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M-Structure and the space A(K,E)

T.S.S.R.K. RAO

Riassunto: Sia K un insieme compatto e convesso, sia X uno spazio compatto di
Hausdorff, sia E uno spazio di Banach. Sia A(K, E) lo spazio delle funzioni continue
affini, definite in K con valori in E, sia C(X, E) lo spazio delle funzioni continue defi-
nite in X con valori in E. Sotto ipotesi naturali M-strutturali su K ed E, si dimostra
che se A(K, E) è isometrico a C(X, E), allora necessariamente K è un simplesso di
Bauer. Si estendono cos̀ı risultati già noti nei casi in cui sia E = IR oppure E = C.

Abstract: For a compact convex set K and a Banach space E, under some
natural M-structure theoretic conditions on K and E, we show that if the space of affine
E-valued continuous functions on K is isometric to the space of E-valued continuous
functions on some compact space, then K is a Bauer simplex. These results extend
some well known characterizations of Bauer simplexes to the vector valued set up.

1 – Introduction

For a compact convex set K and Banach space E, let A(K, E) denote

the space of E-valued, affine continuous functions defined on K, equipped

with the supremum norm. In this paper we study the geometry of the

space A(K, E), under some M -structure theoretic assumptions on the

structure of K and E. The question considered here arose from some

recent work of Jain et. al ([6]) concerning extensions of operators from

A(K, E) to C(K, E) (continuous function space). We first point out that

Key Words and Phrases: Bauer Simplex – Split Face – M-ideal
A.M.S. Classification: 46A55 – 46E15



154 T.S.S.R.K. RAO [2]

when K is a Bauer simplex, the restriction map is an onto isometry

between the space A(K, E) and C(∂eK, E) (∂eK stands for the set of

extreme points of K) and hence the conclusions of Theorem 2.3 of [6] are

relatively simple to obtain. From this and the representation theorems

of Dinculeanu-Singer [4, Page 82], one can see that the ‘metrizability’

hypothesis is not needed in Theorem 2.1 of [6].

The main purpose of this note is to analyse the following question :

Let K be a compact convex set and E a Banach space. Suppose for

some compact Hausdorff space X, the spaces A(K, E) and C(X, E) are

isometric, when can one conclude that K is a Bauer simplex?

This is well known to be true when E = IR or C (see [1,7]).

Our main result in this note is to give an affirmative answer to the

above question when E has only finitely many M -ideals and K has ‘suffi-

ciently many’ split faces. Here however we are not aiming for a ‘Banach-

Stone theorem’, which requires ∂eK to be homeomorphic to X. See

also [3].

Our notation and terminology is fairly standard. We shall be referring

to [1] for concepts related to compact convex sets, and [2,5] for concepts

of M -structure theory. From now on we assume that all Banach spaces

are over real scalar field and are of infinite dimension. E∗
1 denotes the

unit ball of E∗.

2 – Main Results

We begin by proving a Lemma, which is the starting point for the

question considered here.

Lemma. Let K be a Bauer simplex, and E a Banach space. The re-

striction map a−→ a|∂eK is an onto isometry between the space A(K, E)

and C(∂eK, E).

Proof. Clearly, it is enough to show that the mapping is onto.

Let M+
1 (K) denote the space of probability measures on K, equipped

with the w∗-topology. Let φ : K −→M+
1 (K) be the map k −→µk, where

µk is the unique maximal measure representing k. Since K is a Bauer

simplex, φ is continuous, see [1]. Also µk(∂eK) = 1∀k, so that φ takes

values in M+
1 (∂eK).
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Let
n∑

i=1
fi ⊗ ei, fi ∈ C(∂eK), ei ∈ E be any ‘simple’ function in

C(∂eK, E). Define ai : K −→ IR by ai(k) = φ(k)(fi). Clearly ai ∈ A(K)

and
n∑

i=1
ai ⊗ ei|∂eK =

n∑
i=1

fi ⊗ ei.

Since ‘simple’ functions are uniformly dense in C(∂eK, E), we con-

clude that the restriction map is onto.

Let X be a compact Hausdorff space. If A(K) is isometric to C(X),

it is well-known that K is a simplex (see [1]) and since ∂eC(X)∗
1 is a w∗-

closed set, clearly ∂eK is a closed set. In the next theorem we consider

this situation for Banach space valued functions.

We need the description of extreme points of the dual unit ball of

A(K, E). Let δ : K −→A(K)∗
1 (the suffix 1 stands for the unit ball of a

space); be the evaluation map. Note that this is an affine homeomorphism

when A(K)∗
1 is equipped with the w∗-topology.

It is well known (see [1]) that

A(K)∗
1 = CO(δ(K) ∪ −δ(K))

(CO stands for the convex hull) and ∂eA(K)∗
1 = ∂eδ(K) ∪ −∂eδ(K). For

e∗ ∈ E∗, k ∈ K, δ(k) ⊗ e∗ denotes the functional defined on A(K, E) by

(δ(k) ⊗ e∗)(a) = e∗(a(k)) .

Also for any a ∈ A(K, E), the operator T : E∗ −→A(K) defined by

T (e∗) = e∗ ◦ a

is a compact operator that is w∗-weak continuous, with ‖T‖ = ‖a‖.

Conversely, let T : E∗ −→A(K) be any compact, w∗-weak continuous

operator. Note that T ∗ : A(K)∗ −→E, is a compact operator and hence

T ∗oδ : K −→E is an affine continuous map.

Hence A(K, E) is isometric to Kw∗(E∗, A(K)), the space of w∗-weak

continuous, compact operators. It now follows from a result of Ruess and

Stegall [9], that

∂eA(K, E)∗
1 = {δ(k) ⊗ e∗ : k ∈ ∂eK, e∗ ∈ ∂eE∗

1} .
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It is also well known that

∂eC(X, E)∗
1 = {δ(x) ⊗ e∗ : x ∈ X, e∗ ∈ ∂eE∗

1} .

Proposition 1. Let K be a Choquet simplex and E is such that

∂eE∗
1 ⊂ [0, 1]∂eE∗

1 (closure taken in the w∗-topology). If A(K, E) is iso-

metric to C(X, E), then K is a Bauer simplex.

Proof. We need to show that ∂eK is a closed set.

Let kα ∈ ∂eK, be a net such that kα −→ k. Fix e∗
0 ∈ ∂eE∗

1 . Since

δ(kα)⊗e∗
0 ∈ ∂eA(K, E)∗

1, if Φ : C(X, E) −→A(K, E) denotes the isometry

between these spaces, then, Φ∗(δ(kα)⊗ e∗
0) = δ(xα)⊗ e∗

α for some xα ∈ X

and e∗
α ∈ ∂eE∗

1 .

Because of compactness and continuity, we may assume that :

xα −→x, x ∈ X

e∗
α

w∗
−→ e∗, e∗ ∈ ∂eE∗

1

Also Φ∗(δ(k) ⊗ e∗
0) = δ(x) ⊗ e∗.

1 = ‖Φ∗(δ(k) ⊗ e∗
0)‖ = ‖e∗‖ .

Hence e∗ ∈ ∂eE∗
1 and δ(x) ⊗ e∗ ∈ ∂eC(X, E)∗

1. Therefore δ(k) ⊗ e∗
o ∈

∂eA(K, E)∗
1, so that k ∈ ∂eK.

Remark. The hypothesis on E is satisfied when ∂eE∗
1 is a w∗-closed

set. An important set of examples are provided by the following type of

subspaces (the so called G-spaces) of C(X)

{f ∈ C(X) : f(xα) = tαf(yα) ∀α ∈ A}

where {xα, yα, tα}α∈A ⊂ X × X × [−1, 1]. See [7]. Using standard results

from L1-predual theory ([7], Section 23), one can show that if E is a G-

space and C(X, E) is isometric to A(K, E) for some compact convex set

K, then K is a Bauer simplex.
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Before giving another set of conditions to yield an affirmative answer

to our question, we need the identification of the space A(K, E) with the

injective tensor product space A(K) ⊗ε E.

Since A(K, E) can be identified with the space Kw∗(E∗, A(K)), under

the assumption of approximation property on E or A(K), one can identify

A(K, E) and A(K) ⊗ε E (see [9]). For the rest of the paper we assume

that K and E are such that this identification is possible. It may be

worth recalling here, that when K is a Choquet simplex, the space A(K)

has the metric approximation property.

Our next Proposition deals with the structure of M -ideals in C(X, E)

(see Section 10 of [2]). Assume that E has only finitely many M -ideals.

Crucial to our arguments is the description of M -ideals in C(X, E) which

we note down below as a special case of Theorem 3.1 of [10], where they

describe M -ideals in the injective tensor product space Y ⊗ε E for a

general Banach space Y .

Theorem. Arrange M -ideals in E as, J0 = E, · · ·Jr = {0}. Then

Z is an M -ideal in C(X, E) iff

Z =
r⋂

i=0

(C(X, Ji) + {f : f(Ai) = 0})

for some closed sets A0, · · · , Ar of X.

Proposition 2. Suppose E has only finitely many M -ideals ar-

ranged as J0, · · · , Jr as in the above statement. Then in C(X, E) the

intersection of any family of M -ideals is an M -ideal.

Proof. We first prove the Proposition under the assumption that E

has exactly one non-trivial M -ideal, say J .

Using Theorem, let Zα = C(X, J) + {f : f(Aα) = 0}, where Aα is a

closed subset of X, be a family of M -ideals in C(X, E). Let Z = ∩Zα.

Clearly C(X)Z ⊂ Z.

Hence applying Proposition 10.1 [1], it is enough to show that Z(x)

is an M -ideal for each x. Fix x ∈ X. Clearly J ⊂ Z.

Suppose x ∈ Aα0
for some α0.

Let h ∈ Z. Since h = gα0
+ fα0

for some gα0
∈ C(X, J) and fα0

∈
{f : f(Aα0

) = 0}, we get that h(x) = gα0
(x) ∈ J.
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Therefore J = Z(x).

Now suppose x *∈ Aα for all α. Note that ∩α{f : f(Aα) = 0} =

{f : f(∪Aα) = 0} is an M -ideal in C(X, E) and since x *∈ Aα∀α, given

y ∈ X, ∃ a f ∈ C(X, E) such that f(∪Aα) = 0 and f(x) = y. In

particular f ∈ Z and f(x) = y. Therefore X = Z(x). This completes

the proof. For the general case note that if J1 and J2 are M -ideals

and J1 ∩ J2 = {0}, then J1 and J2 are M -summands in J1 ⊕ J2 so that

C(X, J1 ⊕J2) = C(X, J1)⊕∞ C(X, J2). Also finite sums and intersections

of M -ideals are M -ideals. Hence the general case can be deduced from

the proof of, one non-trivial M -ideal case.

Remark. Examples of Banach spaces satisfying the hypothesis on

E include, strictly convex spaces, smooth spaces, Banach space which

have a non-trivial :p-projection for some 1 ≤ p < ∞ and reflexive Banach

spaces and spaces with the Radon-Nikodym property (R.N.P.). When

E∗ is strictly convex, note that ∂eE∗
1 is w∗-dense in E∗

1 , in contrast with

the situation considered in Proposition 1.

Proof of the main result depends on a characterization of Bauer sim-

plexes (Corollary 3.8 of [8]) and Proposition 2.

Theorem. Let K be a compact convex set such that A = {x ∈
∂eK : {x} is a split face of K } is sequentially dense in ∂eK. Suppose E

has only finitely many M -ideals. If A(K, E) is isometric to C(X, E) for

some compact space X, then K is a Bauer simplex.

Proof. We shall show that in A(K), the intersection of any family of

M -ideals is an M -ideal and then appeal to Corollary 3.8 [8], to conclude

that K is a Bauer simplex.

We have, from the Proposition 2, that in C(X, E), the intersection of

any family of M -ideals is an M -ideal. Since these properties are invariant

under isometries, we get that in the space A(K, E), the intersection of

a family of M -ideals is an M -ideal. Let Jα = {a ∈ A(K) : a(Fα) = 0},

where Fα is a closed split face of K, be any family of M -ideals in A(K).

⋂
Jα = {a ∈ A(K) : a(

⋃

α

Fα) = 0} .

(Note that when the collection is infinite, this in general need not be an

M -ideal).
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It follows from Proposition 3.1 in Chapter 6 of [5], that

Jα ⊗ε E = {a ∈ A(K, E) : a(Fα) = 0}

is an M -ideal in A(K, E).

Hence by hypothesis
⋂

α(Jα ⊗ε E) = {a ∈ A(K, E) : a(
⋃

α Fα) = 0}
is an M -ideal in A(K, E).

Fix e0 ∈ E, e∗
0 ∈ ∂eE∗

1 , such that 1 = ‖e0‖ = e∗
0(e0).

Now applying Proposition 3.3 in Chapter 6 of [5], we see that,

(e∗
0 ⊗ I)(

⋂
α(Jα ⊗ε E)) is an M -ideal in A(K).

For any a ∈ A(K, E), recall that

(e∗
0 ⊗ I)(a) = e∗

0 ◦ a

Hence if a ∈ ⋂
α(Jα ⊗ E), then (e∗

0 ◦ a)(
⋃

α Fα) = 0, so that

(e∗
0 ⊗ I)(

⋂

α

(Jα ⊗ε E)) ⊂ ∩Jα .

On the other hand if b ∈ ∩Jα, then

b ⊗ e0 ∈ A(K, E) and b ⊗ e0 ∈
⋂

α

(Jα ⊗ε E) .

Also (e∗
0 ⊗ I)(b ⊗ e0) = b, since e∗

0(e0) = 1. Therefore (e∗
0 ⊗ I)(

⋂
α(Jα ⊗ε

E)) =
⋂

α Jα, is an M - ideal in A(K).

Proposition 3. Suppose K is a Choquet simplex and E is such

that E∗ has exactly one, one-dimensional L-summand. If A(K, E) is

isometric to C(X, E), then ∂eK is closed.

Proof. Let e∗
0 ∈ ∂eE∗

1 be such that line {e∗
0} is an L-summand

in E∗. Note that for any k ∈ ∂eK, line {δ(k) ⊗ e∗
0} is an L-summand

in A(K, E)∗. Let kα ∈ ∂eK, kα −→ k, k ∈ ∂eK. As before, Φ∗(δ(kα) ⊗
e∗
0) −→w∗

Φ∗(δ(k)⊗e∗
0). Note that line {Φ∗(δ(kα)⊗e∗

0))} is an L-summand

in C(X, E)∗. Since E∗ has exactly one one-dimensional L-summand,

Φ∗(δ(kα) ⊗ e∗
0) = δ(xα) ⊗ ±e∗

0 for some xα ∈ X.

By compactness, we may assume that Φ∗(δ(k) ⊗ e∗
0) = δ(x) ⊗ e∗

0 for

some x ∈ X. Since line {δ(x)⊗e∗
0} is always an L-summand in C(X, E)∗,
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we get that line {δ(k) ⊗ e∗
0} is an L-summand in A(K, E)∗ and hence

δ(k) ⊗ e∗
0 ∈ ∂eA(K, E)∗

1. Therefore k ∈ ∂eK.

Hence ∂eK is a closed set.
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