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On Some Uniform Bounds

for Smooth Algebraic Functions

A. PARMEGGIANI

Riassunto: In questo lavoro si dimostrano alcune disuguaglianze relative a fun-
zioni algebriche C∞ (cioè soluzioni C∞ di equazioni polinomiali) che sono cruciali per
provare proprietà di scala di medie e massimi delle suddette funzioni, tipiche nel caso
polinomiale. Si ottiene inoltre che x !−→ (y − f(x))2, dove f è una funzione algebrica
liscia, si comporta come un polinomio (relativamente alle proprietà di scala di medie e
massimi).

Abstract: In this work we prove some inequalities for smooth algebraic functions
(smooth solutions to polynomial equations) which are crucial for proving some scaling
properties of their averages and maxima, that are typical in the case of polynomials. As
a byproduct, it is shown that x !−→ (y − f(x))2, where f is a smooth algebraic function,
behaves like a polynomial (in terms of scaling properties of averages and maxima).

1 – Introduction

The purpose of this paper is to establish some polynomial-like prop-

erties of smooth real-valued algebraic functions, i.e. smooth solutions to

polynomial equations. The properties we are interested in are similar to

those stated in Fefferman [1]:

if P (x) is a polynomial of degree ≤ d then, with Q a (closed) cube of IRn
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and constants depending only on d and the dimension n :

Avx∈Q|P | ≤ max
x∈Q

|P | ≤ CAvx∈Q|P |;(a)

max
x∈Q

|∇P | ≤ C(diamQ)−1 max
x∈Q

|P |;(b)

If P ≥ 0 on Q then ∃ a subcube Q′ ⊂ Q with (diamQ′) ≥ c(diamQ)

on which

(c) min
x∈Q′

P ≥ 1

2
max
x∈Q

P.

(Notice that (c) is a consequence of (b).) We shall refer to these properties

as polynomial-like scaling properties.

The work of Stein and his collaborators (see for instance Nagel-Stein-

Wainger [9]) brought to light that a subelliptic differential operator is gov-

erned by a family of non-Euclidean balls. In Parmeggiani [10] and [11] a

family of non-Euclidean balls in the cotangent bundle of IRn is attached

to the (total) symbol p(x, ξ), supposed nonnegative, of a subelliptic pseu-

dodifferential operator, by embedding the unit cube through canonical

transformations satisfying suitable estimates on the derivatives(1). A cru-

cial step in this construction is an extension of the above properties (a),

(b) and (c) (and a few more) to smooth real-valued algebraic functions

and to polynomials evaluated on graphs of smooth algebraic functions.

These results have been generalized by C.Fefferman and R.Narasimhan

in [6] and [7], works in which they prove also similar properties for poly-

nomials evaluated on higher codimensional smooth algebraic varieties.

We start by proving some ”ellipticity” properties of the average, with

respect to one of the variables, of a nonnegative polynomial. We then

prove two theorems about scaling properties of averages and maxima of

functions whose gradients are ”controlled” by the function itself ( in terms

of L∞−norm). Afterwards we show that the aforementioned properties

extend to smooth algebraic functions and to polynomials of the kind

(y − X)d, where y ∈ IR is a parameter and X is a real variable, when

evaluated at X = f(x) with f a smooth algebraic function, and when

(1)This results in necessary and sufficient conditions for L2−a-priori bounds for subel-
liptic operators. See Fefferman [1], Fefferman-Phong [2,3,4,5].
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evaluated at X = f(x1, x
′) − (Avx1

f)(x′), with f a smooth algebraic

function in x1, polynomial (of a-priori bounded degree) in x′. Loosely

speaking, one has to study that in order to understand the geometry of

one of the main ”normal forms” (after a symplectomorphism) of p(x, ξ)

on a box of fixed size:

p(x, ξ) = ξ2
1 + (ξ2 − θ(x1, x2))

2 + V (x1, x2) ,

V (x1, x2) = p(x1, x2, 0, θ(x1, x2))

where, upon rescaling to the unit cube, θ is a smooth algebraic function

in x1, polynomial in x2, and p(x1, x2, 0, ξ2) is a polynomial, both of a-

priori bounded degree and maximum norms. Here we study the estimates

relative to the ”quadratic” part of p. The much more difficult case of the

estimates relative to V are treated in [6] and [7].

We address the interested reader to [10] and [11] for more details

about the use of these polynomial-like properties.

It should be stressed once more the novelty here is that also in the

case of smooth algebraic functions we have a complete control on the size

of the regions in terms of the size of the functions (when one wants to get

informations about maxima and averages; a typical example is property

(c) above), and on the scaling properties of the L∞−norms in terms of

the sizes of the regions on which the norms are taken.

2 – The Results.

We start by studying some scaling properties of averages, with respect

to one of the variables, of polynomials and of maxima of smooth functions

with ”controlled” gradient(2).

Proposition 2.1. Suppose 0 ≤ f(x1, x2) is a nonnegative poly-

nomial of degree d for (x1, x2) ∈ IR × IRN . Take (x1, x2) ∈ I × Q, with

diamI ∼ ρ, diamQ ∼ δ, 0 < δ < 1, δ ≤ ρ ≤ 1, and take x0
2 ∈ Q. Suppose(

Avx1∈If
)
(x2) ∼ δ4 ∀x2 ∈ Q∗ (the double of Q, as usual). Then there

(2)In the sequel, every constant C, c, c(n, d), c1, c2, c3, c4, c5, Cα, is a universal constant.
For A, B ≥ 0, A ∼ B means that ∃C, c > 0, universal constants, such that cB ≤ A ≤
CB.
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exist Q1 ⊂ Q, I1 ⊂ I, center(Q1) = x0
2, diamQ1 ∼ δ ∼ diamI1, such that

f(x1, x2) ∼ δ4, ∀(x1, x2) ∈ I1 × Q1 .

Proof. We have,

f(x0
1, x

0
2) = max

x1∈I
f(x1, x

0
2) ≥ c1δ

4

(since f is a nonnegative polynomial and
(
Avx1∈If

)
(x0

2) ∼ δ4) for some

x0
1 ∈ I and max(x1,x2)∈I×Q f(x1, x2) ∼ δ4.

Choose now Ĩ1, x0
1 ∈ Ĩ1, with diamĨ1 = c0δ. Since Ĩ1 ⊂ I, maxĨ1×Q f ≤

c2δ
4.

Also, with a universal constant c = c(N +1, d), f being a polynomial

≥ 0,

max
Ĩ1×Q

|∇f | ≤ cc2

δ
δ4 = c3δ

3 .

We can then find I1 ⊂ Ĩ1, Q1 ⊂ Q, Q1 centered at x0
2, with diamI1 =

c4δ = diamQ1, so that diam
(
I1 × Q1

) ∼ diam
(
Ĩ1 × Q

)
and

c5 max
Ĩ1×Q

f ≤ min
I1×Q1

f

for a universal constant c5 : for (x1, x2) ∈ I1 × Q1,

f(x1, x2) = f(x0
1, x

0
2) +

∫ 1

0

<
(∇f

)(
x0 + t(x − x0)

)
, (x − x0)> dt ≥

≥ f(x0
1, x

0
2) − 2c4c3δ

4 ≥ (c1 − 2c4c3)δ
4 =

( c1

2c2

)
c2δ

4 ≥ c5 max
I1×Q1

f

when c4 = c1/(4c3) and c5 = c1/(2c2).

The meaning of the above Proposition is that if the average of a

nonnegative polynomial with respect to one of the variables is ”elliptic”,

then, in a smaller box (whose size we have control on), the polynomial is

”elliptic” in all the variables.

Theorem 2.2. Let Q ⊂ IRn be a (closed) cube and Q∗ = 2Q. Let

f ∈ C∞(Q∗) be such that

‖∇f‖L∞(Q) ≤ c

diamQ
‖f‖L∞(Q) .
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Then

(1) Avx∈Q|f | ∼ max
x∈Q

|f |

(i.e., as always, the two quantities are equivalent by universal constants

independent of f, depending only on n and c).

Proof. We can suppose Q to be the unit cube centered at the origin.

∃x̄ ∈ Q such that ‖f‖L∞(Q) = |f(x̄)|.
Recall that if diamQ = α then |Q| = |side(Q)|n = (α/

√
n)n.

So, choose a cube Q1 ⊂ Q with x̄ ∈ Q1 and diamQ1 = 1/(2c̃), where

c̃ = max{1, c}. Hence |Q1| ∼ |Q|. We have,

f(x) = f(x̄)+ <

∫ 1

0

(∇f
)(

x̄ + t(x − x̄)
)
dt, (x − x̄)>=

= f(x̄)+ <F (x, x̄), (x − x̄)> .

Then

Avx∈Q|f | ≥ |Q1|
|Q| Avx∈Q1

|f | ≥ c
∣∣∣ 1

|Q1|

∫

Q1

f(x)dx
∣∣∣ =

= c
∣∣∣ 1

|Q1|

∫

Q1

{
f(x̄)+ <F (x, x̄), (x − x̄)>

}
dx

∣∣∣ ≥

≥ c
{
|f(x̄)| − 1

2
‖f‖L∞(Q)

}
=

1

2
c‖f‖L∞(Q) ,

since
∫

Q1

| <F (x, x̄), (x − x̄)> |dx ≤ c‖f‖L∞(Q)

(
diamQ1

)
|Q1| ,

whence

c‖f‖L∞(Q) ≤ Avx∈Q|f | ≤ ‖f‖L∞(Q) .

Theorem 2.3. Suppose f ∈ C∞(Q∗
0) and ∀Q ⊂ Q0 (all the cubes

considered are closed cubes)

‖∇f‖L∞(Q) ≤ c

diamQ
‖f‖L∞(Q) .
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Suppose diamQ ∼ diamQ0, then

(2) ‖f‖L∞(Q) ∼ ‖f‖L∞(Q0).

Proof. As usual, we can suppose Q0 to be the unit cube in IRn

centered at the origin. Let x0 := x0
0 ∈ Q0 be such that |f(x0)| =

maxx∈Q0
|f(x)|. Set c̃ = max{1, c}.

If x0 ∈ Q we are done.

Suppose x0 *∈ Q. Let xQ be the center of Q and let L0 be the line

through x0 and xQ and consider, on L0, the segment [x0, xQ]L0
. Let

F ′
1(Q), F ′′

1 (Q) be two parallel faces of Q, opposite with respect to xQ,

at which L0 meets Q transversally, such that the point F ′
1 ∩ L0 is closer

to x0 along L0, than the point F ′′
1 (Q) ∩ L0.

(In case L0 intersects Q in a corner or vertex, we just choose one of

the possible faces).

On [x0, xQ]L0
choose x1 such that distL0

(x0, x1) = 1/(2c̃), where

distL0
is the distance on the line L0.

We have that F ′′
1 (Q) ⊂ H1, a hyperplane. Choose H(x1) to be the

hyperplane parallel to H1 through x1. By convexity of Q0, the segment of

L0, [x0, L0 ∩ F ′′
1 (Q)]L0

⊂ Q0, and ∀t ∈ [x0, L0 ∩ F ′′
1 (Q)]L0

, H(t) ∩ Q0 *= ∅,

where H(t) is the hyperplane parallel to H1 through t. Denote by P the

band between the boundaries H(x1) and H1. Then Q ⊂ P ∩ Q0.

Notice that side(Q) ≤ dist(H(x1), H1) < side(Q0).

Hence there exists Q1 with F ′′
1 (Q) ⊂ F ′′

1 (Q1) ⊂ H1 and x1 ∈ ∂Q1, so

that Q ⊂ Q1 ⊂ P ∩ Q0. Let x0
1 ∈ Q1 be such that ‖f‖L∞(Q1) = |f(x0

1)|. If

x0
1 ∈ Q we stop here, otherwise consider the line L1 through x0

1 and xQ,

and a point x2 ∈ [x0
1, xQ]L1

with distL1
(x0

1, x2) = diamQ1/(2c̃).

Consider now, with obvious notations, H(x2) parallel to H2. Then

Q ⊂ P1 ∩ Q1 ⊂ P ∩ Q0 and side(Q) ≤ dist(H(x2), H2) < side(Q1).

Therefore there exists Q2, x2 ∈ ∂Q2, F ′′
2 (Q) ⊂ F ′′

2 (Q2) ⊂ H2, and

Q ⊂ Q2 ⊂ Q1 ∩ P1, F ′′
2 (Q) being the farthest face of Q, along L1, with

respect to x0
1.

Notice that diamQ ≤ diamQ2 ≤ Q0.

Suppose we constructed the Qj’s, j = 0, 1, 2, . . . , k (so, in particular,

x0
j *∈ Q, ∀j, x0

j a point of maximum for |f | on Qj), we want to construct

Qk+1.
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Recall that, for j = 1, 2, . . . , k, we have

Q ⊂ Qj ⊂ Qj−1 ∩ Pj−1

(Pj’s are determined by pairs of hyperplanes parallel to the coordinate-

hyperplanes. Notice that Pj ∩ Qj is an n−dimensional parallelepiped).

Consider x0
k ∈ Qk such that ‖f‖L∞(Qk) = |f(x0

k)|.
If x0

k ∈ Q we stop here the construction of the sequence of cubes,

otherwise let Lk be the line through x0
k and xQ. Take xk+1 ∈ [x0

k, xQ]Lk

with

distLk
(x0

k, xk+1) =
diamQk

2c̃
.

Then, with the obvious notations, consider H(xk+1) and Hk+1 (chosen as

above). Then Q ⊂ Pk ∩ Qk ⊂ Pk−1 ∩ Qk−1. Again

side(Q) ≤ dist(H(xk+1), Hk+1) < side(Qk) =⇒

=⇒ ∃Qk+1, F ′′
k+1(Q) ⊂ Fk+1(Qk+1) ⊂ Hk+1

such that xk+1 ∈ ∂Qk+1, Q ⊂ Qk+1 ⊂ Qk ∩ Pk.

Notice that, ∀j, diamQ ≤ diamQj ≤ Q0.

Since, at each step, we shrink the region by an amount > diamQ/(2c̃),

there exists N such that N ≤ 2c̃(diamQ0/diamQ), and the construction

stops at xN+1, i.e. xN+1 ∈ Q.

Then we have, ∀j, j = 0, 1, . . . , N :

f(x0
j) = f(xj+1)+ <F (x0

j , xj+1), (x
0
j − xj+1)>,

so that,

‖f‖L∞(Qj) ≤ ‖f‖L∞(Qj+1) +
1

2
‖f‖L∞(Qj),

i.e.

‖f‖L∞(Qj) ≤ 2‖f‖L∞(Qj+1),

whence

‖f‖L∞(Q0) ≤ 2N‖f‖L∞(Q) .

Our aim is now to show that algebraic functions, i.e. solutions to a

polynomial equation, satisfy the hypotheses of Theorem 2.2 and 2.3 (and

hence enjoy a polynomial-like scaling property).
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Theorem 2.4. Let Q = Q1 × I be the unit cube, centered at

the origin, in IRn+1, with coordinates (x, y) ∈ IRn × IR. Let P (x, y) be a

polynomial of a-priori bounded degree d, with |∂yP | ≥ C > 0, ∀(x, y) ∈
Q∗, and ‖P‖L∞(Q∗) ≤ C∗, for fixed constants C, C∗ > 0. Let y = f(x) be

the solution to P (x, y) = 0 on Q∗, with f ∈ C∞( 1
2
Q∗

1), ‖f‖L∞(Q1) ≤ 2.

Then, for |α| ≤ 2 (and actually ∀α)

(3) ‖∂α
x f‖L∞(Q1) ≤ Cα‖P‖L∞(Q∗)

(
M − m

) ≤ C∗Cα

(
M − m

)

where M = maxx∈Q1
f(x), m = minx∈Q1

f(x) and the Cα’s depend only

on n + 1 and d.

Proof. Notice that, by hypothesis, J = [m, M ] ⊂ I∗. We have

P (x, y) =

∫ 1

0

(∂yP )
(
x, f(x) + t(y − f(x))

)
dt

(
y − f(x)

)

so that, ∀x ∈ Q1, ∀y ∈ J, P being a polynomial,

max
(x,y)∈Q1×J

|P (x, y)| ≤ c(d, n) max
(x,y)∈Q1×J

|y − f(x)| = c(d, n)|M − m| .

It follows that, ∀y ∈ J,

|∂xP (x, y)| ≤ c(d, n) max
x∈Q1

|P (x, y)| ≤

≤ c(d, n)‖P‖L∞(Q∗)|M − m| ≤ c(d, n)C∗|M − m| ,

so that,

max
(x,y)∈Q1×J

|∂xP (x, y)| ≤ c(d, n)‖P‖L∞(Q∗)|M − m| ≤ c(d, n)C∗|M − m| .

Hence, since |(∂xP )
(
x, f(x)

)| ≤ max(x,y)∈Q1×J |∂xP (x, y)|, we obtain, us-

ing the formula from the Implicit Function Theorem, for |α| = 1,

∂α
x f(x) = −(∂α

x P )
(
x, f(x)

)

(∂yP )
(
x, f(x)

) ,
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that, |α| = 1,

‖∂α
x f‖L∞(Q1) ≤ c(d, n)

C
‖P‖L∞(Q∗)|M − m| ≤ c(d, n)

C
C∗|M − m| .

Now, for |α| = 2, α = α1 + α2, |α1| = |α2| = 1,

∂α
x f(x) = −

{(∂α
x P )

(
x, f(x)

)
+ (∂α1

x ∂yP )
(
x, f(x)

)
∂α2

x f(x)

(∂yP )
(
x, f(x)

) +

− (∂α1
x P )

(
x, f(x)

)(∂α2
x ∂yP )

(
x, f(x)

)
+ (∂2

yP )
(
x, f(x)

)
∂α2

x f(x)

(∂yP )
(
x, f(x)

)2

}
.

As we already know, |(∂α1
x P )

(
x, f(x)

)| ≤ C(M − m).

For (∂α
x P )

(
x, f(x)

)
we have: ∀y ∈ J

|∂α
x P (x, y)| ≤ max

x∈Q1

|∂α1
x P (x, y)| ≤ C(M − m),

whence max(x,y)∈Q1×J |∂α
x P (x, y)| ≤ C(M − m) and

|(∂α
x P )

(
x, f(x)

)| ≤ max
(x,y)∈Q1×J

|∂α
x P (x, y)| ≤ C(M − m),

with, clearly, C = c(d, n).

Now,

|(∂α2
x ∂yP )

(
x, f(x)

)| ≤ max
(x,y)∈Q∗

|∂α2
x ∂yP (x, y)| ≤

≤ c(d, n)‖P‖L∞(Q∗) ≤ c(d, n)C∗ ,

|(∂2
yP )

(
x, f(x)

)| ≤ max
(x,y)∈Q∗

|∂∗
yP (x, y)| ≤

≤ c(d, n)‖P‖L∞(Q∗) ≤ c(d, n)C∗ .

It follows, for |α| = 2,

‖∂α
x f‖L∞(Q1) ≤ c(d, n)‖P‖L∞(Q∗)|M − m| ≤ c(d, n)C∗|M − m|
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Corollary 2.5. Same hypotheses as in Theorem 2.4. ∀Q′
1 ⊂ Q1,

we have, for |α| ≤ 2,

(4) ‖∂α
x f‖L∞(Q′

1
) ≤ c(d, n)C∗

(diamQ′
1)|α|

(
max
x∈Q′

1

f(x) − min
x∈Q′

1

f(x)
)

.

Proof. The proof follows from the proof of Theorem 2.4 considering

J(Q′
1) = [min

Q′
1

f,max
Q′

1

f ] = [m(Q′
1), M(Q′

1)],

and noticing the following facts: ∀y ∈ J(Q′
1), ∀x ∈ Q′

1,

|(∂xP )
(
x, f(x)

)| ≤ c(d, n)

diamQ′
1

C∗|M(Q′
1) − m(Q′

1)|,

since, ∀y ∈ J(Q′
1), ∀α :

max
x∈Q′

1

|∂α
x P (x, y)| ≤ c(d, n) max

x∈Q′
1

|P (x, y)|(diamQ′
1)

−|α| ≤

≤ c(d, n)‖P‖L∞(Q∗)

(diamQ′
1)|α| |M(Q′

1) − m(Q′
1)| ≤

≤ c(d, n)C∗
(diamQ′

1)|α| |M(Q′
1) − m(Q′

1)|

and

|(∂α
y P )

(
x, f(x)

)| ≤ max
(x,y)∈Q∗

|∂α
y P (x, y)| ≤

≤ c(d, n)‖P‖L∞(Q∗) ≤ c(d, n)C∗ .

A very nice consequence is the following:

Corollary 2.6. Same hypotheses as in Theorem 2.4. Then:

(5) ‖∇f‖L∞(Q) ∼
(
max
x∈Q

f(x) − min
x∈Q

f(x)
)
.
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This allows us to prove the

Corollary 2.7. Let f be a smooth algebraic function satisfying the

conditions in Corollary 2.6. Consider, for fixed y ∈ IR, the polynomial in

X ∈ IR, Py(X) = (y−X)2, and the associate function py(x) = (y−f(x))2.

Then:

(6) Avx∈Qpy(x) ∼ max
x∈Q

py(x) ,

and

(7) ‖∂xpy‖L∞(Q) ≤ C‖py‖L∞(Q) ,

where C and the constants in the equivalence do not depend on y.

Proof. Let J = [minx∈Q f,maxx∈Q f ]. Consider ∂XPy(X) = −2(y −
X). Recall that diamQ ∼ 1. Then, for a universal constant C (as usual

all the constants C are universal constants),

max
X∈J

|∂XPy(X)| ≤ C

|J | max
X∈J

|Py(X)| .

Hence, since: x ∈ Q =⇒ f(x) ∈ J,

|∂xpy(x)| ≤ 2 max
X∈J

|∂XPy(X)|‖∂xf‖L∞(Q) ≤

≤ 2C

|J | max
X∈J

|Py(X)|‖∂xf‖L∞(Q) ≤

≤ C ′

|J |
(
max

Q
f − min

Q
f
)
‖Py‖L∞(I) = C ′ max

x∈Q
|py(x)| ,

whence

‖∂xpy‖L∞(Q) ≤ C‖py‖L∞(Q) , ,

and

Avx∈Qpy ∼ ‖py‖L∞(Q) .

Remark 2.8. Of course the Corollary holds true for Py(X) = (y −
X)d, d ≥ 1. We stated it for d = 2 since this is what is needed in [10] and

[11].
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Given now the algebraic function f(x1, x2), we have to examine the

scaling properties of g(x1, x2) = f(x1, x2) − (Avx1∈If)(x2) := f(x1, x2) −
f̄(x2).

Lemma 2.9. Suppose f, P satisfy the hypotheses of Theorem 2.4.

Suppose now Q = Q1 × I = I × Q2 × I, Q2 the unit cube in IRn−1,

(x1, x2) ∈ I × Q2. Define f̄(x2) = (Avx1∈If)(x2). Then, for a constant C

independent of f and x2, we have, ∀x2 fixed,

‖∂x1
g(., x2)‖L∞(I) ≤ C(max

x1∈I
g(x1, x2) − min

x1∈I
g(x1, x2));(i)

‖∂x1

(
g(., x2)

2
)‖L∞(I) ≤ C‖g(., x2)

2‖L∞(I);(ii)

‖∂x1
g‖L∞(Q) ≤ C‖g‖L∞(Q) .(iii)

Proof. Define

M(g)(x2) = max
x1∈I

g(x1, x2) =
(
max
x1∈I

f(x1, x2)
)
−f̄(x2) = M(f)(x2)−f̄(x2),

and, with m(f)(x2) = minx1∈I f(x1, x2),

m(g)(x2) = min
x1∈I

g(x1, x2) = m(f)(x2) − f̄(x2) .

∀x2 ∈ Q2 fixed, consider J(x2) = [m(f)(x2), M(f)(x2)]. Then

|P (x1, x2, y)| ≤ C‖P‖L∞(Q∗) max
(x1,y)∈I×J(x2)

|y − f(x1, x2)| ≤

≤ C‖P‖L∞(Q∗)

∣∣M(f)(x2) − m(f)(x2)
∣∣ ,

C independent of x2. It follows that

|∂x1
f(x1, x2)| ≤ C|(∂x1

P )
(
x1, x2, f(x1, x2)

)| ≤

≤ C‖P‖L∞(Q∗)

∣∣M(f)(x2) − m(f)(x2)
∣∣ ,

being diamI ∼ 1. Since

M(g)(x2) − m(g)(x2) = M(f)(x2) − f̄(x2) − m(f)(x2) + f̄(x2) =

= M(f)(x2) − m(f)(x2)
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and ∂x1
g(x1, x2) = ∂x1

f(x1, x2), point (i) and (iii) follow at once.

About (ii) :

∂x1

(
g(x1, x2)

2
)

= 2g(x1, x2)∂x1
g(x1, x2),

therefore

|∂x1

(
g(x1, x2)

2
)| ≤ 2C‖g(., x2)‖2

L∞(I) = 2C‖g(., x2)
2‖L∞(I) .

Corollary 2.10. Under the same hypotheses, suppose further that

f(x1, x2) is a polynomial of bounded degree D in x2. Then the Bernstein’s

inequality holds for g(x1, x2) := f(x1, x2) − f̄(x2) :

(8) ‖∇g‖L∞(Q) ≤ C‖g‖L∞(Q) .

Corollary 2.11. Same hypotheses of Corollary 2.10. Consider

the function

py(x1, x2) =
(
y − g(x1, x2)

)2
.

Then

(9) Avx∈Qpy ∼ max
x∈Q

py(x)

and

(10) ‖∂xpy‖L∞(Q) ≤ C‖py‖L∞(Q) ,

for universal constants independent of y.
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