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The Hausdorff-Young theorem for Besicovitch spaces

of vector-valued almost periodic functions

A.M. BERSANI

Riassunto: Viene data l’estensione del classico teorema di Hausdorff-Young per
funzioni periodiche al caso di spazi Bq

ap(IR, IH) di funzioni quasi-periodiche secondo
Besicovitch, con valori in uno spazio di Hilbert complesso.

Abstract: We give the extension of the classical Hausdorff-Young theorem for
periodic functions to the space Bq

ap(IR, IH) of the Besicovitch almost periodic functions
with values in a complex Hilbert space.

1 – Introduction

It is well known that the classical Hausdorff-Young (H.-Y.) theorem

for LP -spaces may be considered as an extension of the Fisher-Riesz the-

orem when p ≥ 2 and of the Parseval equality when p ∈]1, 2].

It states that [14, vol. II, pp. 101/103]:

if f ∈ Lq([0, 2π]), with q ∈]1, 2], and

(1.1) cn =
1

2π

2π∫

0

f(t)e−intdt n ∈ ZZ
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then
( ∞∑

n=1

|cn|q′
)1/q′

≤
(

1

2π

2π∫

0

|f(t)|qdt

)1/q

where q′ =
q

q − 1
.

Furthermore, given any two-way infinite sequence (cn)n∈ZZ of com-

plex numbers with
∑

n∈ZZ
|cn|q < +∞, there is a function f ∈ Lq′

([0, 2π])

satisfying (1.1) and such that

(
1

2π

2π∫

0

|f(t)|q′
dt

)1/q′

≤
( ∑

x∈ZZ

|cn|q
)1/q

.

Recently, Avantaggiati, Bruno and Iannacci [2, 3, 4] have ex-

tended the theorem to Bq
ap-spaces.

In this paper we want to generalize the H.-Y. theorem to vector-

valued functions, showing its validity in Bq
ap(IR, IH).

In his recent book ([10], p. 43), A.A. Pankov claims that, in the

case of Bq
ap(IR, IH)-spaces, when IH is a Hilbert space,“the classical H.-

Y. theorem about Fourier series may be generalized (together with the

proof)”.

Actually we know three classical proofs of the theorem(1). Recently,

the first and the third proof have been extended to Bq
ap(IR, C) respectively

byAvantaggiati, Bruno and Iannacci [4] and by Avantaggiati [2];

on the other hand, the extension of the second one may be very cumber-

some.

In any case, it seems to the author that noone of these three exten-

sions is so obvious.

The paper is so divided: in section 2 we recall the principal definitions

and properties of the a.p. functions, defining the Bq
ap-spaces as the closure

of the space P of the trigonometric polynomials with respect to a given

norm on P. Besides, the definition of Bohr transform is given.

In section 3, some auxiliary lemmata are proved, generalizing previ-

ous results obtained in [2]. In proving our results, we need some properties

(1)The original proof of Young and Hausdorff (see [11], pp. 100/102), a later one of
Hardy and Littlewood (see [11], pp. 102/105) and another one obtained from a general

theorem of M. Riesz on functional operations (see [14], vol. II, pp. 101/103)
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of the Bochner integrable functions [12], and of classical properties of the

LP -spaces.

In section 4 the H.-Y. theorem for trigonometric polynomials is proved,

by means of the method suggested by Avantaggiati in [2]. The proof of

this theorem, in the case of Bq
ap-spaces, is based on the Bq

ap-norm, whose

characterizations are shown in section 5.

Finally, in section 6, we are concerned with the H.-Y. theorem for

Bq
ap(IR, IH); the proof follows a scheme already known for Bq

ap(IR, C)

spaces.

2 – Notations, definitions and properties

Let (IH, 〈·|·〉) be an arbitrary complex Hilbert space, with norm as-

sociated to the scalar product

‖u‖ :=
√

〈u|u〉 ∀ u ∈ IH .

Recall that, ∀ u ∈ IH,

signu =





0 if u = 0

u

‖u‖ if u ∈ IH/{0} .

Let P(IH) denote the complex vector space of all trigonometric poly-

nomials P (x) so defined

P (x) =
r∑

j=1

cje
iλjx ∀ x ∈ IR

where cj ∈ IH; λj ∈ IR(λi *= λj if i *= j); r ∈ IN.

If every cj(j = 1, . . . , r) is different from zero, the set

σ(P ) := {λ1, λ2, . . . , λr}

is called the spectrum of P .

Moreover we introduce the function

a(λ, P ) := lim
T→∞

1

2T

T∫

−T

P (x)e−iλxdx =

{
cj if λ = λj ; j = 1, . . . , r

0 if λ /∈ σ(P )
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that is called the Bohr transform of P , and the scalar product

(P |Q) = lim
T→∞

1

2T

T∫

−T

〈P (x)|Q(x)〉dx .

A vector-valued function f : IR → IH is uniformly almost periodic (u.a.p.)

if it is the uniform limit (in IR) of a sequence (Pn)n∈IN of elements of P(IH).

We will call C0
ap the space of these functions, that is the completion of P

with respect to the norm

(2.1) |‖P |‖∞ = sup
x∈IR

‖P (x)‖ .

Considering in the space P(IH) the norm defined by

(2.2)
|‖P |‖q := lim

T→∞

(
1

2T

T∫

−T

‖P (x)‖qdx

)1/q

∀ q ∈ [1,+∞[, ∀ P ∈ P(IH)

we introduce the space Bq
ap(IR, IH) as the completion of P(IH) with respect

to the norm (2.2). These spaces are usually called Besicovitch spaces of

almost periodic vector-valued functions.

According to the definition of the space C0
ap, we can write

C0
ap = B∞

ap .

Observe that an element of Bq
ap is a class of Cauchy sequences of

trigonometric polynomials (Pn)n∈IN, that are equivalent with respect to

the norm ‖ · ‖q.

By Hölder inequality it follows that

C0
ap ≡ B∞

ap ↪→ Bq′′
ap ↪→ Bq′

ap ↪→ B1
ap , where 1 < q′ < q′′ < ∞ .

Note that, if P is a Π-periodic trigonometric polynomial (i.e. ∃Π ∈ IR+

s.t. P (x + Π) = P (x) ∀ x ∈ IR), then

|‖P |‖q =

(
1

Π

Π∫

0

‖P‖qdx

)1/q

.
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Hence the space Bq
ap(q ∈ [1,+∞[) contains algebraically and topologically

any Lq(0,Π) space, for any period Π ∈ IR+. We will report, for the

reader’s convenience, the following properties of the Bq
ap-functions:

Proposition 2.1. For any f ∈ Bq
ap, and for any λ ∈ IR, there

exists

lim
T→∞

1

2T

T∫

−T

f(x)e−iλxdx =: a(λ, f) ∈ IH

that is called the Bohr transform of f .

Proposition 2.2. If (Pn)n∈IN, with Pn ∈ P, converges to f in Bq
ap,

then

a) there exists

lim
T→∞

(
1

2T

T∫

−T

‖f(x)‖qdx

)1/q

=: |‖f |‖q

and the following relation holds true:

|‖f |‖q = lim
n→∞

|‖Pn|‖q ;

b) we have, uniformly with respect to λ ∈ IR,

lim
n→∞

a(λ, Pn) = a(λ, f) .

Proposition 2.3. If f ∈ Bq
ap; g ∈ Bq′

ap, with
1

q
+

1

q′ = 1, and

|‖Pn − f |‖q → 0 ; |‖Qn − g|‖q′ → 0 (Pn, Qn ∈ P for any n ∈ IN); then

there exists

lim
T→∞

1

2T

T∫

−T

〈f(x)|g(x)〉dx =: (f |g)

and it results
(f |g) = lim

n→∞
(Pn|Qn)

|(f |g)| ≤ |‖f |‖q|‖g|‖q′ .
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If (Pn)n∈IN defines the element f ∈ Bq
ap, we can define the Bohr

transform of f setting

a(λ, f) = lim
n→∞

a(λ, Pn) .

The definition is well posed, since a(λ, f) does not depend on the

sequence (Pn) chosen. The subset of IR

σ(f) = {λ ∈ IR: a(λ, f) *= 0}

is called the spectrum of f .

On the other hand, since, by Proposition (2.2),

σ(f) ⊂ lim inf
n→∞

σ(Pn) ∀ f ∈ Bq
ap ,

σ(f) is at most a countable set.

The formal series ∞∑

j=1

a(λj, f)eiλjx

is called the Fourier series of f .

Obviously, if f ∈ P, its Fourier series coincides with f .

3 – Auxiliary Lemmata

Let us consider the region (strip) of the complex plane

Σ = {z = u + iv ∈ C
∣∣0 ≤ /z ≤ 1}

and fix a real number t ∈]0, 1[.

Lemma 3.1. For any P (x) ∈ P(IH), the function ϕ : IR → IR,

ϕ(x) = ‖P (x)‖(1+z)/(1+t) ; x ∈ IR

is almost periodic for any fixed z ∈ Σ and t ∈]0, 1[.
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Proof. Since /
(1 + z

1 + t

)
≥ 1

2
, ∀ z ∈ Σ, ∀ t ∈ ]0, 1[, the thesis follows

from the continuity of g(ξ) = ‖ξ‖(1+z)/(1+t) and from the almost period-

icity of P (x) (see [1], 1.VII, p. 6).

By Lemma 3.1 we can consider the function

(3.1) z → Φ(z) = lim
T→+∞

(
1

2T

T∫

−T

‖P (x)‖(1+z)/(1+t)e−iλxdx

)
.

Lemma 3.2. The function Φ(z) is olomorphic in Σ.

Proof. In order to prove our thesis, let us compute
∮

γ

Φ(z)dz

for a generic γ, generally regular, simple and closed in Σ.

To this end, we observe that, ∀ T ∈ IR+, we have

(3.2)

∮

γ

(
1

2T

T∫

−T

‖P (x)‖(1+z)/(1+t)e−iλxdx

)
dz = 0 .

Indeed, the function

(3.3)

χ(T, z) =
1

2T

T∫

−T

‖P (x)‖(1+z)/(1+t)e−iλxdx =

=
1

2

1∫

−1

‖P (τT )‖(1+z)/(1+t)e−iλτT dτ

is olomorphic in Σ.

Furthermore, P (x) is bounded in IH ([1], 2.IV), so that the function

χ(T, ·) is bounded, too, uniformly with respect to z in Σ.

Indeed
∣∣∣ ‖P (τT )‖(1+z)/(1+t)

∣∣∣ = ‖P (τT )‖(1+u)/(1+t) ≤ M 2/(1+t) ≤ M 2
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where

M = max{1, sup
x∈IR

‖P (x)‖} .

Hence

∮

γ

Φ(z)dz =

∮

γ

lim
T→+∞

(
1

2T

T∫

−T

‖P (x)‖(1+z)/(1+t)e−iλxdx

)
dz =

= lim
T→+∞

∮

γ

(
1

2

1∫

−1

‖P (τT )‖(1+z)/(1+t)e−iλτT dτ

)
dz = 0

by virtue of Lebesgue theorem and (3.2).

For any fixed P (x), denoting by λ1, . . . , λr its spectrum, let us now

introduce the following trigonometric polynomials

(3.4) Q(x) =
r∑

l=1

dl exp(iλlx) ; dl ∈ IH

and

(3.5) Qz(x) =
r∑

l=1

‖dl‖(1+z)/(1+t)(sign dl)e
iλlx

where Q(x) is chosen in such a way that σ(Q) = σ(P ), and the olomorphic

function

(3.6) ψ(z) = lim
T→+∞

1

2T

T∫

−T

{
‖P (x)‖(1+z)/(1+t)〈sign(P (x))|Qz(x)〉dx

}
.

Lemma 3.3. For any Q(x) ∈ P

(3.7) i) |ψ(iv)| ≤ lim
T→+∞

(
1

2T

T∫

−T

‖P (x)‖2/(1+t)dx

)1/2( r∑

j=1

‖dj‖2/(1+t)

)1/2

(3.8) ii) |ψ(1+iv)|≤
(

lim
T→+∞

1

2T

T∫

−T

‖P (x)‖2/(1+t)dx

)( r∑

j=1

‖dj‖2/(1+t)

)
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Proof. i) Let us suppose P (x) *≡ 0; by virtue of simple properties

of the Bochner integrals [12], we can write

|ψ(iv)| ≤ lim
T→+∞

1

2T

T∫

−T

{
‖P (x)‖1/(1+t) · ‖ signP (x)‖ · ‖Qz(x)‖

}
dx =

= lim
T→+∞

1

2T

T∫

−T

‖P (x)‖1/(1+t) · ‖Qz(x)‖dx

hence, using Hölder inequality,

(3.9)

|ψ(iv)| ≤ lim
T→+∞

[(
1

2T

T∫

−T

‖P (x)‖2/(1+t)

)1/2

·
(

1

2T

T∫

−T

‖Qz(x)‖2dx

)1/2]
.

By means of Parseval equality for trigonometric polynomials (see [1],

3.VIII), the second factor in (3.9) may be rewritten in the form

lim
T→∞

(
1

2T

T∫

−T

‖Qz(x)‖2dx

)
=

r∑

l=1

‖dl‖2/(1+t) .

Thus

|ψ(iv)| ≤
(

lim
T→+∞

1

2T

T∫

−T

‖P (x)‖2/(1+t)

)1/2

·
( r∑

l=1

‖dl‖2/(1+t)

)1/2

.

ii)

|ψ(1 + iv)| ≤ lim
T→+∞

1

2T

T∫

−T

‖P (x)‖2/(1+t) ·
( r∑

l=1

‖dl‖2/(1+t)

)
dx =

=

( r∑

l=1

‖dl‖2/(1+t)

)[
lim

T→+∞

1

2T

T∫

−T

‖P (x)‖2/(1+t)dx

]
.
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Hence, since ψ(z) is holomorphic on Σ and

|ψ(iv)| ≤ M0 ; |ψ(1 + iv)| ≤ M1

by the theorem of the three lines ([14], vol. II, pp. 93/94), we have

(3.10) |ψ(t)| ≤ M 1−t
0 M t

1 ∀ t ∈]0, 1[

where M0 and M1 are respectively given by the right-hand sides in (3.7)

and (3.8).

Therefore, ∀ t ∈]0, 1[,

(3.11) |ψ(t)| ≤ |‖P (x)|‖2/(1+t) ·
( r∑

j=1

‖dj‖2/(1+t)

)(1+t)/2

.

But, from (3.5) and (3.6),

ψ(t) = lim
T→+∞

1

2T

T∫

−T

‖P (x)‖〈signP (x)|
r∑

l=1

‖dl‖(sign dl)e
iλlx〉dx =

= lim
T→+∞

1

2T

T∫

−T

〈P (x)|
r∑

l=1

dle
iλlx〉dx =

= lim
T→+∞

1

2T

T∫

−T

〈P (x)|Q(x)〉dx = ([1], 3.VIII)

(3.12) =
r∑

j=1

〈cj|dj〉

Finally, taking into account (3.11) and (3.12), we get

(3.13) |ψ(t)| =
∣∣∣

r∑

j=1

〈cj|dj〉
∣∣∣ ≤ |‖P |‖2/(1+t)

( r∑

j=1

‖dj‖2/(1+t)

)(1+t)/2

.
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4 – The Hausdorff-Young theorem for polynomials

This section is devoted to the following:

Lemma 4.1. For any P (x) ∈ P; P =
r∑

j=1
cje

iλjx; cj ∈ IH; ∀ q ∈]1, 2],

we have

i)

( r∑

j=1

‖cj‖q′
)1/q′

≤ |‖P |‖q(4.1)

ii) |‖P |‖q′ ≤
( r∑

j=1

‖cj‖q

)1/q

.(4.2)

Proof. i) By taking into account (3.11), we have

(4.3) sup
Σ‖dl‖q≤1

∣∣∣
r∑

j=1

〈cj|dj〉
∣∣∣ ≤ |‖P |‖2/(1+t)

Let us prove that, ∀ q ∈]1,+∞[,

(4.4)

( r∑

j=1

‖cj‖q′
)1/q′

= sup

{∣∣∣
r∑

j=1

〈cj|dj〉
∣∣∣, where

r∑

l=1

‖dl‖q ≤ 1

}

where q′ =
q

q − 1
.

Using Schwarz and Hölder inequality, we can write

∣∣∣
r∑

j=1

〈cj|dj〉
∣∣∣ ≤

r∑

j=1

|〈cj|dj〉| ≤
r∑

j=1

‖cj‖ ‖dj‖ ≤

≤
( r∑

j=1

‖cj‖q′
)1/q′( r∑

l=1

‖dl‖q

)1/q

so that we have
∣∣∣

r∑

j=1

〈cj|dj〉
∣∣∣ ≤

( r∑

j=1

‖cj‖q′
)1/q′
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when we restrict ourselves to the set

Q =

{
Q(x) ∈ P :

r∑

l=1

‖dl‖q ≤ 1

}
.

Hence

(4.5) sup
Σ‖dl‖q≤1

∣∣∣
r∑

j=1

〈cj|dj〉
∣∣∣ ≤

( r∑

j=1

‖cj‖q′
)1/q′

.

We are going now to prove that there exists a polynomial

Q∗ :=
r∑

l=1

Fle
iλlx ;

r∑

l=1

‖Fl‖q ≤ 1

such that the equality holds in (4.5).

Let us consider

Fl =
cl‖cl‖q′−2

( r∑
k=1

‖ck‖q′
)1/q

then ( r∑

l=1

‖Fl‖q

)1/q

=

(
r∑

l=1

‖cl‖q(q′−1)

( r∑
k=1

‖ck‖q′
)

)1/q

= 1

(since q(q′ − 1) = q′).

Furthermore,

∣∣∣
r∑

j=1

〈cj|Fj〉
∣∣∣ =

( r∑

j=1

‖cj‖q′
)1/q′

.

Consequently, equality (4.4) holds.

Since q =
2

1 + t
∈]1, 2[ for t ∈]0, 1[, from (4.3) and (4.4) inequality

(4.1) follows.

ii) We claim that

(4.6) |‖P |‖q′ = sup
|‖Q|‖q≤1

∣∣∣ lim
T→+∞

1

2T

T∫

−T

〈P (x)|Q(x)〉dx
∣∣∣.
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Indeed we have (see [12], th. 7, p. 225; [5]):

∣∣∣∣ lim
T→+∞

1

2T

T∫

−T

〈P |Q〉dx

∣∣∣∣ ≤ lim
T→+∞

1

2T

T∫

−T

‖P‖ · ‖Q‖dx ≤

≤ |‖P |‖q′ · |‖Q|‖q ∀P, Q∈C0
ap(IR, IH)

so that, when |‖Q|‖q ≤ 1,

sup
|‖Q|‖q≤1

∣∣∣ lim
T→+∞

1

2T

T∫

−T

〈P |Q〉dx
∣∣∣ ≤ |‖P |‖q′ .

Let us denote with Q∗ the set defined by

Q∗ :=
{
Q ∈ P : |‖Q|‖q ≤ 1

}

and by g the function defined by

g = |‖P |‖1−q′
q′ · ‖P‖q′−1 signP =

=

(
lim

T→+∞

1

2T

T∫

−T

‖P‖q′
dx

)−1/q

‖P‖q′−1 signP .

Since

|‖g|‖q =

(
lim

T→+∞

1

2T

T∫

−T

‖P‖q′
dx

)−1/q(
lim

T→+∞

1

2T

T∫

−T

‖P‖(q′−1)qdx

)1/q

= 1 ,

we have that g belongs to Q∗.

Moreover,
∣∣∣ lim

T→+∞

1

2T

T∫

−T

〈P |g〉dx
∣∣∣ = |‖P |‖q′ .

Thus g is the element of Q∗ such that the equality (4.6) holds. On the

other hand, the polynomials Q ∈ Q∗ satisfy property (4.1); hence

Q∗ ⊆ Q′
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where

Q′ :=

{
Q ∈ P :

r∑

l=1

‖dl‖q′ ≤ 1

}
.

Then

sup
|‖Q|‖q≤1

∣∣∣ lim
T→+∞

1

2T

T∫

−T

〈P (x)|Q(x)〉dx
∣∣∣ = sup

|‖Q|‖q≤1

∣∣∣
r∑

j=1

〈cj|dj〉
∣∣∣ ≤

≤ sup
(Σ‖dl‖q′

)≤1

∣∣∣
r∑

j=1

〈cj|dj〉
∣∣∣ .

By (4.4) we obtain

(4.7) |‖P |‖q′ = sup
|‖Q|‖q≤1

∣∣∣ lim
T→+∞

1

2T

T∫

−T

〈P |Q〉dx
∣∣∣ ≤

( r∑

j=1

‖cj‖q

)1/q

and the proof is complete.

5 – A characterization of the Bq
ap-norm

In order to prove the H.-Y. theorem in Bq
ap(IR, IH), we shall need

some characterizations of the Bq
ap-norm.

For any fixed f ∈ B2
ap, let us consider its spectrum

σ(f) = {λ1, . . . , λn, . . . }

and let us define the set

Pr = {Q ∈ P|σ(Q) = {λ1, . . . , λr} ∪ Σ}

where {λ1, . . . , λr} ⊂ σ(f) and Σ ∩ σ(f) = ∅.

Theorem 5.1. min
Q∈Pr

|‖f − Q|‖2
2 = |‖f |‖2

2 −
r∑

j=1
‖a(λj, f)‖2
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Proof. Since any Q ∈ Pr may be written in the form

(5.1) Q =
r∑

j=1

cje
iλjx +

ν∑

l=1

βle
iµlx ; cj, βl ∈ IH

where {µ1, . . . , µν} ∩ σ(f) = ∅, then, taking into account

〈f |
ν∑

l=1

βle
−iµlx〉 = 0 ,

and the fact that the scalar product 〈cj|·〉 is a linear and continuous

functional on IH ([12]), we have

|‖f − Q|‖2
2 =

= |‖f |‖2
2 − lim

T→∞

1

2T

T∫

−T

∑

j

〈f(x)e−iλjx|cj〉dx+

− lim
T→+∞

1

2T

T∫

−T

∑

j

〈cj|f(x)e−iλjx〉dx +
∑

j

‖cj‖2 +
∑

l

‖βl‖2 =

= |‖f |‖2
2 −

∑

j

〈cj| lim
T→+∞

1

2T

T∫

−T

f(x)e−iλjxdx〉

−
∑

j

〈cj| lim
T→+∞

1

2T

T∫

−T

f(x)e−iλjxdx〉 +
∑

j

‖cj‖2 +
∑

l

‖βl‖2 =

= |‖f |‖2
2 −

∑

j

〈cj|a(λj, f)〉 −
∑

j

〈cj|a(λj, f)〉 +
∑

j

‖cj‖2 +
∑

l

‖βl‖2 .

From these relations and

‖a(λj, f) − cj‖2 = ‖a(λj, f)‖2 − 〈cj|a(λj, f)〉 − 〈cj|a(λj, f)〉 + ‖cj‖2

we get

(5.2) |‖f−Q|‖2
2 = |‖f |‖2

2−
∑

j

‖a(λj, f)‖2+
∑

l

‖βl‖2+
∑

j

‖a(λj, f)−cj‖2 .
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Therefore by (5.2) we obtain

(5.3) |‖f − Q|‖2
2 ≥ |‖f |‖2

2 −
∑

j

‖a(λj, f)‖2 ∀ Q ∈ Pr

and the equality

|‖f − Q|‖2
2 = |‖f |‖2

2 −
∑

j

‖a(λj, f)‖2

holds by choosing

Pr 4 Q∗
r =

r∑

j=1

a(λj, f)eiλjx

so that the proof is complete.

We are now ready to give two characterizations of the Bq
ap norm for

any P ∈ P, with q ∈]1,+∞[.

Theorem 5.2. ∀ q ∈]1, +∞[, ∀ P ∈ P, one has

(5.4) |‖P |‖q = sup
{
|(P |g)|; g ∈ C0

ap; |‖g|‖q′ ≤ 1
}

.

Proof. If P ≡ 0, the thesis obviously holds. Let us then assume

|‖P |‖q *= 0. By Hölder inequality, we have

|(P |g)| ≤ |‖P |‖q · |‖g|‖q′ ≤ |‖P |‖q ∀ g ∈ C0
ap ; |‖g|‖q′ ≤ 1 .

On the other hand, if we consider the u.a.p. function defined by (see [9],

Lemma 3.1)

(5.5) g∗(x) = |‖P |‖1−q
q ‖P‖q−1 signP (x) ,

we have

|‖g∗|‖q′ = 1

and

(5.6) |(P |g∗)| = |‖P |‖q

which completes the proof.
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Theorem 5.3. ∀ q ∈]1, +∞[, ∀ P ∈ P, one has

(5.7) |‖P |‖q = sup
{
|(P |Q)|, Q ∈ P; |‖Q|‖q′ ≤ 1

}
.

Proof. By Hölder inequality we have

|(P |Q)| ≤ |‖P |‖q .

Let us consider again the function g∗, defined by (5.5); since g∗ is a u.a.p.

function, and C0
ap ⊂ Bq′

ap, by Proposition (2.2) we can find a sequence

{Qn}n∈IN of trigonometric polynomials such that

(5.8) Qn

Bq′
ap−−−−→ g∗

(5.9) |‖Qn|‖q′ −−−−→ |‖g∗|‖q′ = 1 .

Hence, by Propositions (2.2) and (2.3), and by (5.6), we can write

(5.10) lim
n→∞

∣∣∣
(

P | Qn

|‖Qn|‖q′

)∣∣∣ = |‖P |‖q .

Since

∣∣∣∣
∥∥∥∥

Qn

|‖Qn|‖q′

∣∣∣∣
∥∥∥∥

q′
= 1, relation (5.7) is proved.

Moreover, with a proof quite similar to that one for Bq
ap(IR, C)-spaces

in [3], we have the following result:

Theorem 5.4. ∀ f ∈ Bq
ap; q ∈]1,+∞[ one has

|‖f |‖q = sup
{
|(f |Q)|;Q ∈ P; |‖Q|‖q′ ≤ 1

}
.

Observe that

|‖f |‖q = sup
{
|(f |Q)|;Q ∈ P; |‖Q|‖q′ ≤ 1; σ(f) ∩ σ(Q) *= ∅

}

since, if σ(Q) ∩ σ(f) = ∅, then |(f |Q)| = 0.
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6 – The Hausdorff-Young theorem for almost periodic functions

Now we are going to state and to prove the H.-Y. theorem for almost

periodic functions with values in a complex Hilbert space.

The proof is quite similar to that one used in [4] in the case of

Bq
ap(IR, C)-spaces. However, we give the principal steps for reader’s con-

venience.

Theorem (Hausdorff-Young). Let f ∈ Bq
ap(IR, IH),

σ(f) ⊆ {λ1, . . . , λn, . . . }, and q′ =
q

q − 1
; we have

( ∞∑

j=1

‖a(λj, f)‖q′
)1/q′

≤ |‖f |‖q if q ∈]1, 2](6.1)

|‖f |‖q ≤
( ∞∑

j=1

‖a(λj, f)‖q′
)1/q′

if q ∈ [2,∞[(6.2)

and the series in the right-hand side of (6.2) may be divergent.

Proof. If |‖f |‖q = 0 the proof is trivial. Let us suppose |‖f |‖q *=
0. Since σ(f) ⊆ {λ1, . . . , λn, . . . }, there exists some index k such that

a(λk, f) *= 0, with λk ∈ {λ1, . . . , λn, . . . }.

i) Let q ∈]1, 2], ε > 0 and n ∈ IN arbitrarily fixed.

Consider a sequence (Pm)m∈IN of trigonometric polynomials converg-

ing to f in Bq
ap.

Using Proposition (2.2), and applying Lemma (4.1) to Pm, by means

of (4.1), we have that there exists mε such that

(6.3)

( n∑

j=1

‖a(λj, f)‖q′
)1/q′

< |‖P |‖q + ε ≤ |‖f |‖q + 2ε ∀ m > mε .

Since ε > 0 and n ∈ IN are arbitrary, (6.1) follows from (6.3).

ii) Let q ∈ [2,+∞[. Setting

Pn(x) =
n∑

j=1

a(λj, f)eiλjx ,
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we have

(6.4) Pn

B2
ap−−−−→ f ,

since f ∈ Bq
ap ↪→ B2

ap.

On the other hand, ∀ Q ∈ P such that σ(f) ∩ σ(Q) *= ∅, by Hölder

inequality and (4.1), applied to Q, we have

|(Pn|Q)| =
∣∣∣

n∑

j=1

〈a(λj, f)|a(λj, Q)〉
∣∣∣ ≤

≤
( ∞∑

j=1

‖a(λj, f)‖q′
)1/q′

|‖Q|‖q′ .

Passing to the limit, taking into account (6.4) and the continuity of the

scalar product, we obtain

|(f |Q)| ≤
( ∞∑

j=1

‖a(λj, f)‖q′
)1/q′

|‖Q|‖q′

∀ Q ∈ P such that σ(f) ∩ σ(Q) *= ∅.

Recalling the Characterization Theorem (5.4), we finally write

|‖f |‖q = sup
{
|(f |Q)|, Q ∈ P; |‖Q|||q′ ≤ 1

}
≤

( ∞∑

j=1

‖a(λj, f)‖q′
)1/q′

and the proof is complete.
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Università di Roma “La Sapienza” – Via A. Scarpa, 16 – 00161 Roma – Italia


