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Low-frequency acoustic scattering by an

infinitely stratified scatterer

C. ATHANASIADIS – I.G. STRATIS

Riassunto: In questo lavoro si consida il problema della diffusione di un’onda
acustica piana da un diffusore a infiniti strati con nucleo permeabile o rigido. Anzitutto
si dimostra l’esistenza e l’unicità della soluzione; poi, usando l’approssimazione di bassa
frequenza, si riduce il problema ad una successione iterativa di problemi con potenziale.
Si ricavano infine limitazioni per i coefficienti di bassa frequenza e per l’ampiezza di
diffusione normalizzata.

Abstract: In this work we consider the problem of scattering of a plane acoustic
wave by an infinitely stratified scatterer with a soft, a rigid or a resistive core. Firstly,
we prove the existence and uniqueness of solutions of this problem. Then using the low-
frequency approximation, we reduce it to an iterative sequence of potential problems.
Bounds for the low-frequency coefficients and for the normalized scattering amplitude
are derived.

1 – Introduction

The low frequency approximation, appropriate for large, compared

to the characteristic dimension of the scatterer, wavelengths, has been

widely employed to investigate the problem of scattering of a plane acous-

tic wave.
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Low-frequency theory – Scattering amplitude.
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A systematic development for the case of a soft scatterer (Dirichlet

boundary condition) of arbitrary shapes is given by Morse and Fesh-

bach in [17]. Ar and Kleinman in [1] formulated the Neuman boundary

value problem for the Helmholtz equation (rigid scatterer). A significant

contribution to acoustic scattering at low-frequencies has been made by

Dassios [7].

Twersky in [19] has obtained the leading term approximation of the

real part of the scattering amplitude by direct application of the general

scattering theorem. The acoustic scattering by a multi layered ellipsoid

is studied in [2]. In [18], Sabatier and Dolveck-Guilbard, and in

[19], Dupuy and Sabatier, present the scattering theory correspond-

ing to the impedance equation, with discontinuity surface corresponding

to a jump in impedance and / or its normal derivative. Results for an

infinitely stratified scatterer in low-frequency electromagnetic scattering

theory are given in [3]. Existence, uniqueness and regularity results for

diffraction problems for general second order, linear parabolic and hyper-

bolic equations, with coefficients having discontinuities of the first kind on

an infinite number of smooth surfaces, are studied by the authors in [5].

In this work we describe a systematic and integrated theory for the

scattering of a plane acoustic wave by an infinitely stratified scatterer with

a soft, a rigid, or a resistive core. Such a scatterer consists of infinitely

many closed penetrable surfaces Sj, j = 1, 2, . . . containing a soft or a

rigid core. Every surface Sa is inside Sb for a > b. On these surfaces there

must be imposed certain conditions, known as “transmission conditions”

that physically express the continuity of the medium, and the equilibrium

of the forces acting on it.

Such scatterers appear in several domains of physics. The sound

diffraction by the human brain, corresponds to an acoustic transmission

problem [10], similar to the one we are studying here. Other examples

include a transmission problem for the impedance equation [18], and the

composite materials, having an “onion” structure, in elasticity [16].

Our method is closely related to one of the approaches used to study

problems for inhomogeneous media. The material parameters, which -

for inhomogeneous media - are functions of the position vector, are ap-

proximated by piecewise constant functions. If a tesselation like the one

described above is assumed, with constant material parameters in each

layer, then the exact solution to the stratified problem, might be excepted
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to be a reasonable approximation to the solution of the problem for an

inhomogeneous medium. (A similar case is the one of laminated media

in acoustics [11]). A thorough study of such an approximation, is under

consideration by the present authors.

In Section 2 we formulate the scattering problem. We define precisely

the infinitely stratified scatterer with a core, and give the boundary, trans-

mission, and radiation conditions. In Section 3 we first prove that the

only classical solution of the homogeneous transmission problem for the

Helmholtz equation is the trivial one. This extends a results of Kress

and Roach referring to one interface [12], to our infinitely stratified struc-

ture. For the existence of solutions of the non homogeneous transmission

problem we introduce a generalized solutions approach. Then by a regu-

larity argument we prove that the weak solution is a classical one. The

standard approach, i.e. the implementation of potential theory, [2], [6],

[12], leads, in our case to an infinite system of integral equations.

Even in the case of finite number of layers, our generalized solutions

method does not present disadvantages as far as the length of the proof

is concerned, in comparison to the standard method. Integral representa-

tions for the total exterior field and the normalized scattering amplitude

are given in Section 4. In Section 5, the low-frequency theory is applied

to the scattering problem, and bounds for the low-frequency coefficients

and the scattering amplitude are derived. We conclude this section with

some comments on how related existing results follow as special cases of

our general problem.

2 – Statement of the problem

Let Ω̃ be a bounded, convex and closed subset of IR3 with boundary

S0. We assume that a core Ωc, containing the origin of coordinates, with

boundary Sc, lies in the interior of Ω̃. The set Ω = Ω̃ − Ωc is divided

into annuli-like regions Ωj by surfaces Sj, j = 1, 2, . . . , where Sj sur-

rounds Sj+1 · S0, Sc, Sj are 2-dimensional C2 surfaces. We, also, suppose

that dist(Sj−1, Sj) > 0, j = 1, 2, . . . and that lim
j→∞

Sj = Sc. The set Ω̃,

described above, is called an infinitely stratified scatterer. The exterior

Ω0 of Ω̃ as well as each Ωj, j = 1, 2, . . . , are homogeneous isotropic me-

dia. The radius a of the smallest sphere in IR3, that circumscribes the
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scatterer is called the characteristic dimension of the scatterer.

The wave number kj in each region Ωj, is given by

(2.1) k2
j =

ω

c2
j

(ω + idj) , i2 = −1 , j = 0, 1, 2, . . .

where ω is the angular frequency of the incident wave, cj is the speed of

sound, and dj is the damping coefficient in Ωj. We choose the sign of kj,

as usual, such that

Im kj ≥ 0 , j = 0, 1, 2, . . . .

It is obvious that Re kj *= 0, j = 0, 1, 2, . . . .

We assume that a plane acoustic wave uinc(r) is incident upon the

infinitely stratified scatterer. Suppressing the harmonic dependence exp

(−iωt), the incident wave takes the form

(2.2) uinc(r) = eik0k̂·r ,

where k̂ is the unit vector in the direction of propagation. Assume that

the modulus of the position vector r is greater than the characteristic

dimension of the scatterer a.

The total acoustic field ψ(j) in each interior region Ωj satisfies the

Helmholtz equation

(2.3) ∆ψ(j)(r) + k2
j ψ

(j)(r) = 0 , j = 1, 2, . . .

while, since the total exterior field u(0)(r) given by

(2.4) u(0)(r) = uinc(r) + ψ(0)(r)

where ψ(0)(r) is the scattered field, also satisfies the Helmoholtz equation

in Ω0, (2.3) is true for all j = 0, 1, 2, . . . .

Also, on the surface of the core, the total field satisfies an appropriate

homogeneous boundary condition (Dirichlet or Neumann). The scattered

field ψ(0)(r) is assumed to satisfy Sommerfeld’s incoming radiation con-

dition

(2.5)
∂ψ(0)(r)

∂n
− ik0ψ

(0)(r) = 0

(
1

r

)
, r → ∞ .
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As it is well known, [6], ψ(0) automatically satisfies

(2.6) ψ(0)(r) = 0

(
1

r

)
, r → ∞ .

Let ρj denote the mass density on the layer Ωj.

On S0 we have the following transmission conditions

(2.7)

ψ(1) − ψ(0) = uinc

1

ρ1

∂ψ(1)

∂n
− 1

ρ0

∂ψ(0)

∂n
=

1

ρ0

∂uinc

∂n
.

The transmission conditions on Sj, j = 1, 2, . . . , are given by

(2.8)

ψ(j+1) − ψ(j) = 0

1

ρj+1

∂ψ(j+1)

∂n
− 1

ρj

∂ψ(j)

∂n
= 0

By a standard procedure, the homogeneous equations and nonho-

mogeneous transmission conditions of the above problem, can be trans-

formed to

∆ψ(j) + k2
j ψ

(j) = fj in Ωj(2.9)

ψ(j+1) − ψ(j) = 0

1

ρj+1

∂ψ(j+1)

∂n
− 1

ρj

∂ψ(j)

∂n
= 0





, on Sj(2.10)

for all j = 0, 1, 2, . . . , where fj ≡ 0, j = 1, 2, . . . , and f0 is a known C2

function depending on uinc and ρ0. For more details about the physical

problem we refer to [11].

3 – Solvability of the scattering problem

In this section we prove the existence and uniqueness of solutions for

the acoustic transmission problem. In what follows we shall make the
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following assumptions on the coefficients of (2.9), (2.10); the superposed

bar denotes complex conjugation:

(3.1)





Let k∈C−{0} with 0≤arg k≤π, j =0, 1, 2, . . . be such that

k2
j

k2
0

∈ IR , with sup
k2

j

k2
0

< +∞ .

Moreover, let sup
ρ0

ρj

< +∞.

Let us denote by (H) the homogeneous transmission problem, con-

sisting of the equations

(3.2) ∆ψ(j) + k2
j ψ

(j) = 0 , in Ωj , j = 0, 1, 2, . . .

the transmission conditions (2.10), the radiation condition (2.5), the ho-

mogeneous Dirichlet boundary condition on Sc, and (3.1).

Remark 3.1 The homogeneous Neumann boundary condition on

Sc may be considered instead, without any problem whatsoever in what

follows.

Now we are in a position to prove

Theorem 3.1. (H) has only the trivial solution.

Proof. Let Ω0,R = {r ∈ Ω0 : r < R}, R > 0. By Green’s first

theorem on Ω0,R, we obtain

(3.3)

∫

r=R

ψ(0) ∂ψ̄(0)

∂n
ds =

∫

Ω0,R

ψ(0)∆ψ̄(0)du +

∫

S0

ψ(0) ∂ψ̄(0)

∂n
ds+

∫

Ω0,R

∣∣ gradψ(0)
∣∣2du

which, again by Green’s first theorem over Ω1 and the transmission con-

ditions (2.10), becomes

(3.4)

∫

r=R

ψ(0) ∂ψ̄(0)

∂n
ds =

∫

Ω0,R

ψ(0)∆ψ̄(0)du +

∫

Ω0,R

∣∣ gradψ(0)
∣∣2du+

+
ρ0

ρ1

∫

Ω1

ψ(1)∆ψ̄(1)du +
ρ0

ρ1

∫

Ω1

∣∣ gradψ(1)
∣∣2du +

ρ1

ρ0

∫

S1

ψ(1) ∂ψ̄(1)

∂n
ds .
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By repeated use of Green’s first theorem, and taking into account

(3.2), the transmission conditions (2.10), the boundary behaviour on Sc

and dividing throughout by k2
0, we get from (3.4)

1

k2
0

∫

r=R

ψ(0) ∂ψ̄(0)

∂n
ds = −

∫

Ω0,R

∣∣ψ(0)
∣∣2du +

1

k2
0

∫

Ω0,R

∣∣ gradψ(0)
∣∣2du+

−
∞∑

j=1

ρ0

ρj

k2
j

k2
0

∫

Ωj

∣∣ψ(j)
∣∣2du +

∞∑

j=1

1

k2
0

ρ0

ρj

∫

Ωj

∣∣ gradψ(j)
∣∣2du .(3.5)

The convergence of the series in (3.5) follows by (3.1), and by noting

that
∞∑

j=1

∫

Ωj

∣∣ψ(j)
∣∣2du = ‖ψΩ‖2

L2(Ω) < +∞ and

∞∑

j=1

∫

Ωj

∣∣ gradψ(j)
∣∣2du = ‖ψΩ‖2

H1(Ω) < +∞ ,

where ψΩ(r) = ψ(j)(r), in Ωj, j = 1, 2, . . . .

Taking imaginary parts in (3.5), and taking into account (3.1) we get

(3.6)

Im

(
1

k2
0

∫

r=R

ψ(0) ∂ψ̄(0)

∂n
ds

)
=

(
Im

1

k2
0

) ∫

Ω0,R

∣∣ gradψ(0)
∣∣2du+

+

(
Im

1

k2
0

) ∞∑

j=1

ρ0

ρj

∫

Ωj

∣∣ gradψ(j)
∣∣2du .

As R → ∞, Ω0,R tends to Ω0. Moreover, since ψ(0) satisfies the

radiation conditions (2.5) and (2.6), it follows, [12], that the left-hand

side of (3.6) tends to zero as R → ∞. Since Im
1

k2
0

=
Im k2

0

|k0|4
, and Im k2

0 =

2 Re k0 Im k0, we obtain from (3.6), that

(3.7)
2 Re k0 Im k0

|k0|4
∞∑

j=0

ρ0

ρj

∫

Ωj

∣∣ gradψ(j)
∣∣2du = 0 .
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If Im k0 > 0 then we must have that each ψ(j) is a constant in Ωj.

But by (2.6), ψ(0) must be equal to zero in Ω0, and then by (2.10) each

other ψ(j), j = 1, 2, . . . , must also be equal to zero in Ωj. Hence in this

case, (H) has only the trivial solution.

In the case where Im k0 = 0, by writing the RHS of (3.6) as in (3.7)

we obtain that

(3.8) Im

( ∫

r=R

ψ(0) ∂ψ̄(0)

∂n
ds

)
= 0 .

From (2.5) it follows that,

k0

∫

r=R

|ψ(0)|2ds + Im

( ∫

r=R

ψ(0) ∂ψ̄(0)

∂n
ds

)
= o(1) , as R → ∞ ,(3.9)

and hence by (3.8) we have

∫

r=R

∣∣ψ(0)
∣∣2ds = o(1) , as R → ∞ .(3.10)

Therefore, using Rellich’s Theorem [6], it follows, that ψ(0) = 0 in

Ω0. If we prove that ψ(1) = 0 in Ω1, then by the same argument ψ(2) will

turn to be zero in Ω2, etc.

By Holmgren’s uniqueness theorem, [13], we have that the solution

of the Cauchy problem

∆ψ(1) + k2
1ψ

(1) = 0 , in Ω1

ψ(1) =
∂ψ(1)

∂n
= 0 , on S0

is equal to zero, in Ω1 ∩D, where D is a neighborhood of any point of S0.

Since ψ(1) is analytic, [6], it follows by the unique continuation prin-

ciple that ψ(1) = 0 in Ω1. The proof of Theorem 3.1 is, hence, complete.
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Remark 3.2 As it can be seen by its proof, Theorem 3.1 is valid

for any parameters kj, ρj, satisfying (3.1). When, in particular, kj, ρj,

denote the wave number, and the mass density in Ωj, respectively, we

are led to the following classes of acoustic transmission problems, that

satisfy (3.1):

(i) The class of damped layers with dj = d0 for each j, i.e.

k2
j =

ω

c2
j

(ω + id0) ∈ C , and

(ii) The class of undamped layers, i.e.

k2
j =

ω2

c2
j

∈ IR .

Consider, now, the nonhomogeneous transmission problem consist-

ing of

∆ψ(j) + k2
j ψ

(j) = fj , in Ωj

ψ(j+1) − ψ(j) = 0

1

ρj+1

∂ψ(j+1)

∂n
− 1

ρj

∂ψ(j)

∂n
= 0





, on Sj

for all j = 0, 1, 2, . . . , with the homogeneous Dirichlet condition on Sc.

Suppose also that ψ(0) satisfies Sommerfeld’s radiation condition

(2.5), and that (3.1) is true. This problem will be denoted by (N).

Let k(r) = k2
j , f(r) = fj(r), q =

1

ρj

, ψ(r) = ψ(j)(r) in Ωj, j =

0, 1, 2, . . . , (i.e. ψ(r) = ψ0(r), r ∈ Ω0 and ψ(r) = ψΩ(r), r ∈ Ω) and define

R(Ω0) =
{
ψ(0) ∈ H1

loc(Ω0) : ψ(0) = O
(1

r

)
and

∂ψ(0)

∂n
− ik0ψ

(0) = o
(1

r

)
,

r → ∞
}
.

A function ψ ∈ H1(Ω)×R(Ω0) is called a generalized solution of (N),

for f ∈ L2(IR3), iff

(3.11)

∫

IR3−Ωc

( 3∑

m=1

q
∂ψ(r)

∂rm

∂ϕ(r)

∂rm

− qk(r)ψ(r)ϕ(r)

)
du = −

∫

IR3−Ωc

qf(r)ϕ(r)du

for every ϕ ∈ H1(Ω) × R(Ω0).
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As in the standard theory [14], (N) can be written in the form

(3.12) ψ + Aψ = F

where, since we work in H1(Ω)×R(Ω0), the operator A : H1(Ω)×R(Ω0) →
H1(Ω) × R(Ω0) is compact, [8].

Before moving on to prove that (N) has a unique classical solution,

we will state the following regularity result, [4], [12]:

Proposition 3.1. Under all our assumptions, the generalized solu-

tion of (N) is in C(IR3)∩C2,a(Ωj), provided f ∈ C0,a(Ωj), j = 0, 1, 2, . . . ,

a ∈ (0, 1).

We then conclude this section with

Theorem 3.2. (N) has a unique classical solution.

Proof. The homogeneous transmission problem (H), can be writ-

ten as

(3.13) ψ + Aψ = 0

where A is the compact operator appearing in (3.12). Since in our case A

is self-adjoint, the adjoint homogeneous transmission problem which can

be transformed in the form

(3.14) w + A∗w = 0 ,

coincides with (3.13). By Fredholm’s Alternative, a necessary and suffi-

cient condition for the existence and uniqueness of a generalized solution

of (3.12), is

(3.15) (F, ψ̃s)H1(IR3) = 0 ,

where ψ̃s, s = 1, 2, . . . , µ, are the linearly independent solutions of (3.13).

By Proposition 3.1 the generalized solutions of (3.13) are classical.

But by Theorem 3.1, (3.13) has only the trivial solution, whereby (3.15) is

automatically satisfied. Therefore (N) has a unique generalized solution,

which - again by Proposition 3.1 - is classical.
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4 – Near and far field

As it is well known, the integral representations of the scattering

problems contain all the information about the transmission, boundary

and radiation conditions, and the equation which governs the phenom-

ena. In this Section we shall construct an integral representation for the

solution in Ω0, when the infinitely stratified scatterer has a rigid core, i.e.

when the boundary condition on Sc is

(4.1)
∂ψ(r)

∂n
= 0 , r ∈ Sc .

In the case that the boundary condition on Sc is of Dirichlet or Robin

type, we can, similarly derive analogous integral representations.

In what follows by “the scattering problem” we shall refer to the

acoustic scattering by an infinitely stratified scatterer with a rigid core,

as it was described previously.

For simplicity reasons, in this and in the following Section we shall

assume that k2
j ∈ IR. In this case, the wavenumber kj, in the region Ωj,

is expressed in terms of k0 by the relation

k2
j =

γ0

γj

ρj

ρ0

k2
0 , j = 1, 2, . . . ,

where Yj is the compressibility in Ωj.

So (3.1) reduces to sup
ρj

γj

< +∞ and sup
1

ρj

< +∞, conditions that

are physically meaningful.

Theorem 4.1. The total exterior field of the scattering problem has

the following integral representation

(4.2)

u(0)(r) = eik0k̂·r+

+
1

4π

∫

Sc

(
1

R
− ik0

)
eik0R

R
R̂ · n̂ψ(r′)ds(r′)+

+
k2

0

4π

∞∑

j=1

(
γ0

γj

− 1

) ∫

Ωj

eik0R

R
ψ(r′)du(r′)+

+
1

4π

∞∑

j=1

(
1 − ρ0

ρj

) ∫

Ωj

(
1

R
− ik0

)
eik0R

R
R̂ · ∇ψ(r′)du(r′) ,
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where R = |r − r′|.

Proof. The scattered field ψ(0) satisfies in Ω0 the well known [7]

Helmholtz’s integral representation

(4.3) ψ(0)(r) =
1

4π

∫

S0

[
ψ(0)(r′)

∂

∂n

eik0R

R
− eik0R

R

∂

∂n
ψ(0)(r′)

]
ds(r′) .

Since the incident wave belongs to the kernel of the differential op-

erator of the problem we have that

(4.4)

∫

S0

[
eik0k̂·r ∂

∂n

eik0R

R
− eik0R

R

∂

∂n
eik0k̂·r

]
ds(r′) = 0 .

Using (2.4), (4.3), (4.4) and introducing the transmission conditions

given by (2.7), we obtain

(4.5)

u(0)(r) = eik0k̂·r +
1

4n

∫

S0

ψ(1)(r′)
∂

∂n

eik0R

R
ds(r′) =

=
1

4n

ρ0

ρ1

∫

S0

eik0R

R

∂

∂n
ψ(1)(r′)ds(r′) .

In order to incorporate the boundary condition which is satisfied

on the surface Sc of the core, we work as follows. Applying, succes-

sively, Green’s first identity on ψ(j), R−1 exp(ik0R) in Ωj, using that ψ(j),

R−1 exp(ik0R) are solutions of (3.2) in Ωj and Ω0, respectively, and in-

troducing the transmission conditions given by (2.10), we have of each

surface integral of (4.5), the relations

(4.6)

∫

S0

ψ(1)(r′)
∂

∂n

eik0R

R
ds(r′) =

∫

Sc

ψ(r′)
∂

∂n

eik0R

R
ds(r′)+

− k2
0

∞∑

j=1

∫

Ωj

ψ(r′)
eik0R

R
du(r′) +

∞∑

j=1

∫

Ωj

∇ψ(r′) · ∇r′
eik0R

R
du(r′)
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and

(4.7)

ρ0

ρ1

∫

S0

eik0R

R
2

∂

∂n
ψ(1)(r′)ds(r′) = −k2

0

∞∑

j=1

γ0

γj

∫

Ωj

eik0R

R
ψ(r′)du(r′)+

+
∞∑

j=1

ρ0

ρj

∫

Ωj

∇ψ(r′) · ∇r′
eik0R

R
du(r′) .

Substituting (4.6), (4.7) into (4.5) we conclude the proof.

Remark 4.1 It is clear that the series appearing in (4.2) converge

uniformly. The functions ψ (solution of Helmholtz’s equation in Ωj), and

∇ψ are bounded in every bounded region Ωj and γj, are also supposed

to be bounded, something that is physically meaningful. In addition, if

|Ωj| denotes the volume of the region Ωj then
∞∑

j=1
|Ωj| = |Ω|.

The behaviour of the scattered wave in the region of radiation (far

field) is described by the normalized (dimensionless) scattering amplitude

g, which is defined by the relation

(4.8) ψ(0)(r) = g(r̂, k̂)h1
0(k0r) + 0

(
1

r2

)
, r → ∞ ,

where h1
0(x) = exp(ix)/ix is the zeroth order spherical Hankel function of

the first kind. In order to express g in closed form we use the asymptotic

relations

R = |r − r′| = r − r̂ · r′ + 0

(
1

r

)
, r → ∞(4.9)

R̂ =
r − r′

|r − r′| = r̂ + 0

(
1

r

)
, r → ∞(4.10)

1

R
=

1

|r − r′| =
1

r
+ 0

(
1

r2

)
r → ∞(4.11)

eik0R

R

eik0R|r−r′|

|r − r′| =
eik0r

r
e−ik0r̂·r′

+ 0

(
1

r2

)
, r → ∞ .(4.12)
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Substituting (4.9) - (4.12) into (4.2) and using (2.4), (4.8) we prove

the following

Theorem 4.2. The normalized amplitude for the scattering problem

is given by the formula

(4.13)

g(r̂, k̂) =
k2

0

4π

∫

Sc

r̂ · n̂ψ(r′)e−ik0r̂·r′
ds(r′)+

+
ik3

0

4π

∞∑

j=1

(
γ0

γj

− 1

) ∫

Ωj

ψ(r′)e−ik0r̂·r′
du(r′)+

+
k2

0

4π

∞∑

j=1

(
1 − ρ0

ρj

) ∫

Ωj

r̂ · ∇ψ(r′)e−ik0r̂·r′
du(r′) .

5 – The low-frequency theory

The incident plane wave uinc(r) = exp(ik0k̂ · r) is analytic at k0 = 0,

and we assume that the fields ψ(j)(r) and u(0)(r) are also analytic at

k0 = 0.

Therefore, a convergent Taylor series for ψ(r) exists in powers of k0

(5.1) ψ(r) =
∞∑

m=0

(ik0)
m

m!
φm(r) , r ∈ Ωj , j = 0, 1, 2, . . .

and for u(0)(r)

(5.2) u(0)(r) =
∞∑

m=0

(ik0)
m

m!
F (0)

m (r) , r ∈ Ω0 ,

where the low frequency coefficients φm(r), and F (0)
m (r) are independent

of k0. Substituting (5.1), (5.2) into (2.3), (2.4), (2.7), (2.8) and equat-

ing coefficients of equal powers of k0, the previous scattering problem

is reduced to a sequence of potential problems, that can be solved it-

eratively. Therefore, the coefficients φ(j)
m (r) = φm(r) in Ωj satisfy, for
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m = 0, 1, 2, . . .

∆φ(j)
m (r) = m(m − 1)

γ0ρj

γjρ0

φ
(j)
m−2(r) , r ∈ Ωj(5.3)

φ(j+1)
m (r) = φ(j+2)

m (r) , r ∈ Sj(5.4)

ρj+2

∂φ(j+1)
m (r)

∂n
= ρj+1

∂φ(j+2)
m (r)

∂n
, r ∈ Sj(5.5)

for j = 0, 1, 2, . . . , and

F (0)
m (r) = φ(0)

m (r) + (k̂ · r)m , r ∈ Ω0(5.6)

F (0)
m (r) = φ(1)

m (r) , r ∈ S0(5.7)

ρ1

∂F (0)
m (r)

∂n
= ρ0

∂φ(1)
m (r)

∂n
, r ∈ S0 .(5.8)

Also, φm satisfies the boundary condition

(5.9)
∂

∂n
φm(r) = 0 , r ∈ Sc .

In order to derive a low-frequency expression for the total exterior

field, we substitute (5.1), (5.2) and the expansions

eik0k̂·r =
∞∑

m=0

(ik0)
m

m!
(k̂ · r)m(5.10)

eik0R

R
=

∞∑

m=0

(ik0)
m

m!
Rm−1(5.11)

into (4.2). After tedious calculations we arrive at

Theorem 5.1. The low-frequency coefficients of the total exterior
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field for the scattering problem have the following expression

(5.12) F (0)
m (r) =

= (k̂ · r)m− 1

4π

m∑

q=0

(
m

q

)
(m−q−1)

∫

Sc

(R · n̂)Rm−q−3φq(r
′)ds(r′)+

− 1

4π

∞∑

j=1

(
γ0

γj

− 1

) m∑

q=0

(
m

q

)
(m − q − 1)

∫

Ωj

Rm−q−3φq(r
′)du(r′)+

− 1

4π

∞∑

j=1

(
1 − ρ0

ρj

) m∑

q=0

(
m

q

)
(m−q−1)

∫

Ωj

Rm−q−3R · ∇φq(r
′)du(r′) .

Since it is needed in applications, we construct bounds for the low-

frequency coefficients.

Theorem 5.2. For the low-frequency coefficients of the scattering

problem we have

(5.13)
∣∣φm(r)

∣∣ ≤ Bm and
∣∣∣
∣∣∇φm(r)

∣∣
∣∣∣ ≤ bm

for all r ∈ Ωj, j = 1, 2, . . . , m = 0, 1, 2, . . . , with

Bm =





m
2∑

n=0

m!

(2n)!

[γ0ρ

γδ0

(e2a − 1)
]m

2
−n

ξ2n , m : even

m−1
2∑

n=0

m!

(2n + 1)!

[γ0ρ

γδ0

(e2a − 1)
]m−1

2
−n

ξ2n+1 , m : odd

(5.14)

bm = Cm

[
ξm

dm

+ m(m − 1)dmBm

]
,(5.15)

where
ξm = sup

{
sup
r∈Sj

∣∣φm(r)
∣∣ , j = 1, 2, . . .

}
,

ρ = sup{ρj , j = 1, 2, . . . } ,

γ = inf{γj , j = 1, 2, . . . } ,

Cm, dm are known constants.
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Proof. As it is well known, [13], for the solutions of Poisson’s equa-

tion ∆u = f we have the a priori bounds

(5.16) sup
Ωj

|u| ≤ sup
∂Ωj

|u| + C sup
Ωj

|f | ,

where C is less than or equal to (e2a − 1).

Applying (5.16) repeatedly, with respect to m, in the equations (5.3)

and taking into account that ξm < ∞, a condition that is physically mean-

ingful, we construct the bounds Bm, [3]. Similarly, using the well known

gradient estimates for Poisson’s equation [13], we derive the bounds bm.

Remark 5.1 The term (k̂ · r̂)m in (5.12), gives the main contribution

of the incident wave to the corresponding approximation.

Remark 5.2 The two series appearing in (5.12) converge uniformly,

because the solutions, and their gradients, of Poisson’s equation are

bounded in each Ωj. For the first series we have

∣∣∣∣
(

γ0

γj

− 1

) m∑

q=0

(
m

q

)
(m − q − 1)

∫

Ωj

Rm−q−3φq(r
′)du(r′)

∣∣∣∣ ≤

≤
(

γ0

γ
+ 1

) m∑

q=1

(
m

q

)
(m − q − 1)

∫

Ωj

(2r)m−q−3Bqdu(r′) ≤ A|Ωj| ,

where A is independent of j and
∞∑

j=1
|Ωj| = |Ω|. Using the Weierstrass

M -test, we conclude that the series converge uniformly.

In order to derive the low-frequency expansions for the scattering

amplitude g, the expansions (5.10), (5.11) and

e−ik0r̂·r′
=

∞∑

m=0

(−1)m (ik0)
m

m!
(r̂ · r′)m

are substituted into (4.13), and we obtain the following

Theorem 5.3. The low-frequency normalized scattering amplitude
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for the scattering problem is given by

(5.17) g(r̂, k̂) =

=
ik0

4π

∞∑

m=0

(ik0)
m

m!

m∑

q=0

(
m

q

)
(−1)q

{
− k0i

∫

Sc

(r̂ · r′)q(r̂ · n̂)φm−q(r
′)ds(r′)+

+ k2
0

∞∑

j=1

(
γ0

γj

− 1

) ∫

Ωj

(r̂ · r′)qφm−q(r
′)du(r′)+

− ik0

∞∑

j=1

(
1 − ρ0

ρj

) ∫

Ωj

(r̂ · r′)qr̂ · ∇φm−q(r
′)du(r′)

}
.

Remark 5.3 Using estimates (5.13) for the low-frequency coeffi-

cients, we can derive from (5.17) the following bound for the normalized

scattering amplitude:

(5.18)

∣∣g(r̂, k̂)
∣∣ ≤ k0

4π

∞∑

m=0

m∑

q=0

km
0

m!

(
m

q

)
aq

{
k0Bm−1|Sc|+

+ k2
0

(
γ0

γ
+ 1

)
Bm−q|Ω| + k0

(
1 +

ρ0

ρ

)
bm−q|Ω|

}
.

Remark 5.4 The volume integrals appearing in the second and third

terms of (5.17), represent, respectively, the moments of the pressure field,

and the velocity field projected on the direction of observation r̂, in each

layer of the scatterer.

We conclude this Section with some comments on certain special

cases of physical interest.

Remark 5.5 We consider the condition

ρj = ρj+1 , γj = γj+1 , j ≥ n , n ∈ IN0 .

When n = 0, then no scattering occurs by the layers of the scatterer,

but only by the core i.e. we have scattering by a soft (ε = 1) or rigid

(ε = 0), or resistive (0 < ε < 1) simple scatterer.

When n = 1, we have scattering by a penetrable body with an im-

penetrable core, [7].
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When n = N > 1, we have scattering by a finitely-layered scat-

terer, [2].
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