Semilinear cooperative elliptic systems on \mathbb{R}^{n}

J. FLECKINGER-PELLÉ - H. SERAG

Riassunto: Si studia il sistema ellittico cooperativo semilineare ($1-\mathrm{a}, \mathrm{b}, \mathrm{c}$) definito in \mathbb{R}^{n} con $n>2$. In esso a, b, c, d sono delle costanti con $b, c>0 ; \rho, f e g$ sono funzioni assegnate e ρ è non negativa ed infinitesima all'infinito. Si stabiliscono in primo luogo le condizioni necessarie e sufficienti sui coefficienti affinché sussista un principio di massimo. Si riconosce poi che queste condizioni assicurano l'esistenza di soluzioni nel caso lineare e quando le funzioni f e g verifichino certe condizioni di "sublinearità". Con certe ipotesi aggiuntive si ottiene anche l'unicità. Infine si estendono i risultati al caso in cui le incognite siano in numero maggiore di 2.

Abstract: We study here the following semilinear cooperative elliptic system defined on $\mathbb{R}^{n}, n>2$:

$$
\begin{equation*}
-\Delta u=a \rho(x) u+b \rho(x) v+f(x, u, v) \quad x \in \mathbb{R}^{n} \tag{1-a}
\end{equation*}
$$

$(1-\mathrm{b}) \quad-\Delta v=c \rho(x) u+d \rho(x) v+g(x, u, v) \quad x \in \mathbb{R}^{n}$,
$(1-\mathrm{c}) \quad u \longrightarrow 0, v \longrightarrow 0$ as $|x| \longrightarrow+\infty$.
Here a, b, c, d are constants such that $b, c>0 ; \rho, f$ and g are given functions; ρ is nonnegative and tends to 0 at ∞. We first establish necessary and sufficient conditions on the coefficients for having a Maximum Principle for the linear System. Then we show that these conditions ensure existence of solutions for the linear System and for the semilinear System when f and g satisfy some "sublinear" condition . Under some additional assumption we also derive uniqueness of the solutions. Finally we show that our results can be extended to $N \times N$ systems, $N>2$.

[^0]
1 - Introduction

It is well known that the Maximum Principle plays an important role in the theory of nonlinear equations (see e.g. [18]). An analogous theory has been established for semilinear systems by [10-12], [19], [7], [13,14] and [1].

In $[11,12]$ the authors consider System (1) with $\rho(x)=1$ defined on a bounded open set Ω with Dirichlet boundary conditions. They show that the necessary and sufficient condition for having Maximum Principle is:

$$
\begin{equation*}
a<\Lambda, \quad d<\Lambda, \quad(\Lambda-a)(\Lambda-d)>b c \tag{2}
\end{equation*}
$$

where Λ is the first eigenvalue of the Dirichlet Laplacian defined on Ω.
Here, we extend this result to System (1) when f and g are independent of u and v. We make use of an earlier result by [4] and [6] who have studied the eigenvalues of

$$
\begin{equation*}
-\Delta u=\lambda \rho(x) u, \quad x \in \mathbb{R}^{n}, \quad u(x) \rightarrow 0 \text { as }|x| \rightarrow \infty . \tag{3}
\end{equation*}
$$

They show that for $n>2$, if

$$
\begin{equation*}
\exists k>0, r>1 \quad \text { such that } \quad 0<\rho<\frac{k}{\left(1+|x|^{2}\right)^{r}} \tag{4}
\end{equation*}
$$

then (3) admits an infinite sequence of positive eigenvalues; the first one, which we will denote by λ_{ρ}, is simple and is associated with a positive eigenfunction ψ_{ρ}.

We show in Section 3 that the Maximum Principle holds if and only if $\left(2_{\rho}\right)$ holds:

$$
\begin{array}{ll}
\left(2_{\rho}-1\right) & a<\lambda_{\rho} \quad, \quad d<\lambda_{\rho} \\
\left(2_{\rho}-2\right) & \left(\lambda_{\rho}-a\right)\left(\lambda_{\rho}-d\right)>b c
\end{array}
$$

Then, we prove existence of solutions for $f, g \in L_{\frac{1}{\rho}}^{2}\left(\mathbb{R}^{n}\right)$ in Section 4. In Section 5 we study semilinear problems with f, g satisfying some "sublinear" condition; we adapt the method of sub-super solutions for proving
existence of non negative solutions. Moreover, under some further assumptions on f, g, we prove uniqueness of the non negative solutions. Finally we extend some of our results to $N \times N$ systems in Section 6.

To establish our results we adapt the proofs of $[13,14]$ and [5].
We recall that throughout the paper, $n>2$.

2 - The scalar case

2.1 - Some technical results

To prove our theorems we use some notations and results which are established e.g. in [6], Section 4, and that we recall briefly .

Let us introduce

$$
V=\left\{u: \mathbb{R}^{n} \longrightarrow \mathbb{R} \mid \int_{\mathbb{R}^{n}}\left(|\nabla u|^{2}+\left(1+|x|^{2}\right)^{-1} u^{2}\right) d x<\infty\right\}
$$

with inner product

$$
(u, v)=\int_{\mathbb{R}^{n}}\left(\nabla u \cdot \nabla v+\left(1+|x|^{2}\right)^{-1} u v\right) d x
$$

Since $n>2$, it follows from Hardy's inequality that:

Lemma 1. The integrodifferential form

$$
l(u, v)=\int_{\mathbb{R}^{n}} \nabla u . \nabla v d x
$$

is an inner product for V which is equivalent to the original one:

$$
\int_{\mathbb{R}^{n}}\left(1+|x|^{2}\right)^{-1} u^{2} d x \leq \gamma \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x
$$

Moreover, if we denote by $\|u\|_{V}=\left(\int_{\mathbb{R}^{n}}|\nabla u|^{2}\right)^{\frac{1}{2}} d x$, then:

Lemma 2. The quantity $\|\left. u\right|_{-} \rho=\left\{\int_{\mathbb{R}^{n}}\left(|\nabla u|^{2}+\rho u^{2}\right) d x\right\}^{\frac{1}{2}}$ is also a norm on V which is equivalent to the previous one $\|u\|_{V}$.

If we denote by $(,)_{\rho}$ the inner product in $\mathcal{H}:=L_{\rho}^{2}\left(\mathbb{R}^{n}\right)$:

$$
(u, v)_{\rho}=\int_{\mathbb{R}^{n}} \rho u v d x
$$

and by τ the operator defined by Riesz representation theorem by:

$$
(u, v)_{\rho}=l(\tau u, v) \forall(u, v) \in V \times V
$$

then:

Lemma 3. For ρ satisfying (4), τ is compact in V.

2.2 - The eigenvalue problem

The following lemma is also proved in [6], Section 4:

Lemma 4. For ρ satisfying (4), the eigenvalue problem (3) admits a positive principal eigenvalue λ_{ρ} which is associated with a positive eigenfunction $\psi_{\rho} \in V$; moreover λ_{ρ} is characterized by

$$
\begin{equation*}
\lambda_{\rho} \int_{\mathbb{R}^{n}} \rho u^{2} d x \leq \int_{\mathbb{R}^{n}}|\nabla u|^{2} d x \quad \forall u \in V \tag{5}
\end{equation*}
$$

The equality in (5) holds if and only if u is proportional to ψ_{ρ}.

2.3 - The scalar case

We study now the scalar case $(N=1)$:
(E) $\quad-\Delta u=\mu \rho(x) u+f \quad$ in $\mathbb{R}^{n}, \quad u(x) \rightarrow 0$ as $|x| \rightarrow \infty$.

We establish exactly as when Ω is bounded:

Proposition 1. For $f \in L_{\frac{1}{\rho}}^{2}\left(\mathbb{R}^{n}\right)$, the Maximum Principle holds for (E) if and only if $\mu<\lambda_{\rho}$.

Proposition 2. For $0 \leq f \in L_{\frac{1}{\rho}}^{2}\left(\mathbb{R}^{n}\right)$, there exists a unique positive solution $u \in V$ for (E) if and only if $\mu<\lambda_{\rho}$.

Proof of Proposition 1.

The condition is necessary: Assume that $f \in L_{\frac{1}{\rho}}^{2}\left(\mathbb{R}^{n}\right), f \geq 0$ and that the Maximum Principle holds for (E), i.e. any $u \in V$ solution of (E) is nonnegative. Then, multiplying (E) by ψ_{ρ}, the principal eigenfunction defined in II.B and integrating, we obtain:

$$
\int_{\mathbb{R}^{n}}-\Delta u \psi_{\rho} d x=-\int_{\mathbb{R}^{n}} u \Delta \psi_{\rho} d x=\mu \int_{\mathbb{R}^{n}} \rho u \psi_{\rho} d x+\int_{\mathbb{R}^{n}} f \psi_{\rho} d x
$$

Hence, by (5):

$$
\left(\lambda_{\rho}-\mu\right) \int_{\mathbb{R}^{n}} \rho u \psi_{\rho} d x=\int_{\mathbb{R}^{n}} f \psi_{\rho} d x
$$

since u, ρ and ψ_{ρ} are nonnegative, then $\lambda_{\rho}>\mu$.
The condition is sufficient: Suppose that $f \geq 0$ and that $\mu<\lambda_{\rho}$. We multiply (E) by $u^{-}=\max (0,-u)$ and we get:

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}-\Delta u u^{-} & =\int_{\mathbb{R}^{n}} \nabla u \nabla u^{-} d x=\mu \int_{\mathbb{R}^{n}} \rho u u^{-} d x+\int_{\mathbb{R}^{n}} f u^{-} d x= \\
& =-\int_{\mathbb{R}^{n}}\left|\nabla u^{-}\right|^{2} d x=-\mu \int_{\mathbb{R}^{n}} \rho\left|u^{-}\right|^{2} d x+\int_{\mathbb{R}^{n}} f u^{-} d x
\end{aligned}
$$

by (5) we derive:

$$
0 \leq\left(\lambda_{\rho}-\mu\right) \int_{\mathbb{R}^{n}} \rho\left|u^{-}\right|^{2} d x \leq-\int_{\mathbb{R}^{n}} f u^{-} d x \leq 0
$$

which implies that $u^{-}=0$ i.e. $u \geq 0$.
Proof of Proposition 2. If $u \geq 0$ is the unique solution of (E), then necessarily by Proposition (1), $\mu<\lambda_{\rho}$. Let us show now that this condition is sufficient.
Assume that $\mu<\lambda_{\rho}$; the sesquilinear form

$$
a(u, v)=\int_{\mathbb{R}^{n}}(\nabla u \cdot \nabla v-\mu \rho u v) d x
$$

is obviously continuous on V; moreover it is coercive.
Choose $m \geq 1$ such that $\mu+m>0$ and define on V the equivalent norm

$$
\begin{equation*}
\|u\|_{m, \rho}^{2}=\int_{\mathbb{R}^{n}}\left(|\nabla u|^{2}+m \rho u^{2}\right) d x \tag{6}
\end{equation*}
$$

Then from (5) we have
$a(u, u)=\int_{\mathbb{R}^{n}}\left(|\nabla u|^{2}+m \rho u^{2}\right) d x-(\mu+m) \int_{\mathbb{R}^{n}} \rho u^{2} d x \geq\left(1-\frac{\mu+m}{\lambda_{\rho}+m}\right)\|u\|_{m, \rho}^{2}$.
Hence by Lax Milgram lemma (see e.g.[16]), (E) admits a solution in V which is non-negative by Proposition (1).

3 - Maximum principle for linear systems

Now we establish necessary and sufficient conditions for having a Maximum Principle for the following system defined in $\mathbb{R}^{n}, n \geq 3$

$$
\begin{array}{lll}
(\mathrm{S}-1) & -\Delta u=a \rho u+b \rho v+f(x) & x \in \mathbb{R}^{n} \tag{S-1}\\
(\mathrm{~S}-2) & -\Delta v=c \rho u+d \rho v+g(x) & x \in \mathbb{R}^{n}
\end{array}
$$

$$
\begin{equation*}
u \longrightarrow 0, v \longrightarrow 0 \text { as }|x| \longrightarrow \infty \tag{S-3}
\end{equation*}
$$

where:

$$
\begin{equation*}
f, g \in \mathcal{H}^{\prime}=L_{\frac{1}{\rho}}^{2}\left(\mathbb{R}^{n}\right) \tag{7}
\end{equation*}
$$

a, b, c and d are constants such that $b, c>0$
In this section, we prove that if f and g are non-negative, then any pair $(u, v) \in V \times V$ satisfying (S) in the weak sense is non-negative if and only if $\left(2_{\rho}\right)$ is satisfied. More precisely :

Theorem 3. Assume that (4), (7) and (8) hold. System (S) satisfies Maximum Principle if and only if inequalities $\left(2_{\rho}\right)$ are satisfied.

Proof.

The condition is necessary: Assume that $f \geq 0, g \geq 0$ and that the Maximum Principle holds, i.e. if (u, v) is a pair of solutions then $u \geq 0, v \geq 0$. $\left(2_{\rho}-1\right)$ is established as for the scalar case, considering succesively (S-1) and (S-2). Now, multiplying $(S-1)$ by ψ_{ρ} and integrating over \mathbb{R}^{n}, we obtain by Green's formula:
$\int_{\mathbb{R}^{n}}-\Delta u \cdot \psi_{\rho} d x=\lambda_{\rho} \int_{\mathbb{R}^{n}} \rho u \cdot \psi_{\rho} d x=a \int_{\mathbb{R}^{n}} \rho u \cdot \psi_{\rho} d x+b \int_{\mathbb{R}^{n}} \rho v \cdot \psi_{\rho} d x+\int_{\mathbb{R}^{n}} f \cdot \psi_{\rho} d x$
i.e.

$$
\begin{equation*}
\left(\lambda_{\rho}-a\right) \int_{\mathbb{R}^{n}} \rho u \cdot \psi_{\rho} d x-b \int_{\mathbb{R}^{n}} \rho v \cdot \psi_{\rho} d x \leq \int_{\mathbb{R}^{n}} f \cdot \psi_{\rho} d x \tag{9}
\end{equation*}
$$

Similarly

$$
\left(\lambda_{\rho}-d\right) \int_{\mathbb{R}^{n}} \rho v \cdot \psi_{\rho} d x-c \int_{\mathbb{R}^{n}} \rho u \cdot \psi_{\rho} d x \leq \int_{\mathbb{R}^{n}} g \cdot \psi_{\rho} d x
$$

(9) and (9^{\prime}) is a Cramer System in $X=\int_{\mathbb{R}^{n}} \rho u . \psi_{\rho} d x$ and $Y=\int_{\mathbb{R}^{n}} \rho v \cdot \psi_{\rho} d x$; since by hypothesis the right-hand side member is non-negative as well as X and Y, we obtain $\left(2_{\rho}-2\right)$.

The condition is sufficient: Multiplying (S-1) by u^{-}and integrating over \mathbb{R}^{n}, we obtain:

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}-\Delta u \cdot u^{-} d x & =\int_{\mathbb{R}^{n}} \nabla u \cdot \nabla u^{-} d x=-\int_{\mathbb{R}^{n}}\left|\nabla u^{-}\right|^{2} d x= \\
& =a \int_{\mathbb{R}^{n}} \rho u u^{-} d x+b \int_{\mathbb{R}^{n}} \rho v u^{-} d x+\int_{\mathbb{R}^{n}} f u^{-} d x ;
\end{aligned}
$$

we change the signs and, since $f, u^{-} \geq 0$, we deduce from (5):

$$
\lambda_{\rho} \int_{\mathbb{R}^{n}}\left|\sqrt{\rho} u^{-}\right|^{2} d x \leq a \int_{\mathbb{R}^{n}}\left|\sqrt{\rho} u^{-}\right|^{2} d x+b \int_{\mathbb{R}^{n}} \rho v^{-} u^{-} d x .
$$

By Cauchy-Schwarz inequality:

$$
\left(\lambda_{\rho}-a\right) \int_{\mathbb{R}^{n}}\left|\sqrt{\rho} u^{-}\right|^{2} d x \leq b\left(\int_{\mathbb{R}^{n}}\left|\sqrt{\rho} u^{-}\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{n}}\left|\sqrt{\rho} v^{-}\right|^{2} d x\right)^{\frac{1}{2}} .
$$

Similarly:

$$
\left(\lambda_{\rho}-d\right) \int_{\mathbb{R}^{n}}\left|\sqrt{\rho} v^{-}\right|^{2} d x \leq c\left(\int_{\mathbb{R}^{n}}\left|\sqrt{\rho} u^{-}\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{n}}\left|\sqrt{\rho} v^{-}\right|^{2} d x\right)^{\frac{1}{2}} .
$$

We multiply the two inequalities and combine the result with $(2 \rho-2)$; therefore $u^{-}=0$ or $v^{-}=0$; hence $u \geq 0$ or $v \geq 0$, and by proposition (2), $u \geq 0$ and $v \geq 0$.

4 - Existence of solutions for linear systems

By Lax-Milgram lemma, we prove the existence of a solution for System (S) under the same conditions and the same hypotheses (4), (7) and (8) when $\mathcal{H}^{\prime} \ni f, \mathcal{H}^{\prime} \ni g$; moreover, if $f \geq 0, g \geq 0$, this solution is non negative.

Theorem 4. If $\left(2_{\rho}\right),(4),(7)$ and (8) are satisfied, then System (S) has a unique solution $(u, v) \in V \times V$ for $f, g \in \mathcal{H}^{\prime}$; moreover, if $f, g \geq 0$, then $u, v \geq 0$.

Proof. We first notice that if (S) has a unique positive solution, then inequalities $\left(2_{\rho}\right)$ are satisfied by System (3).
Assume now that $\left(2_{\rho}\right)$ holds. Choose $m \geq 0$ such that $a+m \geq 0, d+m \geq$ 0 and use again the equivalent norm on V defined by (6): $\|u\|_{m, \rho}$.

Let us consider the bilinear form $a: V^{2} \times V^{2} \longrightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
a((u, v),(w, z)) & =\frac{1}{b}\left(\int_{\mathbb{R}^{n}}(\nabla u \cdot \nabla w+m \rho u w) d x\right)+ \\
& +\frac{1}{c}\left(\int_{\mathbb{R}^{n}}(\nabla v \cdot \nabla z+m \rho v z) d x\right)-\frac{a+m}{b} \int_{\mathbb{R}^{n}} \rho u w d x+ \\
& -\int_{\mathbb{R}^{n}} \rho v w d x-\int_{\mathbb{R}^{n}} \rho u z d x-\frac{d+m}{c} \int_{\mathbb{R}^{n}} \rho v z d x
\end{aligned}
$$

Obviously a is continuous on $V \times V$. Moreover, we can show that it is coercive:
By Cauchy-Schwarz inequality and by (7), we get:

$$
\begin{aligned}
a((u, v),(u, v)) & =\frac{1}{b}\left(\int_{\mathbb{R}^{n}}|\nabla u|^{2}+m \rho u^{2}\right) d x+\frac{1}{c}\left(\int_{\mathbb{R}^{n}}|\nabla v|^{2}+m \rho v^{2}\right) d x+ \\
& -\frac{a+m}{b} \int_{\mathbb{R}^{n}} \rho u^{2} d x-\frac{d+m}{c} \int_{\mathbb{R}^{n}} \rho v^{2} d x-2 \int_{\mathbb{R}^{n}} \rho u v d x \geq \\
& \geq \frac{1}{b}\left(1-\frac{a+m}{\lambda_{1}+m}\right)\|u\|_{m, \rho}^{2}+\frac{1}{c}\left(1-\frac{d+m}{\lambda_{1}+m}\right)\|v\|_{m, \rho}^{2}+ \\
& -\frac{2}{\lambda_{1}+m}\|u\|_{m, \rho}\|v\|_{m, \rho} .
\end{aligned}
$$

It is clear by $\left(2_{\rho}\right)$ that a is coercive. Hence by Lax-Milgram lemma, there exists a unique solution $(u, v) \in V \times V$ for (S). Moreover, if $f, g \geq 0$, this solution is non-negative by the Maximum Principle.

5 - Positive solution for semilinear systems

5.1-Existence

In this section we adapt the method of sub and super solutions [17] to establish the existence of positive solutions for System (1). Since we
work on \mathbb{R}^{n}, we can't consider a larger domain for constructing a supersolution.

We assume that:

$$
\begin{equation*}
\text { For any } u \in \mathcal{H}, v \in \mathcal{H}, x \longrightarrow f(x, u, v) \tag{10}
\end{equation*}
$$ (resp. $g(x, u, v))$ is a Caratheodory function;

$$
\begin{equation*}
0 \leq f(x, u, v) \leq \frac{u}{\alpha} \rho(x) \quad \forall u, v \geq 0, \forall x \in \mathbb{R}^{n} \tag{11-a}
\end{equation*}
$$

$$
\begin{equation*}
0 \leq g(x, u, v) \leq \frac{v}{\beta} \rho(x) \quad \forall u, v \geq 0, \forall x \in \mathbb{R}^{n} \tag{11-b}
\end{equation*}
$$

where, α and β are (positive) solutions of the following linear system:

$$
\begin{equation*}
\left(\lambda_{\rho}-a\right) \alpha-b \beta=1>0 \tag{12-a}
\end{equation*}
$$

$$
\begin{equation*}
-c \alpha+\left(\lambda_{\rho}-d\right) \beta=1>0 \tag{12-b}
\end{equation*}
$$

Condition (11) is analoguous to conditions of sublinearity when Ω is bounded.

THEOREM 5. Suppose that (4), (8), (10) and (11) are satisfied. Then, if $\left(2_{\rho}\right)$ holds, there exists a positive solution for System (1).

Proof. We claim that:
(i) $\left(u_{\circ}, v_{\circ}\right)=(0,0)$ and $\left(u^{\star}, v^{\star}\right)=\left(\alpha \psi_{\rho}, \beta \psi_{\rho}\right)$ is a coupled sub-supersolution.

Obviously, by (11):

$$
\begin{array}{ll}
-\Delta u_{\circ}-a \rho u_{\circ}-b \rho v_{\circ}-f\left(x, u_{\circ}, v\right) \leq 0 & \forall v \in\left[v_{\circ}, v^{\star}\right] \\
-\Delta v_{\circ}-c \rho u_{\circ}-d \rho v_{\circ}-g\left(x, u, v_{\circ}\right) \leq 0 & \forall u \in\left[u_{\circ}, u^{\star}\right]
\end{array}
$$

We show now that:

$$
\begin{equation*}
0 \leq-\Delta u^{\star}-a \rho u^{\star}-b \rho v^{\star}-f\left(x, u^{\star}, v\right) \forall v \in\left[v_{\circ}, v^{\star}\right] \tag{13-a}
\end{equation*}
$$

$$
\begin{equation*}
0 \leq-\Delta v^{\star}-c \rho u^{\star}-d \rho v^{\star}-g\left(x, u, v^{\star}\right) \forall u \in\left[u_{\circ}, u^{\star}\right] ; \tag{13-b}
\end{equation*}
$$

By definition of $u^{\star}, \psi_{\rho}>0$, and by (11-a), and (12-a):

$$
\begin{array}{r}
-\Delta u^{\star}-a \rho u^{\star}-b \rho v^{\star}=\left(\left(\lambda_{\rho}-a\right) \alpha-b \beta\right) \rho \psi_{\rho}=\rho \psi_{\rho} \geq f\left(x, u^{\star}, v\right) \\
\forall v \in\left[0, v^{\star}\right]
\end{array}
$$

Similarly we derive (13-b).
(ii) Definition of the operator T :

We introduce $T:(u, v) \in \mathcal{H} \times \mathcal{H} \longrightarrow(w, z):=T(u, v) \in V \times V$, where (w, z) is the unique solution of

$$
\begin{equation*}
-(\Delta+m \rho) w=(a+m) \rho u+b \rho v+f \quad \in \mathbb{R}^{n} \tag{14-a}
\end{equation*}
$$

$$
\begin{equation*}
(-\Delta+m \rho) z=c \rho u+(d+m) \rho v+g \quad \in \mathbb{R}^{n} \tag{14-b}
\end{equation*}
$$

Here $m>0$ is chosen as above such that $a+m>0, d+m>0$.
Note that by (11.a), for $u \in \mathcal{H}=L_{\rho}^{2}, x \longrightarrow f(x, u, v)$ is in $\mathcal{H}^{\prime}=L_{\frac{1}{\rho}}^{2}$.
Equation (14-a) can be rewritten as $-\Delta w=-m \rho w+F$, with $F=$ $(a+m) \rho u+b \rho v+f>0, F \in \mathcal{H}^{\prime}$. By Proposition 2, this equation possesses a solution $w \in V$.

Analogously we show the existence of $z \in V$ and hence T is well defined. We prove now that:
(iii) $K=\left[u_{\circ}, u^{\star}\right] \times\left[v_{\circ}, v^{\star}\right]$ is invariant by T .

For $V \ni u \geq 0$ and $V \ni v \geq 0$, it follows from Proposition (2) that w and z are non-negative.

We show now that if $u \leq u^{\star}$ and $v \leq v^{\star}$ then $w \leq u^{\star}$ and $z \leq v^{\star}$. We substract $(14-a)$ from $(13-a)$ and we obtain

$$
(-\Delta+m \rho)\left(u^{\star}-w\right)=(a+m) \rho\left(u^{\star}-u\right)+b \rho\left(v^{\star}-v\right)-f(x, u, v)+\frac{\rho}{\alpha} u^{\star}=H>0
$$

or equivalently

$$
-\Delta\left(u^{\star}-w\right)=-m \rho\left(u^{\star}-w\right)+H
$$

Then by Proposition $1, u^{\star}-w \geq 0$. Analogously we have: $z \leq v^{\star}$.
(iv) Finally we show that $T: V \times V \longrightarrow V \times V$ is completely continuous:

Let $u_{k} \rightarrow u$ and $v_{k} \rightarrow v$ in \mathcal{H}; by (10), (11), $f\left(x, u_{k}, v_{k}\right) \rightarrow f(x, u, v)$ in \mathcal{H}^{\prime}. Let us denote by w_{k} and z_{k} the sequences associated with u_{k} and v_{k} by (14); it follows that:

$$
(-\Delta+m \rho)\left(w-w_{k}\right)=(a+m) \rho\left(u-u_{k}\right)+b \rho\left(v-v_{k}\right)+f(x, u, v)-f\left(x, u_{k}, v_{k}\right) .
$$

Multiplying by $w-w_{k}$ and integrating we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|\nabla\left(w-w_{k}\right)\right|^{2}+m \int_{\mathbb{R}^{n}} \rho\left(w-w_{k}\right)^{2}= \\
& =(a+m) \int_{\mathbb{R}^{n}} \rho\left(u-u_{k}\right)\left(w-w_{k}\right)+b \int_{\mathbb{R}^{n}} \rho\left(v-v_{k}\right)\left(w-w_{k}\right)+ \\
& \quad+\int_{\mathbb{R}^{n}}\left(f(x, u, v)-f\left(x, u_{k}, v_{k}\right)\right)\left(w-w_{k}\right)
\end{aligned}
$$

By Cauchy-Schwarz inequality, $\left\|w-w_{k}\right\|_{V} \rightarrow 0$ as $\left\|u-u_{k}\right\|_{V} \rightarrow$ $0,\left\|v-v_{k}\right\|_{V} \rightarrow 0$. Similarly $z_{k} \rightarrow z$ in V.
Now we prove the compactness of T. We multiply $(14-a)$ by w and integrate:

$$
\int_{\mathbb{R}^{n}}|\nabla w|^{2}+m \int_{\mathbb{R}^{n}} \rho w^{2}=(a+m) \int_{\mathbb{R}^{n}} \rho u w+b \int_{\mathbb{R}^{n}} \rho v w+\frac{1}{\alpha} \int_{\mathbb{R}^{n}} \frac{\alpha f(x, u, v)}{\rho u} \rho u w .
$$

Hence, by (11-a):

$$
\|w\|_{\rho, m} \leq C\left(\|u\|_{\mathcal{H}}^{2}+\|v\|_{\mathcal{H}}^{2}\right)
$$

Analogously:

$$
\|z\|_{\rho, m} \leq C\left(\|u\|_{\mathcal{H}}^{2}+\|v\|_{\mathcal{H}}^{2}\right)
$$

Therefore if u_{j} and v_{j} are bounded sequences in V, the associated sequences w_{j} and z_{j} are bounded in V.

We show now that w_{j} and z_{j} are Cauchy sequences in V.
Suppose that $\left\|u_{j}\right\|_{V}^{2} \leq M$ and $\left\|v_{j}\right\|_{V}^{2} \leq M$. Let $\varepsilon>0$ be fixed. Choose R large enough so that $\left(1+R^{2}\right) \rho(R)<\frac{\varepsilon M}{16 \gamma}$, where γ is defined in Lemma 1.

Let $B=\left\{x \in \mathbb{R}^{n}| | x \mid<R\right\}$ and $B^{\prime}=\left\{x \in \mathbb{R}^{n}| | x \mid>R\right\} ;$ since u_{j} is bounded in V, u_{j} is bounded in $H^{1}(B)$; but B is bounded and therefore the embedding $H^{1}(B)$ into $L^{2}(B)$ is compact; hence there exists a convergent subsequence, still denoted by $\left(u_{j}\right)_{j \in \mathbb{N}}$, which is a Cauchy sequence and we can choose j and k large enough so that

$$
\int_{B} \rho\left|u_{j}-u_{k}\right|^{2} d x \leq \int_{B}\left|u_{j}-u_{k}\right|^{2} d x<\frac{\varepsilon}{4}
$$

Moreover

$$
\begin{aligned}
\int_{B^{\prime}} \rho\left|u_{j}-u_{k}\right|^{2} d x & =\int_{B^{\prime}}\left(1+|x|^{2}\right) \rho(x) \frac{1}{\left(1+|x|^{2}\right)}\left|u_{j}-u_{k}\right|^{2} d x \leq \\
& \leq \frac{\varepsilon M}{16 \gamma} \gamma\left\|u_{j}-u_{k}\right\|_{V}^{2} \leq \frac{\varepsilon}{4}
\end{aligned}
$$

Since analogous inequalities hold for v_{j}, we can deduce that w_{j} is a Cauchy sequence in V. Hence it converges towards w. The same holds for z_{j} and therefore, T is compact in $V \times V$.

We can apply Schauder fixed point theorem and we deduce that there exists at least one positive solution $(u, v) \in V \times V$ of System (1) satisfying $u_{\circ} \leq u \leq u^{\star}, v_{\circ} \leq v \leq v^{\star}$.

5.2 - Uniqueness

For proving uniqueness, we assume additional assumption on f, g :
(15) We assume that there exists a concave function $(x, u, v) \longrightarrow$ $H(x, u, v)$ such that:

$$
f(x, u, v)=b \frac{\partial H}{\partial u}(x, u, v) \text { and } g(x, u, v)=c \frac{\partial H}{\partial v}(x, u, v)
$$

Then, we have:
THEOREM 6. Assume that (8), $\left(2_{\rho}\right)$ and (15) are satisfied, then there exists a unique solution of System (1).

Proof. Assume that $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are solutions of (1). If we set:

$$
w=u_{1}-u_{2} \quad \text { and } \quad z=v_{1}-v_{2}
$$

then

$$
\begin{array}{rlrl}
-\Delta w & =a w \rho+b z \rho+b\left(\frac{\partial H}{\partial u}\left(x, u_{1}, v_{1}\right)-\frac{\partial H}{\partial u}\left(x, u_{2}, v_{2}\right)\right) & \text { in } \mathbb{R}^{n} \\
-\Delta z & =c w \rho+d z \rho+c\left(\frac{\partial H}{\partial v}\left(x, u_{1}, v_{1}\right)-\frac{\partial H}{\partial v}\left(x, u_{2}, v_{2}\right)\right) & \text { in } \mathbb{R}^{n} \\
w & \longrightarrow 0, z \longrightarrow 0 \quad \text { as }|x| \longrightarrow \infty
\end{array}
$$

Multiplying the first equation by $\frac{w}{b}$ and the second by $\frac{z}{c}$ and integrating over \mathbb{R}^{n}, we get:

$$
\begin{aligned}
& b^{-1} \int_{\mathbb{R}^{n}}|\nabla w|^{2} d x+c^{-1} \int_{\mathbb{R}^{n}}|\nabla z|^{2} d x=\frac{a}{b} \int_{\mathbb{R}^{n}} \rho w^{2} d x+2 \int_{\mathbb{R}^{n}} \rho w z d x+\frac{d}{c} \int_{\mathbb{R}^{n}} \rho z^{2} d x+ \\
&+\int_{\mathbb{R}^{n}} {\left[\left(\frac{\partial H}{\partial u}\left(x, u_{1}, v_{1}\right)-\frac{\partial H}{\partial u}\left(x, u_{2}, v_{2}\right)\right)\left(u_{1}-u_{2}\right)+\right.} \\
&\left.+\left(\frac{\partial H}{\partial v}\left(x, u_{1}, v_{1}\right)-\frac{\partial H}{\partial v}\left(x, u_{2}, v_{2}\right)\right)\left(v_{1}-v_{2}\right)\right] d x
\end{aligned}
$$

and from (5) and (15), we derive:

$$
b^{-1}\left(\lambda_{\rho}-a\right) \int_{\mathbb{R}^{n}} \rho w^{2} d x+c^{-1}\left(\lambda_{\rho}-d\right) \int_{\mathbb{R}^{n}} \rho z^{2} d x \leq 2 \int_{\mathbb{R}^{n}} \rho w z d x
$$

Let us choose δ such that:

$$
\frac{\left(\lambda_{\rho}-a\right)}{b}>\delta^{2}>\frac{c}{\left(\lambda_{\rho}-d\right)}
$$

then, we have:

$$
\begin{aligned}
& b^{-1}\left(\lambda_{\rho}-a\right) \int_{\mathbb{R}^{n}} \rho w^{2} d x+c^{-1}\left(\lambda_{\rho}-d\right) \int_{\mathbb{R}^{n}} \rho z^{2} d x \leq 2 \int_{\mathbb{R}^{n}} \rho \delta w \frac{1}{\delta} z d x \leq \\
& \leq \int_{\mathbb{R}^{n}} \rho \delta^{2} w^{2} d x+\int_{\mathbb{R}^{n}} \rho \frac{z^{2}}{\delta^{2}} d x \leq b^{-1}\left(\lambda_{\rho}-a\right) \int_{\mathbb{R}^{n}} \rho w^{2} d x+c^{-1}\left(\lambda_{\rho}-d\right) \int_{\mathbb{R}^{n}} \rho z^{2} d x
\end{aligned}
$$

which implies $w=z=0$, i.e. $\left(u_{1}, v_{1}\right)=\left(u_{2}, v_{2}\right)$.
REmARK 1. When $n=2$ it is proved in [6] that there is no positive eigenvalue for problem (3); in fact the non-negative eigenvalue is 0 and we can extend our previous theorem with $\lambda_{\rho}=0$.

REMARK 2. We can apply the method in [12] for studying some non-cooperative systems where (7) is replaced by (16) $b<0, c>0$, and $(d-a)^{2}+4 b c>0$.

6 - The case of $\mathbf{N} \times \mathbf{N}$ Systems

We can also extend our results to the case of a system with N equations:

$$
-\Delta U=A \rho U+\mathcal{F}, \text { in } \mathbb{R}^{n}, U \rightarrow 0 \text { as }|U| \rightarrow+\infty
$$

where U (resp. \mathcal{F}) is a column matrix with elements u_{i} (resp. f_{i}) and where
(17) $\quad A$ is a $N \times N$ matrix with constant coefficients
(17) The coefficients outside the diagonal are positive.

For such a system analogous results (Maximum Principle and existence of solutions) hold with $\left(2_{\rho}\right)$ replaced by
$\mathcal{B}:=\left(\lambda_{\rho} I-A\right)$ is a nonsingular M-matrix.

Theorem 7. Assume that (4) and (17) hold, and that $F \in \mathcal{H}^{\prime N}$. Then System $\left(S^{\prime}\right)$ satisfies Maximum Principle if and only if inequalities $\left(C_{\rho}\right)$ are satisfied.

The proof of Theorem 7, is very similar to that of [14], with the same change of spaces as above so that we only sketch the proof. We recall some technical results concerning M-matrices (which can be found e.g. in [3], or [14], Lemmas 1 and 2).

6.1 - Matricial calculus lemmas

First recall that a nonsingular square matrix $\mathcal{B}=\left(b_{i j}\right)$ is a M-matrix if $b_{i j} \leq 0$ for $i \neq j, b_{i i}<0$ and if all principal minors extracted from \mathcal{B} are positive.

We introduce the following notation:
For $1 \leq k \leq N$, we denote by B_{k} the matrix obtained by taking the last $(N-k)$ rows and columns out of the matrix $B:=\left(\lambda_{\rho} I-A\right)$. Then:

Lemma 4. Assume that all principal minors of order $j \leq k$, extracted from B_{N} are positive. If $\operatorname{det} B_{k+1}<0$, then for all $Y \in \mathbb{R}^{k+1}, Y>$ 0 , the solution $X \in \mathbb{R}^{k+1}$ of the equation $B_{k+1} X=Y$ is negative.

Lemma 5. Assume that B_{N} is a nonsingular M-matrix; then for all $Y \in \mathbb{R}^{N}, Y \leq 0($ resp $\geq 0)$, the solution $X \in \mathbb{R}^{N}$ of $B_{N} X=Y$ is non positive (resp. non negative).

Proof of theorem 7.

The condition is necessary: We assume that the Maximum Principle is satisfied; we prove by induction on k and by contradiction that all the principal minors of order k, extracted from B_{N}, are positive.

We know from Section 2 -scalar case- that the result holds for $k=1$.
Assume now that it holds for k.
i) If $\operatorname{det} B_{k+1}<0$, we can choose $Y \in \mathbb{R}^{N}$, with components $Y_{i}=1$ for $1 \leq i \leq k+1, X \in \mathbb{R}^{N}$ with components $X_{i}=0$ for $k+2 \leq i \leq N$ such that $Y=B_{N} X$. Then $X^{\prime} \in \mathbb{R}^{k+1}$ (resp. $Y^{\prime} \in \mathbb{R}^{k+1}$) with components $X_{i}\left(\right.$ resp. $\left.Y_{i}\right), 1 \leq i \leq k+1$ satisfies $B_{k+1} X^{\prime}=Y^{\prime}$.

By Lemma $3, X_{i}<0$ for $1 \leq i \leq k+1$.
Hence, since the system is cooperative, $Y_{i}=\sum_{j=1}^{j=k+1}\left(-a_{i, j}\right) X_{j} \geq 0$ for $k+1 \leq i \leq N$.

Then $U=X \psi_{\rho} \leq$ satisfies

$$
-\Delta U=\lambda_{\rho} X \rho \psi_{\rho}=A \rho U+F
$$

with $F=Y \rho \psi_{\rho} \geq 0$, which contradicts the Maximum Principle.
ii) If $\operatorname{det} B_{k+1}=0$, we consider -with the same notations as aboveX, such that $B_{k+1} X^{\prime}=0$. Since $\operatorname{det} B_{k} \neq 0, X_{k+1} \neq 0$ and we can take
$X_{k+1}=-1$. Then $\sum_{p=1}^{p=k}\left(-a_{j, p}\right)=\left(-a_{j, k+1}\right), 1 \leq j \leq k+1$. Since the system is cooperative, $B_{k} X^{\prime \prime} \leq 0$ with $X^{\prime \prime} \in \mathbb{R}^{k}$, with components $X_{i}, i \leq k$. By Lemma $3, X_{i} \leq 0, i \leq k$, and as above, we contradict the Maximum Principle.

It follows from i) and ii) that all the principal minors of order $k+1$, extracted from B_{N} are positive. Hence $\lambda_{\rho} I-A$ is a nonsingular M-matrix. The condition is sufficient: This proof is almost the same than when $N=2$. We multiply the i-th equation by u_{i}^{-}and integrate. Finally we obtain: $\left(\lambda_{\rho} I-A\right) Z \leq 0$ where Z is the column matrix with elements $\left[\int_{\mathbb{R}^{n}} \rho\left|u_{i}^{-}\right|^{2}\right]^{1 / 2}$.

By Lemma 2 this implies $Z \leq 0$ and hence $U \geq 0$.
We can also extend Theorem 5 and prove the existence of a nonnegative solution for a semilinear system:

$$
-\Delta U=A \rho U+\mathcal{F}(x, U), \in \mathbb{R}^{n}, \quad U \rightarrow 0 \text { as }|x| \rightarrow+\infty
$$

Assume that
For any $u_{i} \in \mathcal{H}$, for any $1 \leq j \leq N U \rightarrow f_{j}(x, U)$ is a Caratheodory function;

$$
\begin{equation*}
\text { For any } 1 \leq i \leq N, 0 \leq f_{i}(x, U) \leq \frac{u_{i}}{\alpha_{i}} \rho(x) \forall u_{i} \geq 0 \tag{19}
\end{equation*}
$$

$$
\forall x \in \mathbb{R}^{n}
$$

where α is a column matrix with components α_{i} such that $\left(\lambda_{\rho} I-A\right) \alpha=\mathbf{1}$; here $\mathbf{1}$ is the column matrix with N elements equal to 1 .

THEOREM 8. Assume that (4) and (17) to (19) are satisfied; if $\left(\mathrm{C}_{\rho}\right)$ holds, then (1^{\prime}) possesses one non negative solution in V^{N}.

The proof of this theorem is completely similar to that of Theorem 5 and we omit it here.

We also can extend Theorem 1 in [5]:
Theorem 9. Assume that (4), (17) and $\left(\mathrm{C}_{\rho}\right)$ are satisfied and that $\mathcal{F} \in \mathcal{H}^{\prime N}$. Then $\left(\mathrm{S}^{\prime}\right)$ has a unique solution $U \in V^{N}$.

We follow here the proof of [2], which is derived from [5] but a bit shorter.

Proof. If necessary, we first choose m such that $a_{i i}+m>0$ for any $1 \leq i \leq N$ and we write equation $\left(1_{i}\right)$ as:

$$
\begin{equation*}
(-\Delta+m) u_{i}=\left(a_{i i}+m\right) \rho u_{i}+\sum_{j \neq i} a_{i j} \rho u_{j}+f_{i} . \tag{20}
\end{equation*}
$$

For any $\varepsilon \in] 0 ; 1[$, we derive from (20):

$$
\begin{align*}
(-\Delta+m) u_{i}^{\varepsilon}= & \left(a_{i i}+m\right) \rho u_{i}^{\varepsilon}\left[1+\left|\varepsilon u_{i}^{\varepsilon}\right|\right]^{-1}+ \\
& +\sum_{j \neq i} a_{i, j} \rho u_{j}^{\varepsilon}\left[1+\left|\varepsilon u_{j}^{\varepsilon}\right|\right]^{-1}+f_{i} . \tag{21}
\end{align*}
$$

We will prove that u_{i}^{ε} is bounded in V and hence we can deduce from Schauder fixed point theorem that such $\left(u_{i}^{\varepsilon}\right)_{1 \leq i \leq n}$ exist.

We first prove:
i) $\varepsilon u_{i}^{\varepsilon}$ is bounded in V and tends to 0 strongly in \mathcal{H} and weakly in V. We multiply (21) by $\varepsilon^{2} u_{i}^{\varepsilon}$ and integrate over \mathbb{R}^{n}. Since $\left[1+\left|\varepsilon u_{i}^{\varepsilon}\right|\right]^{-1}<1$, we have:

$$
\begin{align*}
\int_{\mathbb{R}^{n}}\left|\nabla \varepsilon u_{i}^{\varepsilon}\right|^{2}+m \int_{\mathbb{R}^{n}} \rho\left|\varepsilon u_{i}^{\varepsilon}\right|^{2} & \leq\left(a_{i i}+m\right) \int_{\mathbb{R}^{n}} \rho\left|\varepsilon u_{i}^{\varepsilon}\right|^{2}+ \\
& \left.+\sum_{j \neq=i} a_{i j} \int_{\mathbb{R}^{n}} \rho \mid \varepsilon^{2} u_{i}^{\varepsilon} u_{j}^{\varepsilon}\right) \mid+\int_{\mathbb{R}^{n}} \varepsilon^{2} u_{i}^{\varepsilon} f_{i} . \tag{22}
\end{align*}
$$

Set $\left\|u_{i}^{\varepsilon}\right\|_{\mathcal{H}}:=\left[\int_{\mathbb{R}}^{n} \rho\left|\varepsilon u_{i}^{\varepsilon}\right|^{2}\right]^{1 / 2}$. It follows from (5) and from CauchySchwarz inequality that:

$$
\begin{equation*}
\left(\lambda_{\rho}-A\right)\left\|u_{i}^{\varepsilon}\right\|_{\mathcal{H}} \leq \varepsilon\left[\int_{\mathbb{R}^{n}}(\rho)^{-1}\left|f_{i}\right|^{2}\right]^{1 / 2} . \tag{23}
\end{equation*}
$$

Hence $\varepsilon u_{i}^{\varepsilon}$ and tends to 0 strongly in \mathcal{H} as ε tends to 0 . This result combined with (22) implies that $\varepsilon u_{i}^{\varepsilon}$ and tends to 0 weakly in V.
ii) u_{i}^{ε} is bounded in V. Here we follow [5]. Assume that

$$
\begin{equation*}
t_{\varepsilon}:=\max \left(\left\|u_{i}^{\varepsilon}\right\|_{V}\right) \rightarrow+\infty \text { as } \varepsilon \rightarrow 0 . \tag{24}
\end{equation*}
$$

Set

$$
z_{i}^{\varepsilon}:=u_{i}^{\varepsilon} \cdot t_{\varepsilon}^{-1}
$$

Of course $\left\|z_{i}^{\varepsilon}\right\|_{V} \leq 1$; therefore, there exists z_{i} such that z_{i}^{ε} tends to z_{i} as $\varepsilon \rightarrow 0$, strongly in \mathcal{H} and weakly in V. Moreover, by (24), as $\varepsilon \rightarrow 0, f_{i} \cdot t_{\varepsilon}^{-1} \rightarrow 0$ a.e.

Hence, dividing (21) by t_{ε} and passing through the limit, we deduce:

$$
(-\Delta+m) z_{i}=\left(a_{i i}+m\right) \rho\left(z_{i}\right)+\sum_{j \neq i} a_{i j} \rho\left(z_{j}\right) .
$$

Hence $z_{i}=0$ which contradicts the fact that there exists a sequence $\left(\varepsilon_{k}\right)_{k \in \mathbb{R}}$ such that for one index $i,\left\|z_{i}{ }^{\varepsilon_{k}}\right\|=1$.
Therefore, passing through the limit, $u_{i}^{\varepsilon} \rightarrow u_{i}^{0}$ and u_{i}^{0} satisfies (S^{\prime}).

REFERENCES

[1] A. Abakhti-Mchachti - J. Fleckinger-Pellé: Existence of Positive Solutions for Non Cooperative Semilinear Elliptic Systems Defined on an Unbounded Domain, Pitman research Notes in Maths., 266 (????), 92-106.
[2] B. Alziary - L. Cardoulis - J. Fleckinger-Pellé: Maximum Principle and Existence of solutions for elliptic systems involving Schrödinger operators, preprint, UMR MIP, Université Toulouse 3, (1994).
[3] A. Berman - R.J Plemmons: Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
[4] V. Benci - D. Fortunato: Some Compact Embedding Theorems for Weighted Sobolev Spaces, Boll. U.M.I., 13B (1976), 832-843.
[5] L. Boccardo - J. Fleckinger - F. de Thélin: Existence of Solutions for Some Non Linear Cooperative Systems, (to appear in Diff. and Int. Eq)
[6] K.J. Brown - C. Cosner - J.Fleckinger: Principle Eigenvalues for Problems With Indefinite Weight Function on \mathbb{R}^{n}, Proc. A.M.S.,109, No. 1 (1990), 147155.
[7] G. Caristi - E. Mitidieri: Maximum Principles for a Class of Non Cooperative Elliptic Systems, Delft Progress Rep., 14 (1990), 33-56.
[8] C. Cosner - J. Hernàndez - E. Mitidieri: Maximum Principles and Applications to Reaction Diffusion Systems, Birkhauser; Boston; (in preparation).
[9] R. Courant - D. Hilbert: Methods of Mathematical Physics, Interscience, NewYork, 1953.
[10] D.G. de Figueiredo - E. Mitidieri: A Maximum Principle for an Elliptic System and Applications to Semilinear Problems, S.I.A.M. J. Math. Anal., 17 (1986), 836-849.
[11] D.G. de Figueiredo - E. Mitidieri: Maximum Principles for Cooperative Elliptic Systems, Comptes Rendus Acad. Sc. Paris, 310 (1990), 49-52.
[12] D.G. de Figueiredo - E. Mitidieri: Maximum Principles for Linear Elliptic Systems, Quaterno Matematico 177 (1988), Dip. Sc. Mat., Univ. Trieste.
[13] J. Fleckinger - J. Hernàndez - F. de Thélin: Principe du Maximum pour un Système Elliptique Non-Linéaire, Comptes Rendus Acad. Sc. Paris, 314 (1992), 665-668.
[14] J. Fleckinger - J. Hernàndez - F. de Thélin: On Maximum Principle and Existence of Positive Solutions for Some Cooperative Elliptic Systems, to appear in Diff. and Int. Eq.
[15] F.R. Gantmacher: Théorie des Matrices, 2, Dunod, Paris, 1966.
[16] D. Gilbarg - N.S. Trudinger: Elliptic Partial Differential Equations of Second Order, Springer, 1977.
[17] J. Hernàndez: Maximum Principles and Decoupling for Positive Solutions of Reaction Diffusion Systems, In K.J. Brown, A.A. Lacey, eds., Reaction Diffusion Equations, Oxford, Clarendon Press, (1990), 199-224.
[18] M.H. Protter - H. Weinberger: Maximum Principles in Differential Equations, Prentice Hall, Engelwood Cliffs, 1967.
[19] G. Sweers: A Strong Maximum Principle for a Non-Cooperative Elliptic Systems, S.I.A.M. J. Math. Anal., 20 (1989), 367-371.

Lavoro pervenuto alla redazione il 19 gennaio 1994 ed accettato per la pubblicazione il 26 ottobre 1994.

Bozze licenziate il 27 novembre 1994

Indirizzo DEGLI AUTORI:
J. Fleckinger-Pellé - GREMAQ - Univ. Toulouse 1 - pl. A. France - 31042 Toulouse Cedex
H. Serag - UMR MIP. UFR MIG - Univ.Toulouse 3-118 Rte de Narbonne - 31062

[^0]: Key Words and Phrases: Cooperative elliptic systems - Weighted Sobolev spaces Unbounded domains
 A.M.S. Classification: $35-35 \mathrm{G}-35 \mathrm{~J}$

 This work was supported by EEC contract ERBCHRXCT930409.

