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A classification of abelian quasigroups

J. SCHWENK

Riassunto: È nota la classificazione dei quasigruppi abeliani a meno di isotopie
([2], [9]). In questo lavoro si generalizza questa classificazione a meno di isomorfismi.
Allo scopo vengono usati i sistemi estesi di terne corrispondenti.

Abstract:We extend the classification of abelian quasigroups from isotopy classes,
which was done in [2] and [9], to isomorphy classes. For this purpose we use the concept
of an extended triple system in order to state our results.

1 – Introduction

A well-known fact from algebraic geometry is that elliptic curves in

a projective plane form an abelian group. Etherington [5] observed

that certain proofs can be simplified if one uses the quasigroup structure

of cubic curves. Here the product a ◦ b (a ◦ a, resp.) is defined to be

the third intersection point of the line through a and b (the tangent to C

at a, resp.) with the cubic C (counting multiplicities). The quasigroups

which are defined this way turn out to be totally symmetric (i. e. each

equation a◦ b = c implies the other five equations obtained by permuting
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a, b and c) and entropic (i. e. (a ◦ b) ◦ (c ◦ d) = (a ◦ c) ◦ (b ◦ d) holds for

all elements a, b, c, d of the quasigroup).

Murdoch and Bruck ([9], [2]) showed that each entropic totally

symmetric quasigroup is isotopic to exactly one abelian group, and that

all such quasigroups can be constructed from abelian groups. Therefore

we call them abelian quasigroups.

Extended triple systems have been defined and studied in a number of

papers by Bennet, Mendelsohn and Johnson ([1], [8]). They are the

geometric analogues of totally symmetric quasigroups. It will be useful

to formulate our results in terms of extended triple systems rather than

quasigroups, because we will use geometric expressions like “tree” and

“circle” to state our results. An extended triple systems is called abelian

if the corresponding quasigroup is abelian.

An excellent introduction to the interaction between combinatorial

and algebraic structures is the section on the construction of big Steiner

triple systems from smaller ones via the direct product of quasigroups

given by Bruck in [4].

Abelian extended triple systems that are embedded in a projective

plane have already been studied in order to generalize Segre’s theo-

rem [11] from quadratic to cubic curves. They have been called graphic

curves [12], abelian arcs [6], graphic arcs [10] and cubic arcs [7], and em-

beddings of these structures into cubic curves have been proved under

certain conditions. In this article, we look at abelian arcs not embedded

in a projective plane.

Our main results are the following: Let G be an finite abelian group.

• If 3 does not divide |G|, then there is up to isomorphism exactly one

abelian extended triple system that is isotopic to G.

• If in the unique decomposition of G into cyclic subgroups of prime

power order there are exactly k nonisomorphic cyclic factors of order

3x, then there are exactly k+1 nonisomorphic abelian extended triple

systems that are isotopic to G.

2 – Basic Definitions

2.1 – Quasigroups

Definition. (a) A quasigroup is a set Q together with a binary
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operation · where the equations ax = b and ya = b have unique solutions

in Q for all a, b ∈ Q.

(b) A quasigroup Q is called abelian if it satisfies the equations ab =

ba, a(ab) = b and (ab)(cd) = (ac)(bd) for all a, b, c, d ∈ Q. Here the first

two equations guarantee that the quasigroup is totally symmetric, and the

third one is the entropic law.

(c) Two quasigroups (Q, ·) and (R, ◦) are isotopic if there is a triple

(α, β, γ) of bijective maps from Q to R such that

aα ◦ bβ = (a · b)γ ∀a, b ∈ Q.

In case that γ = id, R is called a principal isotope of Q.

The concept of isotopy looks quite complicated. However it becomes

clear if we look at the Caley table of a quasigroup. Isotopic quasigroups

have Caley tables that differ only in the choice of the set Q and a row

and a column permutation. Isotopy and principal isotopy are equivalence

relations on the set of all quasigroups.

Definition. (a) Let (G, +) be an abelian group, and let e be a fixed

element of G. Then we can define a quasigroup (Q(G, e), ·) by

a · b := e − a − b.

(b) Let (Q, ·) be an abelian quasigroup, and let o be a fixed element

of Q. We define (G(Q, o),+) by

a + b = (ab)o.

The group G is isotopic to the quasigroup Q(G, e), and the same

holds for Q and G(Q, o). The quasigroup Q(G, e) is abelian, and G(Q, o)

is an abelian group.

The next lemma, which we give without proof, shows that each

abelian quasigroup can be constructed this way.

Lemma 2.1. Let Q be an abelian quasigroup, and let G = G(Q, o).

Then Q = Q(G, o2).
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The following theorem of Bruck states that the group isotopic to an

abelian quasigroup is unique, using the fact that isotopy is an equivalence

relation.

Theorem 2.2 ([3]). If two groups are isotopic, then they are iso-

morphic as well.

We now know that there is a bijective correspondance between the

isomorphy classes of abelian groups and the isotopy classes of abelian

quasigroups. We will now investigate the number of isomorphy classes of

abelian quasigroups inside each isotopy class.

2.2 – Extended Triple Systems

Extended triple systems were introduced by Bennet, Mendelsohn

and Johnson ([8], [1]) as a generalization of Steiner triple systems. In

Steiner triple systems, through any two different points there is exactly

one triple. We obtain extended triple systems if we allow the two points

to be equal.

Definition. An extended triple system (ETS) is a pair (E, T )

where E is a set (of points) and T is a collection of unordered triples of

elements of E such that any two (not necessarily different) points lie in

exactly one triple of T .

Example (1) Let E = {a, b, c, e} and T = {[a, b, c], [a, a, e], [b, b, e],

[c, c, e], [e, e, e]}. Then (E, T ) is an extended triple system.
e

a b c

(2) From a Steiner triple system S we obtain two different extended

triple systems: the first one by adding the triples [a, a, a] for all a ∈ S,

and the second one by adding a point e and the triples [e, e, e], [a, a, e] for

all a ∈ S. These constructions are due to Bruck [4].
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(3) The points of an elliptic curve C in a projective plane P are the

points of an extended triple system, and the triples are given by the lines

of P meeting C in three points (counting multiplicities).

There is a bijective correspondence between extended triple systems

and totally symmetric quasigroups: The product of two points can be

defined to be the third point in the triple through these two points. Con-

versely, any equation ab = c in a totally symmetric quasigroup defines a

triple [a, b, c] of an extended triple system.

Definition. An extended triple system is called abelian if the

corresponding quasigroup is abelian. If this quasigroup is Q(G, e), the

extended triple system will be denoted by E(G, e).

Definition. A triple of the form [a, a, b] is called a tangent of the

extended triple system at the point a. If a %= b, such a tangent is called a

2-line, in contrast to the 1-lines [a, a, a] and the 3-lines [a, b, c] with three

different points a, b and c.

A point a is called an inflection point if the tangent at a is a 1-line.

In previous articles on extended triple systems the number of inflec-

tion points in relation to the total number of points was studied ([1], [8]).

3 – The Case “3 does not divide |G|”
When looking at extended triple systems as a special kind of quasi-

group, only the isotopy classes have been studied. The results of Albert,

Bruck and Murdoch say that in each isotopism class of an abelian

quasigroup there is exactly one abelian group. These results do not tell

us how many non-isomorphic abelian quasigroups there are in the iso-

topism class of a fixed abelian group.

We will now look at the isomorphism classes of abelian quasigroups.

Our result is that in case gcd(|G|, 3) = 1 for each abelian group G there

is up to isomorphism exactly one abelian quasigroup. The case that 3

divides the order of the group is more complicated and will be dealt with

in the next section.

The following lemma is immediate.
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Lemma 3.1. E(G, e) × E(H, f) ∼= E(G × H, (e, f)).

This result enables us to construct all abelian ETS from the ETS of

cyclic groups. It also helps us in determining the number of isomorphy

classes of abelian quasigroups isotopic to a given group. A first step in

this direction is the following theorem.

Theorem 3.2. Let G be isomorphic to the cyclic group Zm.

(1) E(G, e) ∼= E(G, e + 3).

(2) E(G, 1) ∼= E(G, 2).

(3) If gcd(|G|, 3) = 1, then E(G, 0) ∼= E(G, 1).

Proof. Use the maps α : a (→ a+1, β : a (→ −a+1 and γ1 : a (→ a+k

γ2 : a (→ a + (2k − 1), resp.

4 – The Case “3 divides |G|”

We will distinguish nonisomorphic abelian extended triple systems

by the structure of the set of their 2-lines.

Definition. The graph formed by the points of an extended triple

system E together with all 2-lines of E is called the 2-shape of E.

In the following we shall use graph-theoretic language, for instance

we shall speak of circles.

In a tangent [a, a, b] of E(G, e) the element b is given by the equation

a ◦ a = e − 2a.

Therefore the number −2 will play an important role in our proofs, and

we need the following lemma.

Lemma 4.1. The order ord(3r,−2) of −2 in the group (Z∗
3r , ·) is

ord(3r,−2) = 3r−1.
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Proof. First we prove by induction on r that there is an integer x

not divisible by 3 such that

1 − (−2)3r−1

= 3rx (∗).

For r = 0 we get 1 − (−2)30
= 3.

Now we assume that there is a positive integer y relatively prime to

3 such that 1 − (−2)3t−1
= 3ty. We get

1 − (−2)3t

= 1 − ((−2)3t−1

)3 = 1 − (1 − 3ty)3 =

= 1 − (1 − 3(3ty) + 3(3ty)2 − (3ty)3) =

= 3t+1(y − 3ty2 + 32t−1y3) = 3t+1x

and x is not divisible by 3 since x ≡ y (mod 3).

The order of −2 has to be a divisor of the group order 3r−12; more

precisely, because of (∗) it has to divide 3r−1. Since equation (∗) holds

for all integers r it follows that 1− (−2)3s−1 %≡ 0 (mod 3r) for s < r. This

proves that the multiplicative order of −2 modulo 3r is 3r−1.

Since E(G×H, (e, f)) = E(G, e)×E(H, f), we can solve the problem

by first looking at cyclic groups (Z3r ,+) and their extended triple systems

E(Z3r , 0) and E(Z3r , 1), and then considering direct products.

Theorem 4.2. In the 2-shape of E(Z3r , 0), each element which has

the form y = 3sx, gcd(x, 3) = 1, lies on a circle of lenght 3r−s−1.

Proof. Consider the sequence

y0 = y, yn+1 = yn ◦ yn = (−2)n+1y (n ∈ N).

Then ym = (−2)my = y0 = y (mod 3r) is equivalent to (−2)m = 1

(mod 3r−s) since then

(−2)my = (3r−sz + 1)3sx = 3rzx + 3sx = 3sx = y (mod 3r).

So the lenght m of the circle is equal to ord(3r−s,−2), which is 3r−s−1 by

the previous lemma.
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Theorem 4.3. The 2-shape of E(Z3r , 1) consists of a single circle

of lenght 3r.

Proof. By induction we show that in Q(Zm, e) we have

((

n︷ ︸︸ ︷
a2)2 · · · )2 =: a2n

= e ·
n−1∑

k=0

(−2)k + a(−2)n (mod m).

We can get rid of the sum in the above expression by using the equation

3
n−1∑

k=0

(−2)k = 1 − (−2)n .

Finally, we get for E(Z3r , 1):

a2n

= a (mod 3r) ⇐⇒ (1 − (−2)n) = 3a(1 − (−2)n) (mod 3r+1)

⇐⇒ 0 = (3a − 1)(1 − (−2)n) (mod 3r+1).

Since 3a − 1 is always relatively prime to 3, the equation reduces to

0 = 1 − (−2)n (mod 3r+1) and now lemma 4.1 proves the theorem.

The next step in our argument is to prove a lemma which tells us

what happens with circles when we take direct products.

Lemma 4.4. Let E and F be extended triple systems, and let the

points e ∈ E and f ∈ F lie on circles of length m and n, respectively.

Then (e, f) lies on a circle of length lcm(m, n).

Proof. If e2m
= e and f2n

= f , then the smallest integer k with

(e2k
, f2k

) = (e, f) is k := lcm(m, n).

We now have the following list: Let G be a cyclic group of order 3r,

and let H be a cyclic group of order 3s with r ≤ s.
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Extended triple system 2-shape

E(G, 0) circles of length 1, 3, . . . , 3r−1

E(G, 1) circle of length 3r

E(H, 0) circles of length 1, 3, . . . , 3s−1

E(H, 1) circle of length 3s

E(G × H, (0, 0)) circles of length 1, 3, . . . , 3s−1

E(G × H, (0, 1)) circle of length 3s

E(G × H, (1, 0)) circles of length 3r, . . . , 3s−1

E(G × H, (1, 1)) circle of length 3s

Lemma 4.5. For G ∼= Z3r and H ∼= Z3s with r ≤ s we have

E(G × H, (0, 1)) ∼= E(G × H, (1, 1)).

Proof. In this proof, we use the notation x MOD n to denote the

number 0 ≤ y < n with y ≡ x (mod n).

The map α : E(G × H, (0, 1)) → E(G × H, (1, 1)) defined by

α(a, b) := ((a + b) MOD 3r, b).

is bijective, because we have the inverse map

α−1(a, b) := ((a − b) MOD 3r, b).

It sends lines to lines: from a1 +a2 +a3 ≡ 0 (mod 3r) and b1 +b2 +b3 ≡ 1

(mod 3s) it follows that

3∑

i=1

((ai + bi) MOD 3r) ≡
3∑

i=1

ai +
3∑

i=1

(bi MOD 3r) ≡ 0 + 1 = 1 (mod 3r).

So α is the isomorphism we were looking for.
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We can now summarize our result as follows:

Theorem 4.6. Let G be an abelian group of order 3nm,

gcd(m, 3) = 1. Let the subgroup H of order 3n be isomorphic to

Z3r1 × . . . × Z3r1︸ ︷︷ ︸
l1

× . . . × Z3rk × . . . × Z3rk︸ ︷︷ ︸
lk

with l1r1 + . . . + lkrk = n, r1 < . . . < rk.Then there are exactly k + 1

nonisomorphic abelian extended triple systems isotopic to G.

Proof. By repeatedly applying lemma 4.5 we see that if we have a

1 for a cyclic component Z3
rj , then it does not matter if we chose a 0 or

a 1 for any component Z3ri with ri ≤ rj. So we get all isomorphy classes

if we choose a number j ∈ {0, 1, . . . , k} and then choose a 1 for the cyclic

component Z3
rj (0 means that we choose only zeros).

5 – Finitely generated abelian groups

If we have direct products of the infinite cyclic group Z, the situation

is very similar to the previous case.

Theorem 5.1. (1) E(Z, e) ∼= E(Z, e + 3)

(2) E(Z, 1) ∼= E(Z, 2).

Proof. We can use the same maps as for the proof of theorem 3.2.

Lemma 5.2. E(Z, 0) %∼= E(Z, 1).

Proof. The element 0 is an inflection point of E(Z, 0), whereas in

E(Z, 1) there are no inflection points.

Lemma 5.3. E(Z × Z, (0, 1)) ∼= E(Z × Z, (1, 1)).

Proof. The map α : (a, b) (→ (a + b, b) is bijective and maps lines

onto lines.
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Lemma 5.4. E(Z3r × Z, (0, 1)) ∼= E(Z3r × Z, (1, 1)).

Proof. Use the map β : (a, b) (→ (a + b MOD 3r, b).

We get the following theorem.

Theorem 5.5. Let G be a finitely generated abelian group. If k is

the number of nonisomorphic direct factors of G of the form Z3x , x ∈ N ,

and |G| > ∞, then there are exactly k+2 nonisomorphic abelian extended

triple systems isotopic to G.

Proof. We can write G as G ∼= H × Zt where H is a finite abelian

group. Let the corresponding extended triple systems be denoted by

E(H × Zt, (a, z1, . . . , zt)). If we choose all the zi (i = 1, . . . , t) to be 0,

then the difference in the structure comes from the finite part E(H, a),

since a complete copy of this extended triple system is fixed to the in-

flection point of E(Zt, (0, . . . , 0)). In this case there are k + 1 different

extended triple systems according to theorem 4.6. If some zi is chosen to

be 1, the whole structure is dominated by E(Z, 1) as shown in the two

previous lemmata. This adds one further non-isomorphic extended triple

system, so the total number is k + 2.

6 – Open problems

An interesting open problem is whether all abelian extended triple

systems embeddable in a projective plane PG(2, q) can be characterized

as the point set of a cubic curve. In this case it would follow (apart from

some special cases) that only those abelian extended triple systems can be

embedded where the corresponding group is a direct product of at most

two cyclic factors. We were able to prove one result in this direction,

namely that any extended triple system E(G, 0), where G contains a

subgroup isomorphic to Z2p × Z2 × Z2, p %= 3 a prime, is not embeddable

in a desarguesian projective plane.
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