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Semilinear cooperative elliptic systems on IR
n

J. FLECKINGER-PELLÉ – H. SERAG

Riassunto: Si studia il sistema ellittico cooperativo semilineare (1 – a,b,c) definito
in IRn con n > 2. In esso a, b, c, d sono delle costanti con b, c > 0; ρ, f e g sono
funzioni assegnate e ρ è non negativa ed infinitesima all’infinito. Si stabiliscono in
primo luogo le condizioni necessarie e sufficienti sui coefficienti affinché sussista un
principio di massimo. Si riconosce poi che queste condizioni assicurano l’esistenza
di soluzioni nel caso lineare e quando le funzioni f e g verifichino certe condizioni
di “sublinearità”. Con certe ipotesi aggiuntive si ottiene anche l’unicità. Infine si
estendono i risultati al caso in cui le incognite siano in numero maggiore di 2.

Abstract: We study here the following semilinear cooperative elliptic system de-
fined on IRn , n > 2 :

−∆u = aρ(x)u + bρ(x)v + f(x, u, v) x ∈ IRn ,(1 – a)

−∆v = cρ(x)u + dρ(x)v + g(x, u, v) x ∈ IRn ,(1 – b)

u −→ 0 , v −→ 0 as |x| −→ +∞ .(1 – c)

Here a, b, c, d are constants such that b, c > 0 ; ρ, f and g are given functions; ρ is
nonnegative and tends to 0 at ∞. We first establish necessary and sufficient conditions
on the coefficients for having a Maximum Principle for the linear System. Then we
show that these conditions ensure existence of solutions for the linear System and for
the semilinear System when f and g satisfy some ”sublinear” condition . Under some
additional assumption we also derive uniqueness of the solutions. Finally we show that
our results can be extended to N × N systems, N > 2.
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1 – Introduction

It is well known that the Maximum Principle plays an important role

in the theory of nonlinear equations (see e.g. [18]). An analogous theory

has been established for semilinear systems by [10-12], [19], [7], [13,14]

and [1].

In [11,12] the authors consider System (1) with ρ(x) = 1 defined on a

bounded open set Ω with Dirichlet boundary conditions. They show that

the necessary and sufficient condition for having Maximum Principle is:

(2) a < Λ, d < Λ, (Λ − a)(Λ − d) > bc ,

where Λ is the first eigenvalue of the Dirichlet Laplacian defined on Ω.

Here, we extend this result to System (1) when f and g are indepen-

dent of u and v. We make use of an earlier result by [4] and [6] who have

studied the eigenvalues of

(3) −∆u = λρ(x)u, x ∈ IRn , u(x) → 0 as |x| → ∞ .

They show that for n > 2, if

(4) ∃ k > 0 , r > 1 such that 0 < ρ <
k

(1 + |x|2)r

then (3) admits an infinite sequence of positive eigenvalues; the first one,

which we will denote by λρ, is simple and is associated with a positive

eigenfunction ψρ .

We show in Section 3 that the Maximum Principle holds if and only

if (2ρ) holds:

(2ρ − 1) a < λρ , d < λρ .

(2ρ − 2) (λρ − a)(λρ − d) > bc .

Then, we prove existence of solutions for f, g ∈ L2
1
ρ
(IRn) in Section 4. In

Section 5 we study semilinear problems with f, g satisfying some ”sublin-

ear” condition; we adapt the method of sub-super solutions for proving
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existence of non negative solutions. Moreover, under some further as-

sumptions on f, g, we prove uniqueness of the non negative solutions.

Finally we extend some of our results to N × N systems in Section 6.

To establish our results we adapt the proofs of [13,14] and [5].

We recall that throughout the paper, n > 2.

2 – The scalar case

2.1 – Some technical results

To prove our theorems we use some notations and results which are

established e.g. in [6], Section 4, and that we recall briefly .

Let us introduce

V =
{
u : IRn −→ IR |

∫

IRn

(|∇u|2 + (1 + |x|2)−1u2
)
dx < ∞

}

with inner product

(u, v) =

∫

IRn

(∇u.∇v + (1 + |x|2)−1uv
)
dx .

Since n > 2, it follows from Hardy’s inequality that:

Lemma 1. The integrodifferential form

l(u, v) =

∫

IRn

∇u.∇vdx

is an inner product for V which is equivalent to the original one:

∫

IRn

(1 + |x|2)−1u2dx ≤ γ

∫

IRn

|∇u|2dx .
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Moreover, if we denote by ‖u‖V =
( ∫
IRn

|∇u|2
) 1

2 dx, then:

Lemma 2. The quantity ‖u| ρ =
{ ∫

IRn
(|∇u|2 + ρu2)dx

} 1
2

is also a

norm on V which is equivalent to the previous one ‖u‖V .

If we denote by ( , )ρ the inner product in H := L2
ρ(IR

n):

(u, v)ρ =

∫

IRn

ρuvdx ,

and by τ the operator defined by Riesz representation theorem by:

(u, v)ρ = l(τu, v) ∀(u, v) ∈ V × V ,

then:

Lemma 3. For ρ satisfying (4), τ is compact in V .

2.2 – The eigenvalue problem

The following lemma is also proved in [6], Section 4:

Lemma 4. For ρ satisfying (4), the eigenvalue problem (3) ad-

mits a positive principal eigenvalue λρ which is associated with a positive

eigenfunction ψρ ∈ V ; moreover λρ is characterized by

(5) λρ

∫

IRn

ρu2dx ≤
∫

IRn

|∇u|2dx ∀u ∈ V.

The equality in (5) holds if and only if u is proportional to ψρ.
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2.3 – The scalar case

We study now the scalar case (N = 1):

(E) −∆u = µρ(x) u + f in IRn , u(x) → 0 as |x| → ∞ .

We establish exactly as when Ω is bounded:

Proposition 1. For f ∈ L2
1
ρ
(IRn), the Maximum Principle holds

for (E) if and only if µ < λρ.

Proposition 2. For 0 ≤ f ∈ L2
1
ρ
(IRn), there exists a unique positive

solution u ∈ V for (E) if and only if µ < λρ.

Proof of Proposition 1.

The condition is necessary: Assume that f ∈ L2
1
ρ
(IRn), f ≥ 0 and that

the Maximum Principle holds for (E), i.e. any u ∈ V solution of (E) is

nonnegative. Then, multiplying (E) by ψρ, the principal eigenfunction

defined in II.B and integrating, we obtain:

∫

IRn

−∆uψρdx = −
∫

IRn

u∆ψρdx = µ

∫

IRn

ρuψρdx +

∫

IRn

fψρdx ;

Hence, by (5):

(λρ − µ)

∫

IRn

ρuψρdx =

∫

IRn

fψρdx ;

since u, ρ and ψρ are nonnegative, then λρ > µ .

The condition is sufficient: Suppose that f ≥ 0 and that µ < λρ. We

multiply (E) by u− = max(0,−u) and we get:

∫

IRn

−∆uu− =

∫

IRn

∇u∇u−dx = µ

∫

IRn

ρuu−dx +

∫

IRn

fu−dx =

= −
∫

IRn

|∇u−|2dx = −µ

∫

IRn

ρ|u−|2dx +

∫

IRn

fu−dx ;
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by (5) we derive:

0 ≤ (λρ − µ)

∫

IRn

ρ|u−|2dx ≤ −
∫

IRn

fu−dx ≤ 0

which implies that u− = 0 i.e. u ≥ 0.

Proof of Proposition 2. If u ≥ 0 is the unique solution of (E),

then necessarily by Proposition (1), µ < λρ. Let us show now that this

condition is sufficient.

Assume that µ < λρ; the sesquilinear form

a(u, v) =

∫

IRn

(∇u.∇v − µρuv)dx

is obviously continuous on V ; moreover it is coercive.

Choose m ≥ 1 such that µ + m > 0 and define on V the equivalent norm

(6) ‖u‖2
m,ρ =

∫

IRn

(|∇u|2 + mρu2) dx .

Then from (5) we have

a(u, u) =

∫

IRn

(|∇u|2 +mρu2)dx− (µ+m)

∫

IRn

ρu2dx ≥ (
1− µ + m

λρ + m

)‖u‖2
m,ρ .

Hence by Lax Milgram lemma (see e.g.[16]), (E) admits a solution in V

which is non-negative by Proposition (1).

3 – Maximum principle for linear systems

Now we establish necessary and sufficient conditions for having a

Maximum Principle for the following system defined in IRn, n ≥ 3

−∆u = aρu + bρv + f(x) x ∈ IRn(S – 1)

−∆v = cρu + dρv + g(x) x ∈ IRn(S – 2)

u −→ 0 , v −→ 0 as |x| −→ ∞ ,(S – 3)
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where:

f , g ∈ H′ = L2
1
ρ
(IRn) .(7)

a, b, c and d are constants such that b, c > 0(8)

In this section, we prove that if f and g are non-negative, then any

pair (u, v) ∈ V × V satisfying (S) in the weak sense is non-negative if

and only if (2ρ) is satisfied. More precisely :

Theorem 3. Assume that (4), (7) and (8) hold. System (S) satisfies

Maximum Principle if and only if inequalities (2ρ) are satisfied.

Proof.

The condition is necessary: Assume that f ≥ 0 , g ≥ 0 and that the Max-

imum Principle holds, i.e. if (u, v) is a pair of solutions then u ≥ 0, v ≥ 0.

(2ρ −1) is established as for the scalar case, considering succesively (S–1)

and (S–2). Now, multiplying (S–1) by ψρ and integrating over IRn, we

obtain by Green’s formula:

∫

IRn

−∆u.ψρdx = λρ

∫

IRn

ρu.ψρdx = a

∫

IRn

ρu.ψρdx+b

∫

IRn

ρv.ψρdx+

∫

IRn

f.ψρdx

i.e.

(9) (λρ − a)

∫

IRn

ρu.ψρdx − b

∫

IRn

ρv.ψρdx ≤
∫

IRn

f.ψρdx .

Similarly

(9′) (λρ − d)

∫

IRn

ρv.ψρdx − c

∫

IRn

ρu.ψρdx ≤
∫

IRn

g.ψρdx .

(9) and (9′) is a Cramer System in X =
∫

IRn
ρu.ψρdx and Y =

∫
IRn

ρv.ψρdx;

since by hypothesis the right-hand side member is non-negative as well

as X and Y , we obtain (2ρ − 2).
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The condition is sufficient: Multiplying (S–1) by u− and integrating over

IRn, we obtain:
∫

IRn

−∆u.u−dx =

∫

IRn

∇u.∇u−dx = −
∫

IRn

|∇u−|2dx =

= a

∫

IRn

ρuu−dx + b

∫

IRn

ρvu−dx +

∫

IRn

fu−dx ;

we change the signs and, since f, u− ≥ 0, we deduce from (5):

λρ

∫

IRn

|√ρu−|2dx ≤ a

∫

IRn

|√ρu−|2dx + b

∫

IRn

ρv−u−dx .

By Cauchy-Schwarz inequality:

(λρ − a)

∫

IRn

|√ρu−|2dx ≤ b

( ∫

IRn

|√ρu−|2dx

) 1
2
( ∫

IRn

|√ρv−|2dx

) 1
2

.

Similarly:

(λρ − d)

∫

IRn

|√ρv−|2dx ≤ c

( ∫

IRn

|√ρu−|2dx

) 1
2
( ∫

IRn

|√ρv−|2dx

) 1
2

.

We multiply the two inequalities and combine the result with (2ρ − 2);

therefore u− = 0 or v− = 0 ; hence u ≥ 0 or v ≥ 0 , and by proposition (2),

u ≥ 0 and v ≥ 0.

4 – Existence of solutions for linear systems

By Lax-Milgram lemma, we prove the existence of a solution for

System (S) under the same conditions and the same hypotheses (4), (7)

and (8) when H′ 4 f , H′ 4 g; moreover, if f ≥ 0, g ≥ 0, this solution

is non negative.

Theorem 4. If (2ρ), (4), (7) and (8) are satisfied, then System (S)

has a unique solution (u, v) ∈ V ×V for f, g ∈ H′; moreover, if f, g ≥ 0,

then u, v ≥ 0.
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Proof. We first notice that if (S) has a unique positive solution,

then inequalities (2ρ) are satisfied by System (3).

Assume now that (2ρ) holds. Choose m ≥ 0 such that a+m ≥ 0 , d+m ≥
0 and use again the equivalent norm on V defined by (6): ‖u‖m,ρ.

Let us consider the bilinear form a : V 2 × V 2 −→ IR defined by

a
(
(u, v), (w, z)

)
=

1

b

( ∫

IRn

(∇u.∇w + mρuw)dx

)
+

+
1

c

( ∫

IRn

(∇v.∇z + mρvz)dx

)
− a + m

b

∫

IRn

ρuw dx+

−
∫

IRn

ρvw dx −
∫

IRn

ρuz dx − d + m

c

∫

IRn

ρvz dx

Obviously a is continuous on V × V . Moreover, we can show that it is

coercive:

By Cauchy-Schwarz inequality and by (7), we get:

a
(
(u, v), (u, v)

)
=

1

b

( ∫

IRn

|∇u|2 + mρu2

)
dx +

1

c

( ∫

IRn

|∇v|2 + mρv2

)
dx+

− a + m

b

∫

IRn

ρu2dx − d + m

c

∫

IRn

ρv2dx − 2

∫

IRn

ρuv dx ≥

≥ 1

b

(
1 − a + m

λ1 + m

)‖u‖2
m,ρ +

1

c

(
1 − d + m

λ1 + m

)‖v‖2
m,ρ+

− 2

λ1 + m
‖u‖m,ρ‖v‖m,ρ .

It is clear by (2ρ) that a is coercive. Hence by Lax-Milgram lemma,

there exists a unique solution (u, v) ∈ V ×V for (S). Moreover, if f, g ≥ 0,

this solution is non-negative by the Maximum Principle.

5 – Positive solution for semilinear systems

5.1 – Existence

In this section we adapt the method of sub and super solutions [17]

to establish the existence of positive solutions for System (1). Since we
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work on IRn, we can’t consider a larger domain for constructing a super-

solution.

We assume that:

For any u ∈ H, v ∈ H, x −→ f(x, u, v)

(resp.g(x, u, v)) is a Caratheodory function;

(10)

0≤f(x, u, v)≤ u

α
ρ(x) ∀u, v≥0 , ∀x ∈ IRn,(11 – a)

0≤g(x, u, v)≤ v

β
ρ(x) ∀u, v≥0 , ∀x ∈ IRn,(11 – b)

where, α and β are (positive) solutions of the following linear system:

(λρ − a)α − bβ = 1 > 0(12 – a)

− cα + (λρ − d)β = 1 > 0(12 – b)

Condition (11) is analoguous to conditions of sublinearity when Ω is

bounded.

Theorem 5. Suppose that (4), (8), (10) and (11) are satisfied.

Then, if (2ρ) holds, there exists a positive solution for System (1).

Proof. We claim that:

(i) (u◦, v◦) = (0, 0) and (u2, v2) = (αψρ, βψρ) is a coupled sub-supersolu-

tion.

Obviously, by (11):

− ∆u◦ − aρu◦ − bρv◦ − f(x, u◦, v) ≤ 0 ∀v ∈ [v◦, v
2];

− ∆v◦ − cρu◦ − dρv◦ − g(x, u, v◦) ≤ 0 ∀u ∈ [u◦, u
2] .

We show now that:

0 ≤ −∆u2 − aρu2 − bρv2 − f(x, u2, v) ∀v ∈ [v◦, v
2];(13–a)

0 ≤ −∆v2 − cρu2 − dρv2 − g(x, u, v2) ∀u ∈ [u◦, u
2];(13–b)
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By definition of u2, ψρ > 0, and by (11–a), and (12–a):

− ∆u2 − aρu2 − bρv2 =
(
(λρ − a)α − bβ

)
ρψρ = ρψρ ≥ f(x, u2, v)

∀v ∈ [0, v2].

Similarly we derive (13-b).

(ii) Definition of the operator T:

We introduce T : (u, v) ∈ H × H −→ (w, z) := T (u, v) ∈ V × V,

where (w, z) is the unique solution of

− (∆ + mρ)w = (a + m)ρu + bρv + f ∈ IRn(14–a)

(−∆ + mρ)z = cρu + (d + m)ρv + g ∈ IRn.(14–b)

Here m > 0 is chosen as above such that a + m > 0 , d + m > 0.

Note that by (11.a), for u ∈ H = L2
ρ , x −→ f(x, u, v) is in H′ = L2

1
ρ
.

Equation (14–a) can be rewritten as −∆w = −mρw + F , with F =

(a + m)ρu + bρv + f > 0, F ∈ H′. By Proposition 2, this equation

possesses a solution w ∈ V .

Analogously we show the existence of z ∈ V and hence T is well

defined. We prove now that:

(iii) K = [u◦, u
2] × [v◦, v

2] is invariant by T.

For V 4 u ≥ 0 and V 4 v ≥ 0 , it follows from Proposition (2) that

w and z are non-negative.

We show now that if u ≤ u2 and v ≤ v2 then w ≤ u2 and z ≤ v2. We

substract (14 − a) from (13 − a) and we obtain

(−∆+mρ)(u2−w)=(a+m)ρ(u2−u)+bρ(v2−v)−f(x, u, v)+
ρ

α
u2 = H > 0 ,

or equivalently

−∆(u2 − w) = −mρ(u2 − w) + H .

Then by Proposition 1, u2 − w ≥ 0 . Analogously we have: z ≤ v2.

(iv) Finally we show that T : V ×V −→ V ×V is completely continuous:
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Let uk → u and vk → v in H; by (10), (11), f(x, uk, vk) → f(x, u, v) in

H′. Let us denote by wk and zk the sequences associated with uk and vk

by (14); it follows that:

(−∆+mρ)(w−wk) = (a+m)ρ(u−uk)+bρ(v−vk)+f(x, u, v)−f(x, uk, vk) .

Multiplying by w − wk and integrating we have

∫

IRn

|∇(w − wk)|2 + m

∫

IRn

ρ(w − wk)
2 =

= (a + m)

∫

IRn

ρ(u − uk)(w − wk) + b

∫

IRn

ρ(v − vk)(w − wk)+

+

∫

IRn

(f(x, u, v) − f(x, uk, vk))(w − wk) .

By Cauchy-Schwarz inequality, ‖w − wk‖V → 0 as ‖u − uk‖V →
0, ‖v − vk‖V → 0. Similarly zk → z in V .

Now we prove the compactness of T . We multiply (14 − a) by w and

integrate:

∫

IRn

|∇w|2 +m

∫

IRn

ρw2 = (a+m)

∫

IRn

ρuw + b

∫

IRn

ρvw +
1

α

∫

IRn

αf(x, u, v)

ρu
ρuw.

Hence, by (11–a):

‖w‖ρ,m ≤ C(‖u‖2
H + ‖v‖2

H).

Analogously:

‖z‖ρ,m ≤ C(‖u‖2
H + ‖v‖2

H).

Therefore if uj and vj are bounded sequences in V , the associated se-

quences wj and zj are bounded in V .

We show now that wj and zj are Cauchy sequences in V .

Suppose that ‖uj‖2
V ≤ M and ‖vj‖2

V ≤ M . Let ε > 0 be fixed.

Choose R large enough so that (1 + R2)ρ(R) <
εM

16γ
, where γ is defined

in Lemma 1.
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Let B = {x ∈ IRn | |x| < R} and B′ = {x ∈ IRn | |x| > R}; since

uj is bounded in V , uj is bounded in H1(B); but B is bounded and

therefore the embedding H1(B) into L2(B) is compact; hence there exists

a convergent subsequence, still denoted by (uj)j ∈ IN , which is a Cauchy

sequence and we can choose j and k large enough so that

∫

B

ρ|uj − uk|2dx ≤
∫

B

|uj − uk|2dx <
ε

4
.

Moreover

∫

B′

ρ|uj − uk|2dx =

∫

B′

(1 + |x|2)ρ(x)
1

(1 + |x|2) |uj − uk|2dx ≤

≤ εM

16γ
γ‖uj − uk‖2

V ≤ ε

4
.

Since analogous inequalities hold for vj , we can deduce that wj is a

Cauchy sequence in V . Hence it converges towards w . The same holds

for zj and therefore, T is compact in V × V .

We can apply Schauder fixed point theorem and we deduce that there

exists at least one positive solution (u, v) ∈ V ×V of System (1) satisfying

u◦ ≤ u ≤ u2 , v◦ ≤ v ≤ v2.

5.2 – Uniqueness

For proving uniqueness, we assume additional assumption on f , g :

(15) We assume that there exists a concave function (x, u, v) −→
H(x, u, v) such that:

f(x, u, v) = b
∂H

∂u
(x, u, v) and g(x, u, v) = c

∂H

∂v
(x, u, v).

Then,we have:

Theorem 6. Assume that (8), (2ρ) and (15) are satisfied, then

there exists a unique solution of System (1).
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Proof. Assume that (u1, v1) and (u2, v2) are solutions of (1). If we

set:

w = u1 − u2 and z = v1 − v2

then

−∆w = awρ + bzρ + b
(∂H

∂u
(x, u1, v1) − ∂H

∂u
(x, u2, v2)

)
in IRn

−∆z = cwρ + dzρ + c
(∂H

∂v
(x, u1, v1) − ∂H

∂v
(x, u2, v2)

)
in IRn ,

w −→ 0 , z −→ 0 as |x| −→ ∞ .

Multiplying the first equation by
w

b
and the second by

z

c
and integrating

over IRn, we get:

b−1

∫

IRn

|∇w|2dx + c−1

∫

IRn

|∇z|2dx =
a

b

∫

IRn

ρw2dx + 2

∫

IRn

ρwz dx +
d

c

∫

IRn

ρz2dx+

+

∫

IRn

[(∂H

∂u
(x, u1, v1) − ∂H

∂u
(x, u2, v2)

)
(u1 − u2)+

+
(∂H

∂v
(x, u1, v1) − ∂H

∂v
(x, u2, v2)

)
(v1 − v2)

]
dx ,

and from (5) and (15), we derive:

b−1(λρ − a)

∫

IRn

ρw2dx + c−1(λρ − d)

∫

IRn

ρz2dx ≤ 2

∫

IRn

ρwzdx .

Let us choose δ such that:

(λρ − a)

b
> δ2 >

c

(λρ − d)
;

then, we have:

b−1(λρ − a)

∫

IRn

ρw2dx + c−1(λρ − d)

∫

IRn

ρz2dx ≤ 2

∫

IRn

ρδw
1

δ
z dx ≤

≤
∫

IRn

ρδ2w2dx +

∫

IRn

ρ
z2

δ2
dx ≤ b−1(λρ − a)

∫

IRn

ρw2dx + c−1(λρ − d)

∫

IRn

ρz2dx
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which implies w = z = 0, i.e. (u1, v1) = (u2, v2).

Remark 1. When n = 2 it is proved in [6] that there is no positive

eigenvalue for problem (3); in fact the non-negative eigenvalue is 0 and

we can extend our previous theorem with λρ = 0.

Remark 2. We can apply the method in [12] for studying some

non-cooperative systems where (7) is replaced by (16) b < 0, c > 0, and

(d − a)2 + 4bc > 0.

6 – The case of N × N Systems

We can also extend our results to the case of a system with N equa-

tions:

(S′) −∆U = AρU + F , inIRn, U → 0 as |U | → +∞,

where U (resp. F ) is a column matrix with elements ui (resp. fi) and

where

A is a N × N matrix with constant coefficients(17)

The coefficients outside the diagonal are positive.(17′)

For such a system analogous results (Maximum Principle and exis-

tence of solutions) hold with (2ρ) replaced by

(Cρ) B :=
(
λρI − A

)
is a nonsingular M-matrix.

Theorem 7. Assume that (4) and (17) hold, and that F ∈ H′N .

Then System (S′) satisfies Maximum Principle if and only if inequalities

(Cρ) are satisfied.

The proof of Theorem 7, is very similar to that of [14], with the same

change of spaces as above so that we only sketch the proof. We recall

some technical results concerning M-matrices (which can be found e.g.

in [3], or [14], Lemmas 1 and 2).
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6.1 – Matricial calculus lemmas

First recall that a nonsingular square matrix B = (bij) is a M -matrix

if bij ≤ 0 for i *= j, bii < 0 and if all principal minors extracted from B
are positive.

We introduce the following notation:

For 1 ≤ k ≤ N , we denote by Bk the matrix obtained by taking the last

(N − k) rows and columns out of the matrix B := (λρI − A). Then:

Lemma 4. Assume that all principal minors of order j ≤ k, ex-

tracted from BN are positive. If det Bk+1 < 0, then for all Y ∈ IRk+1, Y >

0, the solution X ∈ IRk+1 of the equation Bk+1X = Y is negative.

Lemma 5. Assume that BN is a nonsingular M -matrix; then for

all Y ∈ IRN , Y ≤ 0(resp.≥ 0), the solution X ∈ IRN of BNX = Y is non

positive (resp. non negative).

Proof of theorem 7.

The condition is necessary: We assume that the Maximum Principle is

satisfied; we prove by induction on k and by contradiction that all the

principal minors of order k, extracted from BN , are positive.

We know from Section 2 -scalar case- that the result holds for k = 1.

Assume now that it holds for k.

i) If detBk+1 < 0, we can choose Y ∈ IRN , with components Yi = 1 for

1 ≤ i ≤ k + 1, X ∈ IRN with components Xi = 0 for k + 2 ≤ i ≤ N such

that Y = BNX. Then X ′ ∈ IRk+1 (resp. Y ′ ∈ IRk+1) with components

Xi (resp. Yi), 1 ≤ i ≤ k + 1 satisfies Bk+1X
′ = Y ′.

By Lemma 3, Xi < 0 for 1 ≤ i ≤ k + 1.

Hence, since the system is cooperative, Yi =
j=k+1∑

j=1
(−ai,j)Xj ≥ 0 for

k + 1 ≤ i ≤ N .

Then U = Xψρ ≤ satisfies

−∆U = λρXρψρ = AρU + F

with F = Y ρψρ ≥ 0, which contradicts the Maximum Principle.

ii) If detBk+1 = 0, we consider —with the same notations as above—

X, such that Bk+1X
′ = 0. Since detBk *= 0, Xk+1 *= 0 and we can take
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Xk+1 = −1. Then
p=k∑
p=1

(−aj,p) = (−aj,k+1), 1 ≤ j ≤ k+1. Since the system

is cooperative, BkX
′′ ≤ 0 with X ′′ ∈ IRk, with components Xi, i ≤ k.

By Lemma 3, Xi ≤ 0, i ≤ k, and as above, we contradict the Maximum

Principle.

It follows from i) and ii) that all the principal minors of order k + 1,

extracted from BN are positive. Hence λρI−A is a nonsingular M -matrix.

The condition is sufficient: This proof is almost the same than when

N = 2. We multiply the i-th equation by u−
i and integrate. Finally we

obtain: (λρI − A)Z ≤ 0 where Z is the column matrix with elements

[
∫

IRn
ρ | u−

i |2]1/2.

By Lemma 2 this implies Z ≤ 0 and hence U ≥ 0.

We can also extend Theorem 5 and prove the existence of a nonneg-

ative solution for a semilinear system:

(1′) −∆U = AρU + F(x, U), ∈ IRn , U → 0 as |x| → +∞.

Assume that

For any ui ∈ H, for any 1 ≤ j ≤ N U → fj(x, U) is

a Caratheodory function;

(18)

For any 1 ≤ i ≤ N , 0 ≤ fi(x, U) ≤ ui

αi

ρ(x) ∀ui ≥ 0,

∀x ∈ IRn,

(19)

where α is a column matrix with components αi such that (λρI−A)α = 1;

here 1 is the column matrix with N elements equal to 1.

Theorem 8. Assume that (4) and (17) to (19) are satisfied; if (Cρ)

holds, then (1′) possesses one non negative solution in V N .

The proof of this theorem is completely similar to that of Theorem

5 and we omit it here.

We also can extend Theorem 1 in [5]:

Theorem 9. Assume that (4), (17) and (Cρ) are satisfied and that

F ∈ H′N . Then (S′) has a unique solution U ∈ V N .
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We follow here the proof of [2], which is derived from [5] but a bit

shorter.

Proof. If necessary, we first choose m such that aii +m > 0 for any

1 ≤ i ≤ N and we write equation (1i) as:

(20) (−∆ + m)ui = (aii + m)ρui +
∑

j +=i

aijρuj + fi.

For any ε ∈ ]0; 1[, we derive from (20):

(21)

(−∆ + m)uε
i = (aii + m)ρuε

i [1+ | εuε
i |]−1+

+
∑

j +=i

ai,jρuε
j [1+ | εuε

j |]−1 + fi.

We will prove that uε
i is bounded in V and hence we can deduce from

Schauder fixed point theorem that such (uε
i )1≤i≤n exist.

We first prove:

i) εuε
i is bounded in V and tends to 0 strongly in H and weakly in V . We

multiply (21) by ε2uε
i and integrate over IRn. Since [1+ | εuε

i |]−1 < 1, we

have:

(22)

∫

IRn

| ∇εuε
i |2 +m

∫

IRn

ρ | εuε
i |2 ≤ (aii + m)

∫

IRn

ρ | εuε
i |2 +

+
∑

j +==i

aij

∫

IRn

ρ | ε2uε
iu

ε
j) | +

∫

IRn

ε2uε
ifi .

Set ‖uε
i‖H :=

[ n∫
IR

ρ | εuε
i |2

]1/2

. It follows from (5) and from Cauchy-

Schwarz inequality that:

(23) (λρ − A)‖uε
i‖H ≤ ε[

∫

IRn

(ρ)−1 | fi |2]1/2.

Hence εuε
i and tends to 0 strongly in H as ε tends to 0. This result

combined with (22) implies that εuε
i and tends to 0 weakly in V .

ii) uε
i is bounded in V . Here we follow [5]. Assume that

(24) tε := max(‖uε
i‖V ) → +∞ as ε → 0 .
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Set

zε
i := uε

i · t−1
ε

Of course ‖zε
i ‖V ≤ 1; therefore, there exists zi such that zε

i tends

to zi as ε → 0, strongly in H and weakly in V . Moreover, by (24), as

ε → 0, fi · t−1
ε → 0 a.e.

Hence, dividing (21) by tε and passing through the limit, we deduce:

(−∆ + m)zi = (aii + m)ρ(zi) +
∑

j +=i

aijρ(zj).

Hence zi = 0 which contradicts the fact that there exists a sequence

(εk)k∈IR such that for one index i, ‖zi
εk‖ = 1.

Therefore, passing through the limit, uε
i → u0

i and u0
i satisfies (S′).
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