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Semilinear cooperative elliptic systems on R"

J. FLECKINGER-PELLE — H. SERAG

RIASSUNTO: Si studia il sistema ellittico cooperativo semilineare (1 —a,b,c) definito
i IR™ conn > 2. In esso a, b, ¢, d sono delle costanti con b, ¢ > 0; p, f e g sono
funzioni assegnate e p € non negativa ed infinitesima all’infinito. Si stabiliscono in
primo luogo le condizioni necessarie e sufficienti sui coefficienti affinché sussista un
principio di massimo. Si riconosce poi che queste condizioni assicurano [’esistenza
di soluzioni nel caso lineare e quando le funzioni f e g wverifichino certe condizioni
di “sublinearita”. Con certe ipotesi aggiuntive si ottiene anche l'unicita. Infine si
estendono i risultati al caso in cui le incognite siano in numero maggiore di 2.

ABSTRACT: We study here the following semilinear cooperative elliptic system de-
fined on R" ,n>2 :

(1-a) —Au = ap(a)u+ bp(a)o + f(z,u,0) T ER",
(1-D) —Av = cp(z)u + dp(z)v + g(z,u,v) zeR",
(1-¢) u— 0, v—0 as |z] — +00.

Here a,b,c,d are constants such that b,c > 0 ; p, f and g are given functions; p is
nonnegative and tends to 0 at co. We first establish necessary and sufficient conditions
on the coefficients for having a Maximum Principle for the linear System. Then we
show that these conditions ensure existence of solutions for the linear System and for
the semilinear System when f and g satisfy some ”sublinear” condition . Under some
additional assumption we also derive uniqueness of the solutions. Finally we show that
our results can be extended to N X N systems, N > 2.
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1 — Introduction

It is well known that the Maximum Principle plays an important role
in the theory of nonlinear equations (see e.g. [18]). An analogous theory
has been established for semilinear systems by [10-12], [19], [7], [13,14]
and [1].

In [11,12] the authors consider System (1) with p(z) = 1 defined on a
bounded open set €2 with Dirichlet boundary conditions. They show that
the necessary and sufficient condition for having Maximum Principle is:

(2) a <A, d <A, (A—a)(A—d) > be,

where A is the first eigenvalue of the Dirichlet Laplacian defined on €.

Here, we extend this result to System (1) when f and g are indepen-
dent of u and v. We make use of an earlier result by [4] and [6] who have
studied the eigenvalues of

(3) —Au = Mp(z)u, xz€R", wu(x)—0as|z|— 0.

They show that for n > 2, if

4 dk>0,r>1 suchthat O0<p< ——
W N

then (3) admits an infinite sequence of positive eigenvalues; the first one,
which we will denote by A,, is simple and is associated with a positive
eigenfunction 9, .

We show in Section 3 that the Maximum Principle holds if and only
if (2,) holds:

(2,-1) a<X, , d<\,.
(2, —2) (A, —a)(\, —d) > bc .

Then, we prove existence of solutions for f,g € L3 (IR") in Section 4. In

)
Section 5 we study semilinear problems with f, g satisfying some ”sublin-
ear” condition; we adapt the method of sub-super solutions for proving
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existence of non negative solutions. Moreover, under some further as-
sumptions on f,g, we prove uniqueness of the non negative solutions.
Finally we extend some of our results to N x N systems in Section 6.
To establish our results we adapt the proofs of [13,14] and [5].
We recall that throughout the paper, n > 2.

2 — The scalar case
2.1 - Some technical results

To prove our theorems we use some notations and results which are
established e.g. in [6], Section 4, and that we recall briefly .

Let us introduce

ve{u:R" >R /(|vu|2 (1 [2?) M) de < oo
Rn

with inner product

(u,v) = /(Vu.Vv + (1 + |z)*) tuv)dx .

R"

Since n > 2, it follows from Hardy’s inequality that:

LEMMA 1. The integrodifferential form

l(u,v) = /Vu.Vvdx
Rn

s an inner product for V. which is equivalent to the original one:

/(1 + |z)?)tuPdr < ’y/ |Vul®dx .
Rn

R”
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1
Moreover, if we denote by |jully = (f \VuP) *dz, then:
Rn

[N

LEMMA 2. The quantity |lu|_-p = { [ (IVul* + puz)dx} is also a
Rn

norm on V which is equivalent to the previous one ||ul|y .

If we denote by ( , ), the inner product in H := L2(IR"):

(u,v), = /puvd:n,

]R?’L

and by 7 the operator defined by Riesz representation theorem by:
(u,v)p = l(Tu,v) V(u,v) €V XV,
then:

LEMMA 3. For p satisfying (4), T is compact in V.

2.2 — The eigenvalue problem

The following lemma is also proved in [6], Section 4:

LEMMA 4.  For p satisfying (4), the eigenvalue problem (3) ad-
mits a positive principal eigenvalue A, which is associated with a positive
eigenfunction v, € V; moreover A\, is characterized by

(5) )\p/qude /\Vuﬁdx Yu € V.
R" R"

The equality in (5) holds if and only if u is proportional to 1,.
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2.3 = The scalar case

We study now the scalar case (N = 1):
(E) —Au=pp(x)u+f inR", wulx)—>0 as|z|]— oco.
We establish exactly as when €2 is bounded:

PROPOSITION 1. For f € Li(IR"), the Mazimum Principle holds
R
for (E) if and only if p < \,.

PROPOSITION 2. For(0 < f € L3 (IR"), there exists a unique positive
P
solution u € V' for (E) if and only if p < \,.

PRrROOF OF PROPOSITION 1.
The condition is necessary: Assume that f € L3 (IR"),f > 0 and that

2
the Maximum Principle holds for (F), i.e. any u € V solution of (FE) is
nonnegative. Then, multiplying (E) by 1,, the principal eigenfunction
defined in I1.B and integrating, we obtain:

/—Auwpdxz —/qupd:U:,u/pu@Zde:E+/f¢pdfn;
Rn RTL Rn ]R/’VL
Hence, by (5):
O =) [ puthpde = [ fi,do;
Rn

]R’V'L
since u, p and 1, are nonnegative, then A\, > p .

The condition is sufficient: Suppose that f > 0 and that p < X\,. We
multiply (E) by v~ = maxz(0, —u) and we get:

/—Auui = /VuVufda::,u/puufdx—i—/fufdx:

]Rn

R” R” R”
:—/|Vu_|2dac: —,u/p|u_]2d:v—|—/fu_da:;
R” R" R”



94 J. FLECKINGER-PELLE — H. SERAG [6]

by (5) we derive:
0< (N, —p) /p|u*|2da: < — / fu dx <0
R" R"

which implies that = =0 i.e. u > 0. 0

PROOF OF PROPOSITION 2. If u > 0 is the unique solution of (E),
then necessarily by Proposition (1), i < A,. Let us show now that this
condition is sufficient.

Assume that p < A,; the sesquilinear form

a(u,v) = /(Vu.Vv — ppuv)dx
RTL

is obviously continuous on V'; moreover it is coercive.
Choose m > 1 such that g +m > 0 and define on V' the equivalent norm

() ful},, = [ (VP + mpu?) da.
Rn
Then from (5) we have

n+m
Ap+m

)l

a(u,u) = /(\Vu\2+mpu2)dm—(u+m) /qudx > (1-—

R™ R™

Hence by Lax Milgram lemma (see e.g.[16]), (E) admits a solution in V'
which is non-negative by Proposition (1). 0

3 — Maximum principle for linear systems

Now we establish necessary and sufficient conditions for having a
Maximum Principle for the following system defined in IR",n > 3

(S-1) —Au = apu + bpv + f(x) r € R"”
(S -2) —Av = cpu+ dpv + g(x) z € R"

(S-3) u—0, v—0as|z| — o0,
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where:
@ fogeH = IA(RY).
(8) a,b,c and d are constants such that b,¢ >0

In this section, we prove that if f and g are non-negative, then any
pair (u,v) € V x V satisfying (S) in the weak sense is non-negative if
and only if (2,) is satisfied. More precisely :

THEOREM 3. Assume that (4), (7) and (8) hold. System (S) satisfies
Mazimum Principle if and only if inequalities (2,) are satisfied.

PROOF.
The condition is necessary: Assume that f > 0, g > 0 and that the Max-
imum Principle holds, i.e. if (u,v) is a pair of solutions then u > 0, v > 0.
(2, —1) is established as for the scalar case, considering succesively (S-1)
and (S-2). Now, multiplying (S-1) by ¢, and integrating over IR", we
obtain by Green’s formula:

/—Au.¢pdx:Ap/pu.i/)pdx:a/pu.d)pdx—i-b/pv.i/)pdm—l-/f.l/dex
R" R" R"

R"” RrR"™

ie.

9) ()\p—a)/pu.¢pd$—b/pv.wpd$§ /f.?/},,dx.
R" R" R"

Similarly

(9) (A, —d) /pv.wpdx—c/pu.wpdx < /g.z/dea:.
R" R" R"

(9) and (9') is a Cramer System in X = [ pu.¢,dz and Y = [ pv.¢),dx;
R" R"

since by hypothesis the right-hand side member is non-negative as well
as X and Y, we obtain (2, — 2).
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The condition is sufficient: Multiplying (S—1) by v~ and integrating over
R", we obtain:

/—Au.ufdx: /Vu.Vufdx:—/|Vu7|2d$:
R" R" R"

:a/puu_d:v+b/pvu_dac+/fu_dx;
R” R" R"

we change the signs and, since f,u~ > 0, we deduce from (5):
A / lV/pu [Pdz < a / |v/pu~|Pdz +b / pv-u dx .
R7l RTL Rn

By Cauchy-Schwarz inequality:
)
(A,,—a)/wu—mxgb</ @m\%) (/y\/ﬁv—ﬁdx> |
R" R" R"”
Similarly:
3 3
(/\p—d)/|\/,5v\2dx§c</|\/ﬁu]2dx) (/ \/ﬁv]2dx) |
R"” R" R”

We multiply the two inequalities and combine the result with (2, — 2);
therefore u™ = 0orv™ = 0; henceu > 0 or v > 0, and by proposition (2),
u>0and v >0.

4 — Existence of solutions for linear systems

By Lax-Milgram lemma, we prove the existence of a solution for
System (S) under the same conditions and the same hypotheses (4), (7)
and (8) when H' > f, H' > g; moreover, if f > 0,g > 0, this solution
is non negative.

THEOREM 4. If (2,), (4), (7) and (8) are satisfied, then System (S)
has a unique solution (u,v) € VXV for f,g € H'; moreover, if f,g > 0,
then u,v > 0.
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PrOOF. We first notice that if (S) has a unique positive solution,
then inequalities (2,) are satisfied by System (3).
Assume now that (2,) holds. Choose m > 0 such that a+m >0, d+m >
0 and use again the equivalent norm on V' defined by (6): ||u||.,

Let us consider the bilinear form a : V2 x V? — IR defined by

a((u,v), (w,z)) = % ( /(Vu.Vw + mpuw)dm) +

Rn

b
—/pvwdx—/puzdac——/pvzdac
R" R"

Obviously a is continuous on V' x V . Moreover, we can show that it is
coercive:

By Cauchy-Schwarz inequality and by (7), we get:
a((u,v), (u,v)) = (/ Vul|® + mpu® )dw+ </\Vv[2—|—mpv )dw—i—

a—l—m/ u?dx /vadx—Q/puvda:>

1 a+m 1 d+m
> (1= Sl + (1 -

1
+ 2 ( /(VU.VZ + mpvz)dw) _axm /puw dx+
R’VL

ol

2
- m”uﬂm,pHUHm,p-

It is clear by (2,) that a is coercive. Hence by Lax-Milgram lemma,
there exists a unique solution (u,v) € V xV for (S). Moreover, if f,g > 0,
this solution is non-negative by the Maximum Principle. O

5 — Positive solution for semilinear systems
5.1 — Existence

In this section we adapt the method of sub and super solutions [17]

to establish the existence of positive solutions for System (1). Since we
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work on IR", we can’t consider a larger domain for constructing a super-
solution.
We assume that:

(10) For any uw € H, v € H, z — f(z,u,v)

(resp.g(x,u,v)) is a Caratheodory function;

(11 — a) ng(x,u,v)ggp(x) Vu,v>0, Ve eR",
«

(11 - b) Ogg(x,u,v)g%p(x) Vu,v>0,Vz e R",

where, a and ( are (positive) solutions of the following linear system:
(12 —a) (A, —a)a—b8=1>0
(12 - b) —ca+ AN\, —d)f=1>0

Condition (11) is analoguous to conditions of sublinearity when € is
bounded.

THEOREM 5.  Suppose that (4), (8), (10) and (11) are satisfied.
Then, if (2,) holds, there exists a positive solution for System (1).

ProoOF. We claim that:
(i) (uo,v) = (0,0) and (u*,v*) = (a¥p,, B1,) is a coupled sub-supersolu-
tion.

Obviously, by (11):

— Au, — apu, — bpv, — f(x,u.,v) <0 Yo € [v,,v"];
— Av, — cpu, — dpv, — g(x,u,v,) <0 Yu € [u, u’].
We show now that:
(13-a) 0 < —Au* —apu* — bpv* — f(z,u*,v) Yv € [v,,v"];

(13-b) 0 < —Av* — cpu* — dpv* — g(x,u,v*) Yu € [uo, u*];
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By definition of u*, ¢, > 0, and by (11-a), and (12-a):

— Au® — apU’* - bp’l)* = (()‘p - (1)& - bﬁ)pwp = pwp > f(x7U*7 U)
Yov € [0,v"].

Similarly we derive (13-b).
(ii) Definition of the operator T:

We introduce T : (u,v) € HXH — (w,z) := T(u,v) € V xV,
where (w, z) is the unique solution of

(14-a) —(A+mp)w = (a+ m)pu + bpv + f e R"”
(14-b) (—A+mp)z =cpu+ (d+m)pv+g € R".

Here m > 0 is chosen as above such that a+m >0, d+m > 0.
Note that by (11.a), foru € H = L2, 2 — f(x,u,v) is in H' = LQ%.

Equation (14-a) can be rewritten as —Aw = —mpw + F, with F =
(a +m)pu +bpv + f > 0, F € H'. By Proposition 2, this equation
possesses a solution w € V.

Analogously we show the existence of z € V and hence T is well
defined. We prove now that:
(i) K = [uo, u*] X [v,,v*] is invariant by T.

For V> u>0and V> v >0, it follows from Proposition (2) that
w and z are non-negative.

We show now that if u < u* and v < v* then w < u* and z < v*. We
substract (14 — a) from (13 — a) and we obtain

p

(—A+mp)(v—w) = (a+m)p(u*—u)+bp(v*—v)— f(z, u, v)—l—au*: H>0,

or equivalently
—A(u* —w) =—mp(u* —w)+ H.

Then by Proposition 1, u* —w > 0 . Analogously we have: z < v*.

(iv) Finally we show that T': V x V — V x V' is completely continuous:
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Let uy — uw and vy — v in H; by (10), (11), f(z,uk,vx) — f(z,u,v) in
H’'. Let us denote by w;, and z;, the sequences associated with u;, and vy,
by (14); it follows that:

(= Atmp) (w—wy) = (atm)p(u—w)+bp(v—v)+ (2,1, 0) — (@, u, o).

Multiplying by w — wj, and integrating we have

196w +m [ ot —w)? =

—(a+m) [ plu=w)w - w) +b [ po = v)(w—w)+

]Rn

Rn
+ /(f($7u7v) - f(xyukyvk))(w — wk) .
IR’n
By Cauchy-Schwarz inequality, [[w — wilv — 0 as ||lu — wlly —

0, [[v — v|ly — 0. Similarly 2z, — z in V.
Now we prove the compactness of 7. We multiply (14 — a) by w and

integrate:
1
/|Vw|2+m/pw2:(a+m)/puw+b/pvw+/af(x’u’v)puw.
! u
R Rn Rr R R P

Hence, by (11-a):
[wllpm < Cllull3, + ll013,)-

Analogously:
2]l o < Cllullz, + llvl17,)-

Therefore if u; and v; are bounded sequences in V, the associated se-
quences w; and z; are bounded in V.

We show now that w; and z; are Cauchy sequences in V.

Suppose that ||u;]|3, < M and ||v;]|3 < M. Let e > 0 be fixed.

M
Choose R large enough so that (1 4+ R*)p(R) < iT’y’ where ~ is defined

in Lemma 1.
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Let B={z € R" | || <R} and B'={z € R" | |z| > R}; since

u; is bounded in V, wu; is bounded in H'(B); but B is bounded and

therefore the embedding H'(B) into L?(B) is compact; hence there exists

a convergent subsequence, still denoted by (u;);en , which is a Cauchy
sequence and we can choose j and k large enough so that

/p|uj — up)?dz < /|uj — upPdr < Z

B B

Moreover

|uj — ug*dz <

[ pluas = wifdz = [+ 2P)p()
B’ B’

b
(1 + [2?)

eM 9
< EVHUJ —ully <

= M

Since analogous inequalities hold for v; , we can deduce that w; is a
Cauchy sequence in V. Hence it converges towards w . The same holds
for z; and therefore, T" is compact in V' x V.

We can apply Schauder fixed point theorem and we deduce that there
exists at least one positive solution (u,v) € V xV of System (1) satisfying
U <u < U, v, <v < v, 0

5.2 = Uniqueness

For proving uniqueness, we assume additional assumption on f, g :

(15)  We assume that there exists a concave function (x,u,v) —
H(z,u,v) such that:

f(xaua U) = bi('rvu?v) and g(fn,u,v) = Caﬂ(x7uav)'

ou ov

Then,we have:

THEOREM 6.  Assume that (8), (2,) and (15) are satisfied, then
there exists a unique solution of System (1).
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PROOF. Assume that (u;,v;) and (us,v9) are solutions of (1). If we
set:

wW=1uU — Uy and z=1v; — Uy
then

0H

OH ,
—Aw = awp + bzp + b(—(m,ul,vl) ~ 5 (x,ug,vg)) in R"

ou

—Az :cwp+dzp+c(%—il(x,u1,v1) - %—Z(x,m,m)) in R",

w—0,z—0 as|z|] — oc0.

Multiplying the first equation by % and the second by % and integrating
c
over IR", we get:

bt /|Vw|2da:—|—c_1 ﬂVz\Qd:L‘: Z /prd:U+2/pwzdx+Ccl/p22dx+
Rn Rn n

R R"” R”
OH OH
+ / [(%(l‘7ulavl) - %(xau%’UQ)) (Ul - ’LL2)+
Rn
OH oH
+<%((L’,U1,Ul) - %(HJ,UQ,UQ))(’IM — ’Ug):| dﬂl‘,

and from (5) and (15), we derive:

b (N, —a) /pwgdm +c (N, —d) / p2idxr < 2 / pwzdz .
R" R™ R"

Let us choose § such that:

(/\p —a)

then, we have:

1
b\, —a) /prd:U—l—c_l()\p —d)/,ozzd:v < 2/p5w52dm <
R” R” R"

2
< /p52w2d:v + /p%dx <b'(\,—a) /pw%lw +c (N, —d) /pZQdZL‘
R R" R" R
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which implies w = z = 0, i.e. (u1,v1) = (ug, v2). 0
REMARK 1. When n = 2 it is proved in [6] that there is no positive
eigenvalue for problem (3); in fact the non-negative eigenvalue is 0 and
we can extend our previous theorem with A\, = 0.
REMARK 2. We can apply the method in [12] for studying some
non-cooperative systems where (7) is replaced by (16) b < 0, ¢ > 0, and
(d —a)* + 4bc > 0.

6 — The case of N x N Systems

We can also extend our results to the case of a system with N equa-
tions:

(S —AU = ApU + F, inRR", U — 0as |U| = +o0,

where U (resp. F ) is a column matrix with elements u; (resp. f;) and
where

(17) Ais a N x N matrix with constant coeflicients

(17") The coefficients outside the diagonal are positive.

For such a system analogous results (Maximum Principle and exis-
tence of solutions) hold with (2,) replaced by

(C,) B:= (\,I — A) is a nonsingular M-matrix.

THEOREM 7. Assume that (4) and (17) hold, and that F € H'".
Then System (S’) satisfies Mazximum Principle if and only if inequalities
(C,) are satisfied.

The proof of Theorem 7, is very similar to that of [14], with the same
change of spaces as above so that we only sketch the proof. We recall
some technical results concerning M-matrices (which can be found e.g.
in [3], or [14], Lemmas 1 and 2).
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6.1 — Matricial calculus lemmas

First recall that a nonsingular square matrix B = (b;;) is a M-matrix
if b;; <0 for ¢ # j, b;; < 0 and if all principal minors extracted from B
are positive.

We introduce the following notation:
For 1 < k < N, we denote by B, the matrix obtained by taking the last
(N — k) rows and columns out of the matrix B := (A\,I — A). Then:

LEMMA 4.  Assume that all principal minors of order j < k, ex-
tracted from By are positive. If det By,1 < 0, then for allY € R* ™Y >
0, the solution X € R*™ of the equation By 1 X =Y is negative.

LEMMA 5.  Assume that By is a nonsingular M-matriz; then for
allY e RY,Y < 0(resp.> 0), the solution X € RY of ByX =Y is non
positive (resp. mon negative).

PROOF OF THEOREM 7.

The condition is necessary: We assume that the Maximum Principle is
satisfied; we prove by induction on k£ and by contradiction that all the
principal minors of order k, extracted from By, are positive.

We know from Section 2 -scalar case- that the result holds for & = 1.
Assume now that it holds for k.

i) If det By41 < 0, we can choose Y € RY, with components Y; = 1 for
1<i<k+1, X € RY with components X; =0 for k+2 <4 < N such
that Y = ByX. Then X’ € R* (resp. Y’ € R**!) with components
X; (resp. Y;), 1 <i < k+ 1 satisfies By 1 X' =Y.

By Lemma 3, X; <0 for 1 <i<k-+1.
j=k+1

Hence, since the system is cooperative, ¥; = Y (—a;;)X; > 0 for
j=1

E+1<i<N.
Then U = X1, < satisfies

—AU =\, Xpp, = ApU + F

with I = Y py, > 0, which contradicts the Maximum Principle.

ii) If det Br41 = 0, we consider —with the same notations as above—
X, such that By 1 X’ = 0. Since det B, # 0, X;,1 # 0 and we can take
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p=k
Xj41 = —1. Then 21(_aj’p) = (—a;x+1),1 < j < k+1. Since the system
p:

is cooperative, B, X" < 0 with X” € R*, with components X;,i < k.
By Lemma 3, X; < 0,7 < k, and as above, we contradict the Maximum
Principle.

It follows from i) and ii) that all the principal minors of order k + 1,
extracted from By are positive. Hence \,I—A is a nonsingular M-matrix.

The condition is sufficient: This proof is almost the same than when
N = 2. We multiply the i-th equation by u; and integrate. Finally we
obtain: (A,I — A)Z < 0 where Z is the column matrix with elements

LS e lu )2
By Lemma 2 this implies Z < 0 and hence U > 0. 0

We can also extend Theorem 5 and prove the existence of a nonneg-
ative solution for a semilinear system:

(1) —AU = ApU + F(z,U), e R", U — 0 as |z| = +oo.

Assume that

(18) For any u; € H, forany 1 <j < N U — f;(z,U) is
a Caratheodory function;

(19) Forany 1 <i < N,0< fi(z,U) < %p(w) Yu; >0,
Ve e R",

where a is a column matrix with components «; such that (A\,/—A)a = 1,
here 1 is the column matrix with IV elements equal to 1.

THEOREM 8. Assume that (4) and (17) to (19) are satisfied; if (C,)
holds, then (1') possesses one non negative solution in V.

The proof of this theorem is completely similar to that of Theorem
5 and we omit it here. 0
We also can extend Theorem 1 in [5]:

THEOREM 9. Assume that (4), (17) and (C,) are satisfied and that
Fe NN, Then (S) has a unique solution U € VN,
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We follow here the proof of [2], which is derived from [5] but a bit
shorter.

PROOF. If necessary, we first choose m such that a;; + m > 0 for any
1 <4 < N and we write equation (1;) as:

(20) (—A 4+ m)u; = (a; + m)pu; + Z a;jpu; + fi.
i

For any € € ]0; 1], we derive from (20):
(A +m)u; = (a; +m)pus[1+ | eus [|7'+

+ Z a; jpus[1+ | eus |71 + fi.
J#i

(21)

We will prove that u is bounded in V' and hence we can deduce from
Schauder fixed point theorem that such (u)i<;<, exist.

We first prove:
i) eus is bounded in V' and tends to 0 strongly in H and weakly in V.. We
multiply (21) by £?u$ and integrate over IR". Since [1+4 | euf |71 < 1, we
have:

J19eui P vm fpeus [P < (@t m) fp]eus [+
R" R" R"
(22)
+ > ay /p | *usus) | + /62u§fi.
J#E=i R" R”
n 1/2
Set ||us||3 = {fp | eus |? } . It follows from (5) and from Cauchy-

R

Schwarz inequality that:
(23) O = Al < L[ ()71 £ P12
IRTL

Hence eu; and tends to 0 strongly in H as € tends to 0. This result
combined with (22) implies that cu and tends to 0 weakly in V.

ii) wus is bounded in V. Here we follow [5]. Assume that

(24) te := max(||u|v) — +ocase — 0.
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Set

€ . € -1
zZ; = uy; -t

Of course ||z5||y < 1; therefore, there exists z; such that zf tends
to z; as € — 0, strongly in ‘H and weakly in V. Moreover, by (24), as
e—=0,f-t;' >0 ae.

Hence, dividing (21) by ¢. and passing through the limit, we deduce:

(—A +m)z; = (ai +m)p(z:) + Y aip(z;).
J#i

Hence z; = 0 which contradicts the fact that there exists a sequence
(ek)ker such that for one index i, ||z; °¢|| = 1.
Therefore, passing through the limit, uf — u? and ) satisfies (S'). 0
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