n+1, n ≥ 2, be a smooth projective surface not contained in

a hyperplane and such that for every x ∈ X and every m ≤ n the m-th

osculating space Oscm
X(x) at x has dimension 2m. Then X is a balanced

rational normal scroll.

The projective part of the proof of 2.1 is trivial, but the second

part related to the classification of surfaces in positive characteristic is

less trivial. The characteristic 0 proof of Theorem 2.1 given in [4] was

mainly based on the intermediate results and calculations made in [13]

to prove particular cases of theorem. Everything in [13] used in [4] works

verbatim under our assumption on p until we arrive at [13], Corollary at

page 219, i.e. to the statement that X has Kodaira dimension κ(X) < 0

and that X *= P2. It is very easy to check that X *= P2. Hence to find a

contradiction we may assume κ(X) ≥ 0. Let S be the minimal model of

X and b the number of blowing ups of points needed to pass from S to

X. Note that c2(X) = c2(S) + b. The proof of corollary works verbatim
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in positive characteristic if one can prove that c2(S) ≥ 0. By the positive

characteristic classification of surfaces (see [8] or [7]) we have κ(X) *= 0.

By [12], we have c2(X) ≥ 0 if κ(X) = 1. Hence we assume κ(X) = 2.

Thus by [3], Th. A and 0.3.1, or [1] or [2], Th. A, a multiple of K + H

is still spanned by global sections and we have ([2], table at page 179)

H(K+H) > 0 and K(K+H) > 0. Furthermore, since κ(X) = 2 we have

KH > 0. Since κ(X) = 2, by [9], Prop. 4.5, we have pc2(S)+ c1(S)2 ≥ 0.

Since p ≥ n by assumption we still have (n − 1)2c2(S) + nc1(S)2 ≥ 0.

Hence if n ≥ 3 the numerical part of the proof of [13], Corollary at page

219, works verbatim and we get a contradiction. Thus we may assume

n = 2. For n = 2 we have c2(X) + 2(K + H)2 + 2KH + H2 = 0. Hence

we may assume c2(X) + K2 < 0, i.e. by Noether formula χ(OX) < 0.

By [15], Th. 8, we have p ≤ 7. Hence we may assume p = 7, n = 2,

c2(X) < 0. By [9], Prop. 4.5, we have p
(
c2(X)− b

)
+(K2 + b) ≥ 0. Hence

11c2(X)+2K2 ≥ 0. By [13], eq. (2), we have 11c2(X)+2K2+10KH = 0,

contradiction. Now we need to look at the proofs in [4]. By the part of

the proof of [13] after the corollary just extended to our setting we may

assume n ≥ 5, κ(X) < 0 and that X is not a relatively minimal model.

Since κ(X) *= 2 we still have Bogomolov’s criterion of instability ([14],

Th. 7). Hence we may use Reider’s method (see for instance [14], Cor. 8)

to obtain the very ampleness of (K +H) except exactly the characteristic

0 cases. Hence, using the very ampleness of K+H as in [4], the numerical

part of [4] at page 206 works verbatim and concludes the proof of 2.1.

3 – Hypersurfaces with Hessian rank 0

Here we extended the non enumerative part of [18] to the case in

which the hypersurface has not too many singularities. In particular all

the results will be proven for every normal hypersurface; this result was

previously known, since it is contained in the unpublished part of the

thesis [10]. We stress that the proofs (i.e. the reduction to the case of

plane curves) are completely different and much simpler that the proofs in

[10], [16], [17] and [18]. For background and definitions (e.g. coordinate

gap number b2) see [18] and references therein. At the end of the section

we give an easy example (see Theorem 3.6) of extension to the case of

a weighted projective space of a positive characteristic funny behaviour

known for an ordinary projective space.
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We fix an algebraically closed base field K with p := char(K) > 0.

We fix homogeneous coordinates x0, . . . , xn on a projective space Pn; if

U is a homogeneous polynomial, let Ui or Di(U) (resp. Uij or Di,j(U)

and so on) its partial derivative with respect to xi (resp. xi and xj).

We fix an integral hypersurface X ⊂ Pn with degree d and let G be

its homogeneous equation. We will give a total weight wtsg(X) for the

contributions of the singularities of X to give numerical bounds among

the assumptions in all the theorems (except 3.6) proven in this section.

Let {Sb}n∈B be the family of all irreducible components of dimension

n − 2 of Sing(X) (with its reduced structure); note that B = ∅ if X is

normal. We take a general plane
∏ ⊂ Pn and look at the integral curve

C := X ∩ ∏
. For each singular point, P , of X let mP be the multiplicity

of C and eP the multiplicity of the Jacobian ideal of C (i.e. the minimum

of the intersection multiplicities at P of C with its partial derivative loci).

Set

(1) wtsg(X) := wtsg(C) =
∑

P∈Sing(C)

(
eP − mP (mP − 2)

)
.

Now we give the statements of the theorems which will be proved

here.

Theorem 3.1. Assume p > 2. Let X := {G = 0} be a degree

d hypersurface of Pn with coordinate gap number b2(X) > 2. Assume

wtsg(X) < d. Then the second order partial derivatives Gi,j of G vanish

identically.

Theorem 3.2. Assume p > 2. Let X := {G = 0} be a degree d

hypersurface of Pn with b2(X) = q = pe with e > 0. Assume Gi,j = 0 for

all i, j and that for a general plane section C of X we have

(2)
∑

P∈Sing(C)

eP <
(
1 − (1/p)

)
d2 .

The all the partial derivatives Dq
i (G) of order q (0 ≤ i ≤ n) are

identically 0.

Theorem 3.3. Assume p > 2. Let X := {G = 0} be a degree d

hypersurface of Pn with b2(X) = q = pe with e > 0. Assume wtsg(X) <
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d. Then d = kq + 1 for some k and there are n + 1 degree k polynomials

P0, . . . , Pn such that

(3) G =
∑

i

xiP
q
i .

Now we consider the case p = 2.

Theorem 3.4. Assume p = 2. Let X := {G = 0} be a degree d

hypersurface of Pn with b2(X) = q = 2e with e ≥ 2. Assume that for a

general plane section C of X we have

∑

P∈Sing(C)

eP < (d/2) .

The b2(X) = 2e with e ≥ 2 if and only if Gi,j = 0 for all i, j and

Dt
i(G) = 0 for all t with t = 2a and 1 ≤ a < e.

Theorem 3.5. Assume p = 2. Let X := {G = 0} be a degree d

hypersurface of Pn with b2(X) = q = 2e with e ≥ 2. Assume that for a

general plane section C of X we have

∑

P∈Sing(C)

eP < (d/2) .

Then d = kq +1 for some k and there are n+1 degree k polynomials

P0, . . . , Pn such that

G =
∑

i

xiP
q
i .

Proof of 3.1 By linear algebra to show that G has all second order

partial derivatives Gi,j identically 0, it is sufficient to show the corre-

sponding vanishing in any system of coordinates and at a general point.

Hence it is sufficient to restrict G to a general plane Π. Then C := C ∩Π

is non reflexive and 3.1 follows from [5], Th. 3.
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By the last remark in [5] the bound in Theorem 3.1 can be improved

under certain arithmetic conditions; for instance if p divides mP (resp.

mP − 1), then in the rigid hand side of (1) one can put mP2 (resp.

mP (mP − 1)) instead of mP (mP − 2).

Proof of 3.2 As in the previous proof we reduce to the case of

a general plane saection C := X ∩ Π. Note that the bound (2) is much

weaker than the bound in the statement of [11], Th. 5.5. Hence 3.2 follows

quoting [5] instead of [11], Th. 5.1, in the proof of [11], Th. 5.5.

Proof of 3.4 Reduce as in the previous proofs to the case of a plane

curve and use [11], Th. 5.11.

Proof of 3.5 Note that as in [18], proof of Th. 2.2 (or in [11], proof

of Cor. 5.10) one obtains in a formal way the canonical form (3) as soon

as one has proved the vanishing of all partial derivatives Gi,j and Dq
i . Use

3.2 if p < 2; use 3.4 and [11], Cor. 5.16, if p = 2

In the last part of this paper we extend from the case of Pn to the

case of a weighted projective space W = P(w0, . . . , wn) the classification

theorem [4], Th. 0.1, on singular hypersurface whose tangent sheaf is a

subbundle of the restriction of TPn. Here we allow the case p = 0.

Theorem 3.6. Let K be an algebraically closed field; set p :=

char(K) ≥ 0. Let X be an integral hypersurface of a tame weighted

projective space W := P(w0, . . . , wn) (i.e. if p > 0 assume that all the

weights of W are coprime to p). Let π : Pn → W be the canonical

cover. Assume Sing(X) *= ∅, π1(X) integral and not smooth and that

the tangent sheaf TX is a subbundle of TW |X with OX(k) as quotient

sheaf; assume that OW (k) is locally free in a neighborhood of X. Then

p > 0 and there are weighted homogeneous polynomials u, h, v such that

the weighted homogeneous polynomial f of X is of the form

(4) f = uph + vp .

Viceversa, if p > 0, is given by (4) with k := deg(h) > 0 and OW (k)

is invertible in a neighborhood of X := {f = 0}, Sing(X) *= ∅ and at each

point of X one of the “weighted” partial derivatives of h does not vanish,

then (TW |X)/TX ∼= OX(k).
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The only problem to prove 3.6 is to find the “right” set up (tame

weighted projective spaces and the local freeness of OW (k) in a neigh-

borhood of X). After that, the proof of [4], Th. 0.1, works verbatim.
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