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The Theorem of Totten for planar spaces

K. METSCH

Riassunto: Si dimostra che uno spazio planare irriducibile S con v punti e π
piani, tale che n3 ≤ v < (n + 1)3 e π ≤ v + n2 + n per n ≥ 4, esiste se e solo se n è
una potenza di un numero primo ed inoltre se S è immergibile in PG(3, n), oppure se
S è lo spazio affine AG(3, n) con uno spazio proiettivo generalizzato di dimensione 3
all’infinito. Questo risultato è analogo a quello relativo alla classificazione degli spazi
lineari ristretti di Totten.

Abstract: It is shown that an irreducible planar space S with v points and π
planes such that n3 ≤ v < (n+1)3 and π ≤ v +n2 +n for some integer n ≥ 4 exists iff
n is a prime power and S either can be embedded in PG(3, n), or S is the affine space
AG(3, n) with a generalized projective 3-space at infinity. This result is an analogue to
the classification of restricted linear spaces by Totten.

1 – Introduction

The famous result of de Bruijn [2] states that every linear space

has at least as many lines as points with equality if it is a (possibly

degenerate) projective plane. After the classification of linear spaces with

one, two, or three more lines than points [1, 12, 10], Totten obtained the

classification of all restricted linear spaces, that is linear spaces satisfying

(b− v)2 ≤ v where v is the number of points and b is the number of lines.

If n denotes the unique integer satisfying n2 ≤ v < (n + 1)2, then the
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condition (b − v)2 ≤ v means that b ≤ v + n. The result of Totten is the

following. If b < v +n and n ≥ 4, then the linear space can be embedded

in a projective plane of order n. If however b = v + n, then there is a

class of exceptional spaces, called projectively inflated affine planes.

A result analogous to the de Bruijn-Erdös result has been proved

for geometric lattices by Greene [4]. It states that a geometric lattice of

rank r ≥ 3 has at least as many hyperplanes as points with equality iff it

is modular. One might try to generalize also Totten’s Theorem to higher

dimensional linear spaces. For planar spaces, this was started by Hafner

[5]. Following Hafner, we call a planar space restricted , if the numbers v of

its points and π of its planes satisfy n3 ≤ v < (n+1)3 and π ≤ v +n2 +n

for some integer n ≥ 2. There are two reasons for this choice of the

bound on π. On the one hand one wants to include affine 3-spaces in the

classification. On the other hand, as in the 2-dimensional case, there will

be a class of exceptional planar spaces satisfying π = v + n2 + n, the so

called inflated affine spaces. Hafner showed that in a restricted planar

space with n3 ≤ v < (n + 1)3 every plane has at most n2 + n + 1 points

and every line has at most n+1 points. We give a much shorter proof for

these results and moreover complete the classification of restricted planar

spaces for n ≥ 4.

Let us recall some terminology. A (finite) linear space is a pair (P,L)

consisting of a finite set P of points and a set L of subsets of P, called

lines, such that any two distinct points P and Q occur in a unique line,

denoted by PQ, every line has at least two points, and there are three

non-collinear points. A linear space is called degenerate, if it has a line

containing all but one of the points. A set of points that contains the line

PQ for any of its points P and Q is called a subspace.

A planar space is a linear space (P,L) together with a family Π of

at least two subspaces, called planes, such that any three non-collinear

points are in a unique plane, and every plane has at least three non-

collinear points. The planar space S is called reducible (and else ir-

reducible) if there exists a non-trivial partition P = P1 ∪ P2 with the

properties that every line is contained in one component or has a unique

point in each component, and every plane is contained in one component

or consists of a point in one component and a line in the other component.

Let S be a reducible planar space with partition P = P1 ∪ P2 as above.

If Si is the structure induced by S on Pi, i = 1, 2 (that is Si consists of
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the points of Pi and the lines and planes of S that have all its points in

Pi), then we say that S is the direct product of S1 and S2. Notice that Si

may by a point, a line, a linear space, or a planar space. In this paper,

we call a planar space degenerate, if it is the direct product of either two

lines, or a plane and a point. A generalized projective 3-space is a mod-

ular geometric lattice of rank 4, that is a 3-dimensional projective space

PG(3, q), a direct product of two lines, or a direct product of a point and

a projective plane.

The following definition generalizes the notation of inflated affine

planes [11]. Consider a projective space P = PG(3, n) and a plane E∞ of

P. Let Ps be a set of points of E∞ with three non-collinear points, and

let P be the set consisting of those points of P that do not lie in E∞ \Ps.

Then P induces a linear space L on P and a linear space L∞ on Ps.

Suppose that L∞ has a family of (at least two) subspaces that makes it

into a planar space S∞. Then there are two ways to make L into a planar

space. The first possibility is to adjoin as planes all sets E ∩ P where E

is a plane of P. The so-obtained planar space S1 is the one induced by P

on P. The second possibility is to adjoin the same set of planes, except

that the plane E∞ ∩ P is replaced by the planes of S∞. The so-obtained

planar space S2 is called an inflated affine 3-space; it consists of an affine

3-space and a planar space S∞ at infinity . Since generalized projective

3-spaces have the same number of points and planes, an affine 3-space of

order n with a generalized projective 3-space at infinity has n2 + n more

planes than points.

Now we can state the main result of this paper.

Theorem 1.1. Let S be a non-degenerate planar space and denote

by n the positive integer such that n3 ≤ v < (n+1)3. If n ≥ 4 and if S is

restricted, then n is a prime power and S can be embedded in PG(3, n),

or S is AG(3, n) with a generalized projective 3-space at infinity.

2 – Preliminary results

In this section we prove some preliminary results. For a finite linear

space L = (P,L), we call the number rP of lines on a point P the degree

of P , and the number kl of points on a line l the degree of l. By a weight

function we mean a function w from L into 6; then w(l) is called the
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weight of the line l. For further terminology and well-known results such

as the de Bruijn-Erdös Theorem [2] and Totten’s Theorem [11] we

refer to [7].

Lemma 2.1. Let L be a non-degenerate linear space with b lines.

Then b ≥ 2rP for every point P .

Proof. Let v denote the number of points, let P be any point, and

denote by x the number of 2-lines on P . Then v ≥ 2rP + 1 − x. Since L

is not degenerate, it induces a linear space L′ on the set of points other

than P . It has v − 1 points, and thus, by the de Bruijn-Erdös Theorem,

at least v − 1 lines. Since the 2-lines on P are lines of L but not of L′, it

follows that b ≥ v − 1 + x.

Lemma 2.2. Let L be a linear space with b lines, w a weight

function, s, ε ∈ 6, and put S :=
∑
l∈L

w(l).

(a) If w(l1) + w(l2) ≥ 2s for all intersecting lines l1 and l2, then

S ≥ bs.

(b) Suppose that w(l1) + w(l2) + w(l3) ≥ 3s − ε for all distinct non-

confluent lines l1, l2 and l3 of which at least two meet. If ε = 0, then

S ≥ bs. If s and the weight of every line is an integer, then S ≥ bs − 1 if

ε = 1, and S ≥ b
(
s − 1

2

)
if ε = 2.

Proof. a) Denote by l1, . . . , lu the lines whose weight is less than s.

By hypothesis, these lines are disjoint. We may assume that w(lj) ≤ w(li)

for j < i. Put Pi :=
i⋃

j=1
lj and let Li denote the set consisting of the lines

that meet Pi, i = 1, . . . , u. Then |Pi| ≥ 2i and thus |Li| ≥ 2i by the

de Bruijn-Erdös Theorem. Hence we can choose distinct lines g1, . . . , gu

with gi ∈ Li and gi %= l1, . . . , lu. For each index i there is an index j ≤ i

such that gi and lj meet. By Hypothesis, w(gi) + w(lj) ≥ 2s; hence,

w(gi) + w(li) ≥ 2s. Since the lines li are the only lines having weight less

than s, it follows that the average weight of the lines is at least s.

b) In view of a), we may assume that there exist intersecting lines l1
and l2 satisfying w(l1)+w(l2) ≤ 2s− ε (use the integrality hypothesis for

ε ∈ {1, 2}). Put w1 := (l1), w2 := w(l2), P = l1 ∩ l2 and r = rP . We may
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assume that w1 ≤ w2 ≤ w(l) for all lines l %= l1 on P . By hypothesis,

w(l) ≥ 3s − ε − w1 − w2 for all lines not containing P . Hence

S ≥ w1 + (r − 1)w2 + (b − r)(3s − ε − w1 − w2) =

= bs − ε + (b + 1 − 2r)(2s − ε − w1 − w2) + (r − 2)(s − ε − w1) .

Since b ≥ 2r (Lemma 2.1), it follows that S ≥ bs− ε+(r − 2)(s− ε−w1).

If ε ∈ {0, 1}, w1 ≤ w2 and w1 + w2 ≤ 2s − ε imply that w1 ≤ s − ε and

thus S ≥ bs − ε. If ε = 2, then only w1 ≤ s − 1, so S ≥ bs − 2 − (r − 2);

now S ≥ b
(
s − 1

2

)
follows from Lemma 2.1.

Lemma 2.3. Suppose that S is a planar space with v points, and E

is a plane of S.

a) Let l1, l2, l3 be distinct lines of E with ∅ %= l1 ∩ l2 /∈ l3. If wi + 1

is the number of planes on li, i = 1, 2, 3, then
1

27
(w1 + w2 + w3)

3 ≥
w1w2w3 ≥ v − |E|.

b) If E has b lines, then E meets at least b 3
√

v − |E| other planes.

Proof. Part b) follows form a) and Lemma 2.2 b), applied with ε = 0

and s = 3
√

v − |E|. The first inequality in a) holds for all non-negative

integers. Every point P not in E determines a triple (E1, E2, E3) where

Ei is the plane on P and li. Since distinct points yield distinct triples,

we obtain w1w2w3 ≥ v − |E|.

3 – The maximum number of points of planes and lines

For the rest of this paper, S denotes a non-degenerate restricted

planar space with v points and π planes, where n3 ≤ v < (n + 1)3 and

π ≤ v + n2 + n for some integer n ≥ 4. For a point P , we denote by πP

the number of planes on P . Two distinct lines h and l are coplanar if

they are in a common plane, which is denoted by hl in this case. For a

point P and a line l not on P , the plane on P and l is denoted by Pl.

For a point P , we denote the quotient geometry at P by S/P ; this is the

linear space whose ‘points’ are the lines of S on P and whose ‘lines’ are

the planes of S on P , where incidence is inclusion. Notice that πP ≥ rP
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by the de Bruijn-Erdös Theorem, and that a plane E that does contain

P is canonically embedded in S/P (via the map x → Px for every point

and line x of E).

Lemma 3.1.

a) If E is a plane, then at most one line of E is only in two planes.

b) The quotient geometries at points are non-degenerate linear spaces.

Proof. Assume that some plane E has two distinct lines l1 and l2
such that li lies only in E and one more plane Ei, i = 1, 2. Then every

point is in E or in E1 ∩ E2. Since S is non-degenerate, it follows that

l := E1 ∩ E2 is a line. Put k = kl and e = |E|.
Assume that l ∩ E = ∅. Then at most

e

2
lines of E are coplanar to

l. Since E has at least e lines, it follows that at least
e

2
lines of E lie in

at least k planes other than E. It follows that π ≥ 1 +
e

2
+

e

2
· k. Since

π ≤ v + n2 + n = e + k + n2 + n, we obtain (e − 2)(k − 1) ≤ 2n2 + 2n.

Since e + k = v, e ≥ 3, k ≥ 2, v ≥ n3, and n ≥ 4, this is a contradiction.

Hence l and E meet in a point P .

Since S is non-degenerate, we have e ≤ v − 2 and the plane E is a

non-degenerate linear space. Put r := rP , and denote by b the number

of lines of E. Every line of E that does not contain P , lies in k planes,

which meet l in a unique point. Every other plane contains P . Since P

is on r planes, and since E has b − (r − 1) lines that do not contain P ,

we obtain π = r + (b + 1 − r)(k − 1) = b + k − 1 + (b − r)(k − 2). Since

v = e + k − 1 ≤ b + k − 1, we obtain (b − r)(k − 2) ≤ π − v ≤ n2 + n.

Since E is non-degenerate, we have b ≥ 2(r − 1) by Lemma 2.1. Hence

2(b − r) ≥ b − 2 ≥ e − 2. Together it follows (e − 2)(k − 2) ≤ 2(n2 + n).

But e ≤ v − 2, and thus (e − 2)(k − 2) = (e − 2)(v − e − 1) ≥ v − 4 ≥
n3−4 > 2(n2+n), a contradiction. This proves a) and b) is an immediate

consequence of a).

Lemma 3.2. If E is a non-degenerate plane with at least b lines,

then b 3
√

v − b ≤ v + n2 + n.
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Proof. Let b′ be the number of lines of E. Then E has at most

b′ points, so π ≥ b′ 3
√

v − b′ by Lemma 2.3 b). Lemma 3.1 says that

at most one line of E lies in only two planes. Hence π ≥ 2b′ and thus

4b′ ≤ 2π ≤ 2(v+n2+n) ≤ 3v. It follows that the function b′ → b
′3(v−b′) is

monotone increasing for the possible values of b′ (since the first derivation

is 3b
′2v − 4b

′3). The assertion follows from b′ ≥ b and π ≤ v + n2 + n.

Lemma 3.3. A plane with the maximum number of points is non-

degenerate.

Proof. Consider a plane E with the maximum number e of points,

and assume that E is degenerate, that is E has a line l with k := e − 1

points. Then every plane on l has e points, so l is in v − k planes. Let P

be the point of E not on l. Then P lies on k lines of E. Lemma 3.1 a)

implies that P lies on at least 2k − 1 planes other than E. Hence π ≥
v − k + 2k − 1 = v + k − 1, so k ≤ π − v + 1 ≤ n2 + n + 1.

In E the point P lies on k lines, all of which have degree 2. Let α be

the minimum number of planes on one of these lines. Since k + 1 is the

maximum number of points in a plane, we must have v − 2 ≤ α(k − 1).

Furthermore, P lies on at least k(α − 1) planes other than E, so π ≥
(v − k) + k(α − 1). Hence n2 + n ≥ π − v ≥ v − 2k + α − 2. Using

k ≤ n2 + n + 1, α ≥ 2, n ≥ 4 and v ≥ n3 gives a contradiction.

Lemma 3.4. Every plane has at most n2 + n + 1 points.

Proof. Let E be a plane with the maximum number of points, put

e := |E|, and denote by bE the number of lines of E. By Lemma 3.3,

E is non-degenerate. Lemma 3.1 implies 2bE ≤ π ≤ v + n2 + n. Since

n3 ≤ v ≤ (n + 1)3 − 1, Lemma 3.2 implies that bE < (n + 2)2. Now, the

main result of [3] gives e ≤ n2 + 3n + 3 = (n + 1)2 + (n + 1) + 1.

Assume that e ≥ n2 + n + 2. Since E is non-degenerate, the main

result of [3], shows that bE ≥ b := n2 + 3n + 1. Using Lemma 3.2 and

v ≥ n3, we conclude that v > n3 + 2n2 > (n − 1)e. Hence v − |E| > n3,

and every line is in at least n planes.

Let L(E) be the set of lines of E. For l ∈ L(E), we denote by w(l)+1

the number of planes through l. Then w(l) ≥ n − 1 for l ∈ L(E). Also
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π ≥ 1+
∑

l∈L(E)

w(l). Consider three non-confluent lines l1, l2, l3 of E at least

two of which meet, and put wi := w(li). Then w1w2w3 ≥ v − |E| > n3

by 2.3. Using wi ≥ n − 1, we obtain w1 + w2 + w3 ≥ 3n + 1. Lemma 2.2

(used with s = n+1, ε = 2) shows that π ≥ bE

(
n+

1

2

)
. Hence π − |E| ≥

bE

(
n − 1

2

)
≥ (n2 + 3n + 1)

(
n − 1

2

)
. Using v ≥ π − n2 − n, we obtain

v − |E| > n2(n + 1). Hence w1w2w3 > n2(n + 1) by Lemma 2.3 a). Using

wi ≥ n − 1, we obtain w1 + w2 + w3 ≥ 3n + 2. Lemma 2.2 (used with

s = n + 1, ε = 1) gives π ≥ bE(n + 1) − 1 ≥ (n2 + 3n + 1)(n + 1). But

π ≤ v + n2 + n and v ≤ (n + 1)3 − 1, a contradiction.

Lemma 3.5.

a) Every lines lies in at least n planes.

b) Every line has less than 3n points.

c) Suppose that E is a non-degenerate plane E with b lines. Then E

meets at least bn − 1 planes %= E in a line. In particular π ≥ bn.

Proof. a) Since v ≥ n3 > (n − 1)(n2 + n + 1), this follows from

Lemma 3.4.

b) Assume that l is a line with k ≥ 3n points. By a), each of the

v −k points not on l is on at least k(n−1) planes that meet l in precisely

one point. Since each such plane has at most n2 + n points not on l

(Lemma 3.4), it follows that (v − k)k(n − 1) ≤ π(n2 + n).

From Lemma 3.4, we get k ≤ n2 + n. Hence 3n ≤ k ≤ v − 3n,

so (v − k)k ≥ 3n(v − 3n) and thus 3(v − 3n)(n − 1) ≤ π(n + 1). But

π ≤ v + n2 + n and v ≥ n3, a contradiction.

c) Consider three non-confluent lines l1, l2, l3 ∈ M at least two of

which meet, and denote by 1+wi the number of planes on li. Lemma 2.3

shows that w1w2w3 ≥ v − |E| ≥ n3 − (n2 + n + 1) > (n − 1)2n. Since,

by a), wi ≥ n − 1, it follows that w1 + w2 + w3 ≥ 3n − 1. The assertion

follows from Lemma 2.2 b).

Lemma 3.6. Every point lies on at least n2 + n planes.
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Proof. Let P be a point lying on the minimum number of planes,

and assume that πP < n2 + n. Put r := rP . Since, by Lemma 3.1 b),

S/P is a non-degenerate linear space, it follows from the main result of

[3] that r ≤ n2 − n + 2.

Choose lines l1, l2 on P such that kl ≤ kl2 ≤ kl1 for all lines l on P

other than l1. Put kl1 = k1 + 1 and kl2 = k2 + 1. The plane E := l1l2 has

at least 2 + k1k2 lines. We have n3 − 1 ≤ v − 1 ≤ k1 + (r − 1)k2. Since

k1 < 3n − 1 (Lemma 3.5) and r ≤ n2 − n + 2, it follows that k2 > n.

Hence k1k2 ≥ k2
2 ≥ (n + 1)2, and thus E has at least b := n2 + 2n + 3

lines. It follows that every point not on E lies on at least b planes.

Recall that every plane has at most e := n2 + n + 1 points. By the

choice of P , every point of E lies on at least πP planes. Thus, if t is

the number of incident point-plane pairs, then t ≥ (v − |E|)b + |E|πP ≥
(v − e)b + eπP . On the other hand, since the planes not on P have at

most r points, we have t ≤ (π − πP )r + πP · e. Using π ≤ v + n2 + n, we

obtain (v − e)b ≤ (v + n2 + n − πP )r. Since r ≤ n2 − n + 2, v ≥ n3 and

πP ≥ r, this is a contradiction.

Lemma 3.7. If E1, . . . , Ev are distinct planes, then there exists an

enumeration P1, . . . , Pv of the points such that Pi /∈ Ei, i = 1, . . . , v.

Proof. Let Fi be the complement of the set of points of Ei. We have

to find an enumeration P1, . . . , Pv of the points such that Pi ∈ Fi. By P.

Hall’s marriage theorem [6], it suffices to show that f := | ⋃
F∈F

F | ≤ |F|
for every subset F of {F1, . . . , Fv}. This is trivial, if |F| ≤ 1 or f = v. If

|F| ≥ 2 and f ≤ v − 2, let P and Q be two points not in
⋃

F∈F
F ; then the

planes corresponding to the elements of F contain the line l := PQ, so

|F| ≤ v − kl. On the other hand, since |F| ≥ 2, the elements of F cover

all points not on l, so f = v−kl. Finally consider the case that f = v−1,

so there is a unique point P contained in all planes corresponding to the

elements of F . We have to show that |F| ≤ v − 1, that is that P is in at

most v − 1 planes.

Assume that πP ≥ v. Then at most n2 + n planes do not contain P .

If b is the number of lines of a plane E not containing P , then Lemma 3.5

implies that E meets b(n− 1) planes not on P . Hence b ≤ n+2 and thus

|E| ≤ n + 2. Now, if l is a line not on P , then the plane Pl has at most
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n2+n+1 points, and every other plane on l has at most n+2 points. Thus,

if l is on c+1 planes, then n3 ≤ v ≤ n2 +n+1+c(n−kl) ≤ n2 +n+1+cn

giving c ≥ c0 := n2 − n − 1. If l1, l2 are distinct lines not on P , then at

least 2c0 − 1 planes contain l1 or l2 but not P . But 2c0 − 1 > n2 + n, a

contradiction.

Lemma 3.8. There exists a non-incident point-plane pair (P, E)

satisfying πP ≤ |E| + n + 1 and πP ≤ rP + n.

Proof. Choose enumerations E1,. . . , Eπ of the planes and P1,. . . , Pv

of the points such that |Ei| ≥ |Ej| for i < j, and Pi /∈ Ei for i ≤ v. Put

m := min{πPi
− |Ei||i = 1, . . . , v} and e := |Ev|. Then m ≥ 0 and

e ≤ n2 + n + 1. Since
∑

πPi
=

∑ |Ei|, and |Ei| ≤ e for i > v, we have

vm ≤ (π − v)e ≤ n(n + 1)e.

Assume that m ≥ n + 2. Since e ≤ n2 + n + 1 and v ≥ n3, we get

v < n3 +2n and e ≥ n2 +n. Hence π < n3 +n2 +3n. Let b be the number

of lines of Ev. Then b ≤ n2 + n + 2 by 3.5. Since Ev is non-degenerate

(Lemma 3.5 b), Totten’s Theorem implies that Ev can be embedded in a

projective plane of order n. Hence b = n2+n+1. If A is the set consisting

of the planes that do not contain a line of Ev, then |A| ≤ π − bn ≤ 2n by

3.5. Each point Pi not in Ev is on πPi
− b ≥ |Ei|+m− b ≥ |Ev|+m− b ≥

n + 1 planes of A. Counting incident pairs (Pi, A) with Pi /∈ Ev and

A ∈ A, we obtain thus (v − e)(n + 1) ≤ |A|(n2 + n + 1). But v ≥ n3,

|A| ≤ 2n and e ≤ n2 + n + 1, a contradiction.

Let i be an index with πPi
= |Ei| + m ≤ rPi

+ m. If m ≤ n or

rPi
≥ |Ei| + 1, we are done. Suppose therefore that m = n + 1 and

ei := |Ei| = rPi
. Then Ei and S/Pi are isomorphic linear spaces. Hence

Ei has b := πPi
= ei + n + 1 lines. From vm ≤ n(n + 1)e, we get v ≤ en.

Since π ≥ bn (by 3.5), ei ≥ e and π ≤ v+n2+n, we obtain ei = e, π = bn,

v = en, and b = e + n + 1. Since π = bn, some line l of Ei lies in at most

n planes. Hence l is in a plane E with |E| ≥ kl + (v − kl)/n > v/n = e.

Let P be a point not in Ei or E. Using 3.5 and π = bn, we see that every

plane on P meets E in a line, so πP = b = ei + n + 1 ≤ |E| + n. Also

|E| ≤ rP and thus πP ≤ rP + n, since P /∈ E.

Theorem 3.9. Every line has at most n + 1 points.

Proof. By Lemma 3.8, there exist a point P and a plane E satisfying

P /∈ E, πP ≤ |E| + n + 1, and πP ≤ rP + n. Then πP ≥ n2 + n and thus
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rP ≥ n2 and |E| ≥ n2 − 1 by Lemma 3.6. By Totten’s Theorem either

S/P can be embedded in a projective plane of order n, or πP = rP + n

and S/P is an inflated affine plane of order n. Since E is embedded in

S/P , it follows that every line of E has at most n + 1 points.

We call a point of E good , if it lies on at most n + 1 lines of E.

Then E has at least n2 − 1 good points (if S/P and hence E can be

embedded, then even every point of E is good; if S/P is an inflated

affine plane, then S/P has precisely n2 ‘points’ of degree n+1, and since

|E| ≥ πP − n − 1 = rP − 1, it follows that E has at least n2 − 1 points

that lie on at most n + 1 lines of E).

The main result of [3] shows that E has at least n2 + n lines. Thus,

if A is the set consisting of the planes that have no line in common with

E, then Lemma 3.5 shows that |A| ≤ π − (n2 + n)n ≤ v + n − n3.

Assume that there exists a line h of degree k = n+1+d > n+1. By

Lemma 3.5, we have d < 2n − 1. Put t := n2 − n − 2. Consider a point

Q /∈ E ∪h. We claim that Q lies on at least dt planes of A. In fact, let F

be the plane on Q and h. Since lines of E have at most n + 1 points, at

least n2 − 1 − (n + 1) = t good points X of E do not lie in F . Consider

such a good point X. Then the line QX is not coplanar to h and thus

lies in at least k planes. Since X is good, at least k − (n + 1) = d planes

on QX meet E only in the point X. Since there are t choice for X, we

conclude that Q lies on at least dt planes of A.

Counting the number s of incident point-plane pairs with points Q /∈
E ∪ h and planes of A, we conclude that s ≥ (

v − |E| − k
)
dt. Since every

plane has at most e := n2 + n + 1 points, it follows that s ≥ (v − n2 −
2n−2−d)dt. Since 1 ≤ d ≤ 2n−1, it follows that s ≥ (v −n2 −2n−3)t.

On the other hand s ≤ |A|e ≤ (v + n − n3)e. Comparing both bounds

for s using v ≤ (n + 1)3 − 1, gives a contradiction in the case that n ≥ 5.

Hence n = 4 and now the bounds for s yield only that v ≥ 90. We

count the number z of all incident point-plane pairs to obtain a contradic-

tion. Since, by Lemma 3.6, every point lies on at least b := n2 + n planes

and since the points outside E ∪h lie on at least b+ dt ≥ b+ t planes, we

have z ≥ vb(v − e − k)t. On the other hand, since planes have at most

e points, we have z ≤ πe ≤ (v + n2 + n)e. Compare both bounds for z

using n = 4 to obtain v ≤ 70 + 10k/9. But k ≤ 3n − 1 = 11 (Lemma 3.5)

and v ≥ 90, a contradiction.
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4 – Embedding the planes

We call a line long (and otherwise short), if it has degree n + 1.

A line is called ordinary (and otherwise special), if it lies in at most

n + 1 planes. A point P is called ordinary (and otherwise special), if the

quotient geometry S/P can be embedded in a projective plane of order n.

Lemma 4.1.

a) If P is an ordinary point, then rP ≥ n2 and πP ≥ n2 + n. If

rP ≥ n2 + 2, then πP = n2 + n + 1.

b) If P is special, then rP ≥ n2 and πP ≥ n2 + n + 2. If rP ≥ n2 + 1,

then πP ≥ n2 + n + 3. Also πP ≥ rP + n with equality only if S/P is an

inflated affine plane of order n.

Proof. Let P a point. Since every line has at most n+1 points and

since v ≥ n3, we have rP ≥ (v − 1)/n > n2 − 1. This implies a). Now

suppose that P is special. By Lemma 3.1 b), S/P is non-degenerate.

Lemma 5.1 in [7] yields πP ≥ n2 + n + 2, and the Theorem of Totten

shows that πP ≥ rP + n with equality only if S/P is an inflated affine

plane of order n. If πP = n2 + n + 2, then a result of Stinson [9] shows

that rP = n2.

Lemma 4.2. Suppose that P is a point outside a long line l. If

every plane on P meets l, then P is an ordinary point.

Proof. Suppose that L is a linear space with r ≥ n2 points that has

a line l′ of degree n + 1 meeting every other lines. We claim that L can

be embedded in a projective plane of order n (then the lemma follows for

L = S/P and l′ = Pl). Since l′ meets every line, every point not on l′

has degree n + 1. This implies that every line has degree at most n + 1.

Hence r ≤ n2 + n + 1. If every point of l′ has degree at most n + 1, then

L has at most n2 + n + 1 lines, and Lemma 5.1 of [7] shows that L can

be embedded.

Assume a point L ∈ l′ has degree d ≥ n+2. Then some line h on L has

degree x ≤ 1+
(
r − |l′|)/(d−1) ≤ r/(n+1). Choose a point H ∈ h\{L}.

Then some line g %= h on H has degree at least 1 + (r − x)/n > n. Hence

g has degree n + 1, so L is on a line x missing g. Then every point of x

is on at least |g| + 1 = n + 2 lines, a contradiction.
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Lemma 4.3. Suppose that some ordinary long line l has at least n

special points. Then v ≥ n3 + 2n, rP ≥ n2 + 2 for every point P , and

every long line lies in at least n + 1 planes.

Proof. Denote by π′ number of planes meeting l. It follows from

Lemma 4.1 that π′ ≥ n2+n+n(n2+1). Hence v ≥ π−n2−n ≥ n(n2+1).

Theorem 3.9 implies that rP ≥ n2 +1 for every point P . Now Lemma 4.1

shows that π′ ≥ n2 +n+n(n2 +2) giving v ≥ n3 +2n. Hence every point

is on at least n2 + 2 lines. Using Lemma 3.4, it follows every long line is

on at least n + 1 planes.

Lemma 4.4. Suppose that l is an ordinary long line with at least n

special points. Then the ordinary points do not lie in a common plane.

Proof. Let d be the number of planes that miss l, let r denote the

minimum point degree, let s denote the maximum number of short lines

on a point of degree r, and let t be the number of ordinary points of l.

Then v ≤ 1 + rn − s. It follows from Lemma 4.1 and 4.3 that r ≥ n2 + 2,

that l lies on n + 1 planes, that ordinary points lie on n2 + n + 1 planes,

and special points lie on at least r + n planes. Let m be the number of

special points of l that lie on more than r + n planes. Then l meets at

least w := n + 1 + tn2 + (n + 1 − t)(r − 1) + m planes, so π ≥ w + d.

Use π ≤ v + n2 + n to obtain d + s + m ≤ n + (n2 + 1 − r)(1 − t). We

may assume that d ≥ n − 1 (otherwise Lemma 4.2 implies that there

exist at least v − |l| − d(n2 + n + 1) > n2 + n + 1 ordinary points).

Then s + m ≤ 1 + (n2 + 1 − r)(1 − t). It follows that t %= 0 (otherwise

s + m ≤ n2 + 2 − r, so m = 0 and r = n2 + 2; in this case, every point

of l is special and on r lines and r + n = n2 + n + 2 planes, contradicting

Lemma 4.1). Hence t = 1 and s + m ≤ n − d ≤ 1. Since m ≤ 1, we can

find two special points P1, P2 ∈ l that lie on r + n planes. Lemma 4.1 b)

implies that Pi is on r lines and that S/Pi is an inflated affine plane of

order n, i = 1, 2. It follows that P1 lies on precisely n2 ordinary lines.

Since s ≤ 1, there exists a plane E on l such that every line of E on P1

or P2 is long. Consequently E has n2 +n+1 points. From s ≤ 1, we also

deduce that P1 lies on an ordinary long line l′ that is not contained in E.

As for l, we can show that l′ contains an ordinary point P ′. Then P ′ is

not in E, and since E has n2 + n + 1 points, it follows that S/P ′ and E

are projective planes of order n.
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Since d > 0 there exists a plane F missing l. Since E is a projective

plane, we have |E ∩ F | ≤ 1. Hence F contains a line h with h ∩ E = ∅.

Distinct planes on h meet E in disjoint sets of points. Since E is a

projective plane, this implies that at most on plane on h meets E in

a line. Since each point of E spans a plane with h, it follows at least

n2 − n planes on h meet E in a point not on l. Hence d ≥ n2 − n. But

m + d ≤ n − s, a contradiction.

Lemma 4.5. Suppose there exists an ordinary long line. Then every

plane can be embedded in a projective plane of order n.

Proof. In view of Lemma 4.4 we may assume that every ordinary

long line has at least two ordinary points. Suppose that there exists an

ordinary long line l. Since it has two ordinary points, every plane not

on l can be embedded. Assume that l is contained in a plane E that

can not be embedded. Then every ordinary point is in E, and thus every

ordinary long line is a line of E. Consider an ordinary point P on l. Then

P lies on at most n2 lines which are not in E and these lines are short.

Hence v ≤ |E|+n2(n− 1). It follows that |E| ≥ n2 and π ≤ n3 +n+ |E|.
If b is the number of lines in E, then π ≥ bn by Lemma 3.5. Hence

bn ≤ n3 + n + |E|. Since |E| ≤ n2 + n + 1, it follows that b ≤ n2 + n + 2.

Since E can not be embedded, we get |E| ≤ n2+2 from Totten’s Theorem.

Hence bn ≤ n3+b+|E| ≤ n3+n2+n+2, so b ≤ n2+n+1. Since |E| ≥ n2,

Lemma 5.1 of [7] shows that E can be embedded, a contradiction.

Theorem 4.6. Every plane can be embedded in a projective plane

of order n. There exists an ordinary point.

Proof. The preceding two lemmas allow us to assume that every

ordinary line is short. By Lemma 3.8, there is non-incident point-plane

pair (P, E) satisfying πP ≤ |E| + n + 1 and πP ≤ rP + n.

First consider the case that P is ordinary. Then every line on P is

ordinary and thus short. Hence v = n3, rP = n2 + n + 1, and every line

on P has n points. Consequently, S/P is a projective plane of order n.

It follows that every plane on P has n2 points. Since π ≤ v + n2 + n,

Lemma 3.5 shows that every plane has at most n2+n+1 lines. Lemma 5.1
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of [7] implies that the planes on P can be embedded. The planes not

containing P can be embedded, since P is ordinary.

Now consider the case that P is special. Lemma 4.1 implies πP = rP +

n and that S/P is an inflated affine plane. Hence rP ≤ n2+n+1, and P is

on n2 ordinary lines, which are short. This implies that v ≤ 1+ rP n−n2

and π ≤ 1+rP n+n. From v ≥ n3, we get rP ≥ n2 +n. Let b the number

of lines of E. From Lemma 3.5 we get b ≤ π/n. Hence b ≤ rP + 1. Since

|E| ≥ πP − n − 1 = rP − 1, Totten’s Theorem shows that b = n2 + n + 1

and that E can be embedded in a projective plane of order n.

Denote by c the number of planes that do not contain P and do not

meet E in a line. Since P lies on πP − b = rP + n − b planes that do not

meet E in a line, Lemma 3.5 shows that π ≥ bn+rP +n−b+c. Compare

this with π ≤ 1 + rP n + n to obtain rP = n2 + n + 1 and c ≤ 1.

Since P lies on n2 ordinary lines, and since |E| ≥ rP − 1, we can find

an ordinary line l on P that meets E in a point R and contains a third

point P ′. Since E has n2 + n + 1 lines and is embedded, R lies on n + 1

lines of E. Hence every plane on l meets E in a line. Since c ≤ 1, it

follows that P ′ lies on at most one plane that does not meet E in a line.

Hence πP ′ ≤ b + 1 ≤ |E| + 3 and thus πP ≤ rP ′ + 3 < rP ′ + n, so P ′ is

an ordinary point. Now we can apply the first case to P ′ to complete the

proof.

5 – Classification of S

Lemma 5.1.

a) A long line meets every line that is coplanar to it.

b) Suppose that a plane E misses a long line l. Then every point and

line of E is special. If l is an ordinary line, then |E| ≤ n + 1.

c) If a line l lies in exactly c planes, then rP ≤ 1+ cn for every point

P ∈ l.

d) If P is a point, then rP ≤ n2 + n + 1. If P does not lie on a long

line, then rP = n2 + n + 1, v = n3, and every line on P has precisely n

points.

e) If v = n3 and if there exists a special line, then every line lies in

at least n + 1 planes.
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Proof. a) Let E be a plane containing the long line l. By Theo-

rem 4.6, E can be embedded in a projective plane of order n, so l meets

every line of E.

b) It follows from a) that no line of E is coplanar to l. Hence every

line of E lies in at least |l| + 1 = n + 2 planes. Consequently, the lines

and therefore also the points of E are special. Part a) also implies that

l spans distinct planes with distinct points of E, so l is in at least |E|
planes. Thus, if l is ordinary, then |E| ≤ n + 1.

c) This is immediate, since all planes are embedded in projective

planes of order n.

d) By Theorem 4.6 there exists an ordinary point P . Every line on

P is ordinary. Now apply part c) to a line l on P and Q to conclude

that rP ≤ n2 + n + 1. Since v ≥ n3, the second assertion is an immediate

consequence.

e) Suppose that v = n3 and that the line h lies in n planes (cf.

Lemma 3.5); we shall show that every line is ordinary. Then h lies in a

plane E with at least kh + (v − kh)/n points. Hence |E| > n2 + 1. Since

E can be embedded in a projective plane of order n, it follows that E

has b := n2 + n + 1 lines. Let P be any point of E not on h. Then every

line on P that is not in E has at most n points, since h is in n planes.

Hence P is on at most n + 1 long lines, so v − 1 ≤ rP (n − 1) + n + 1,

which implies that rP > n2 + 1. Part c) shows that every line on P lies

in at least n + 1 planes. Hence every line of E other than h lies in at

least n + 1 planes. Thus E meets at least bn − 1 other planes in a line.

Since π ≤ v + n2 + n = bn, it follows that E meets every plane in a line,

and that every line of E other than h is in precisely n + 1 planes. Hence

every line of E is ordinary. Since E meets every plane in a line, we see

that every point not on E is on b lines and thus an ordinary point. This

implies that also all lines not in E are ordinary.

Lemma 5.2. If s is a special line, then there exists an ordinary long

line missing s.

Proof. Assume that every ordinary long line meets s. First we

consider the case that there exists an ordinary long line l that meets s

in a point H. Then each point P ∈ l \ {H} is on at least n2 + n + 1

planes (otherwise Lemma 4.1 shows that rP ≤ n2 + 1 and P is ordinary;
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since v ≥ n3, it follows that some line on P is long and misses s, a

contradiction). Since l lies in at most n + 1 planes, it follows that there

are at least n3 planes that do not contain l but meet l in a point other

than H. Hence l meets at least n3 + πH planes. Lemma 4.2 implies that

every point of s \ {H} lies on a plane missing l. Hence there are at least

ks − 1 planes missing l, so π ≥ n3 + πH + ks − 1. Since πH ≥ n2 + n + 2

(Lemma 4.1), it follows that v ≥ n3 + 1 + ks. In view of Lemma 4.6,

there exists an ordinary point P . Since s meets every ordinary long line,

P lies on at most ks long lines. Hence v ≤ 1 + rP (n − 1) + ks. Since

rP ≤ n2 + n + 1, we obtain v ≤ n3 + ks, a contradiction.

Now consider the case that there does not exist an ordinary long

line. Let P be an ordinary point, put E := Ps, denote by b the number

of lines in E, and by d the number of planes that do not meet E in a

line. Lemma 5.1 d) shows that rP = n2 + n + 1, v = n3, and that every

line on P has length n. Hence πP = n2 + n + 1, S/P is a projective

plane of order n, and E has n2 points. By Lemma 5.1 e), every line

of E is in at least n + 1 planes. Since s lies in at least n + 2 planes,

it follows that π ≥ bn + 2 + d. Since π ≤ v + n2 + n, it follows that

b ≤ n2 + n. Since |E| = n2 and E is embedded in a projective plane, we

have b = n2 + n. Since every point X not on E is on at least n2 + n + 1

planes (use Lemma 4.1 if X is special, and the argument we used for P

if X is ordinary), it follows that d(n2 +n+1) ≥ v − |E|. Hence d ≥ n− 1

and thus π ≥ bn+2+d ≥ n3+n2+n+1 > v+n2+n, a contradiction.

Lemma 5.3. a) Every long line is ordinary.

b) Suppose that the special line s lies on n+1+ δ planes. Then δ +1

of the planes on s have at most n + 1 points and have only special lines

and points.

c) A special point lies on a special line.

Proof. a) Assume that s is a special long line. By Lemma 5.2, there

exists an ordinary long line l missing s. Since s is special, it lies on a

plane E missing l. Clearly, |E| > ks = n + 1. However, |E| ≤ n + 1 by

Lemma 5.1 b), a contradiction.

b) Lemmas 5.2 shows that there exists an ordinary long line l missing

s. Lemma 5.1 a) shows that l and s are not coplanar. Hence δ planes

on s miss l. Let E be a plane on s missing l, and P a point of E not
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on s. Then |E| ≤ n + 1 by Lemma 5.1 b). Hence not every line of E

on P has n points, so Lemma 5.1 d) shows that P lies on a long line l′.

Since |E| ≤ n + 1, the line l′ is not a line of E. Hence l′ misses s, which

implies that s lies on δ planes that miss l′. Since E meets l′ and misses

l, it follows that s lies on δ + 1 planes that miss either l or l′. Since, by

a), l and l′ are ordinary, the assertion follows from Lemma 5.1 b).

c) In view of Lemmas 3.1 b) and 4.1, it suffices to show that any

non-degenerate linear space with r ≥ n2 points in which every point is on

at most n + 1 lines has at most n2 + n + 1 lines. Let L be a linear space

with these properties. Then every line of L has at most n + 1 points. If

every line of L has at most n points, then r ≥ n2 implies that all lines of

L have n points and every point of L is on n + 1 lines; in this case L is

an affine plane of order n and has thus n2 + n lines. If some l of L has

n + 1 points, then l must meet every line, and therefore L has at most

n2 + n + 1 lines.

Lemma 5.4. A long line has at most one special point.

Proof. Let l be a long line and suppose that l has two special points

P and P ′. Let α be the number of planes on l, and denote them by

E1, . . . , Eα. If P has degree at most n in Ei, then put gi := 0. If P has

degree n+1 in Ei, then let gi +1 denote the minimum degree of the lines

of Ei on P . Similarly define g′
i, i = 1, . . . , α, for P ′. Put G :=

α∑
i=1

gi and

G′ :=
α∑

i=1
g′

i. Since Ei can be embedded in a projective plane of order n,

we have |Ei| ≤ n + 1 + (n − 1)2 + gi + g′
i. Hence,

(1) n3 ≤ v = n + 1 +
α∑

i=1

(|Ei| − n − 1
) ≤ n + 1 + α(n − 1)2 + G + G′ .

Consider distinct planes Ei and Ej on l. We claim that gi + gj ≤ n.

To see this, we may assume that P has degree n + 1 in Ei and Ej. By

Lemma 5.3 c), P lies on a special line x. We may assume that x %⊆ Ei.

Since P has degree n + 1 in Ei, Lemma 5.3 b) implies that x lies on a

plane that meets Ei in a special line xi. The same Lemma shows that xi

lies in a plane E that has at most n + 1 points and meets Ej in a line xj.
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Hence |xi ∪ xj| ≤ |E| ≤ n + 1. Since 1 + gi is minimum degree of a line

of Ei on P , it follows that 1 + gi + gj ≤ |xi ∪ xj| ≤ n + 1.

Hence gi + gj ≤ n for distinct indices i, j ∈ {1, . . . , α}. It follows

easily that G ≤ 1

2
αn. Also G ≤ 1

2
(α−1)n, if gi = 0 for at least one index

x. Similarly G′ ≤ 1

2
αn. Using inequality (1), it follows that α > n, and

thus α = n + 1, since l is ordinary.

Assume that some point of X ∈ l lies on at most n2 +n planes. Then

rX ≤ n2 +1 by the main result of [3]. Hence, if n+1− di is the degree of

X in Ei, then d :=
n+1∑
i=1

di ≥ n. We can improve the above bound for |Ei|
now to |Ei| ≤ n + 1 + (n − 1)2 + gi + g′

i − di(n − 2) and then inequality

(1) gives n3 ≤ v ≤ n + 1 + α(n − 1)2 + G + G′ − d(n − 2). But d ≥ n,

α = n + 1, and G, G′ ≤ 1

2
n(n + 1), a contradiction.

Hence l lies in n+1 planes and every point of l lies on at least n2+n+1

planes. If P lies on n2 + n + 1 + p planes and if P ′ lies on n2 + n + 1 + p′

planes, then it follows that l meets at least n3 +n2 +n+1+p+p′ planes.

Hence v ≥ π−n2 ≥ n3+1+p+p′. Using v ≤ n+1+(n+1)(n−1)2+G+G′,

we obtain G+G′ ≥ n2 − 1+ p+ p′. Since p, p′ ≥ 1 (Lemma 4.1), we have

G + G′ > n2.

We may assume that G ≥ G′, which implies that G >
1

2
n2. This

implies that gi > 0 for i = 1, . . . , n + 1, which means that P has degree

n + 1 in every plane Ei. Hence rP = n2 + n + 1. Since P is a special

point, it follows that πP ≥ rP + n ≥ n2 + 2n + 1.

Hence p ≥ n. It follows that G + G′ ≥ n2 − 1 + p + p′ ≥ n2 + n.

Since G, G′ ≤ 1

2
n(n + 1) we obtain equality. Hence G = G′ =

1

2
n(n + 1),

p = n and p′ = 1. However G′ >
1

2
n2 implies as before that p′ ≥ n, a

contradiction.

Lemma 5.5.

a) Every line that has two special points is special and has only special

points.

b) Every plane with three non-collinear special points has only special

points.
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Proof. a) Since lines on ordinary points are ordinary, it suffices to

show that an ordinary line has at most one special point. Assume on the

contrary that there exists an ordinary line g with two special points S

and S′. The preceding lemma says that g is short. Let s be a special

line on S and let s′ be a special line on S′ (Lemma 5.3 c). Lemma 5.3 b)

shows that s′ lies in a plane T that has at most n+1 points. This implies

that some line of T on S′ has less than n points. Lemma 5.1 d) implies

therefore that S′ lies on a long line l. Since s has only special points,

Lemma 5.4 shows that l misses s, and then Lemmas 5.1 a) shows that l

and s are not coplanar. Thus s lies in n + 1 distinct planes that meet l.

Hence Lemma 5.3 b) yields that s lies in a plane F that has only special

points and lines and that meets l in a special point X. Since g is ordinary,

we have F %= E. Hence X %= S′ and thus l contains two special points,

contradicting Lemma 5.4.

b) Suppose that E is a plane with three non-collinear special points

Q, R, S, and denote by χ the set consisting of all special points of E.

By a), any line that has two points in χ is contained in χ. Assume that

E has an ordinary point P . Then all lines PX, X ∈ χ, are distinct

and hence |χ| ≤ n + 1. Thus the lines SQ and SR have together at

most n + 1 points. Lemma 5.1 d) implies that S lies on a long line l.

Lemma 5.4 shows that S is the only special point of l. Hence l misses

the line s := QR. Lemma 5.1 a) shows that l is not a line of E. Hence

distinct points of l span distinct planes with s. Since E has an ordinary

point, it follows that each of the n + 1 planes on s that meets l has an

ordinary point. This contradicts Lemma 5.3 b).

Now we are in position to complete the proof of the main theorem.

If every line is ordinary (so also every point is ordinary by Lemma 5.3 c),

then Theorem 1.3 and the final remark in [8] show that n is a prime power

and S can be embedded in PG(3, n).

From now on we shall assume that there exists at least one spe-

cial point. We denote the set of special points by P∞. It follows from

Lemma 5.3 c) and b) that there are two planes all of whose points lie in

P∞. Thus Lemma 5.5 implies that S induces a planar space S∞ on the

set P∞. We define a new planar space S′ as follows. It has the same

structure as S except that we replace all planes that are contained in P∞
be a new plane E∞ whose point set is P∞. Lemma 5.5 garanties that S′
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is in fact a planar space. It follows from Lemma 5.3 b) that every special

line of S lies in S′ on at most n + 1 planes. As before, it follows from [8]

that n is a prime power and that S′ can be embedded in PG(3, n). Let

A denote planar structure obtained by removing the plane E∞ and all

points and lines of E∞ from S′ (we do not call A a planar space, since

it might have lines with one point or planes without three non-collinear

points). Since S′ is embedded in PG(3, n), it follows that A is embedded

in AG(3, n).

Let π∞ be the number of planes contained in P∞, that is π∞ is the

number of planes of S∞, and put v∞ := |P∞|. From the result of Greene

mentioned in the introduction, we get that π∞ ≥ v∞ with equality iff S∞
is a generalized projective space. Let v0 be the number of points and π0

be the number of planes of A. Then v = v0 + v∞ and π = π0 + π∞. The

planar space S′ has π0 + 1 planes.

Since the points of P∞ are all contained in the plane E∞ of S′, we

have v∞ ≤ n2 + n + 1. Hence v0 = v − v∞ ≥ n3 − n2 − n − 1. Since A is

embedded in AG(3, n), it follows that π0 ≥ v0 + n2 + n with equality iff

A = AG(3, n). Since

v + n2 + n ≥ π = π0 + π∞ ≥ π0 + v∞ ≥ v0 + n2 + n + v∞ = v + n2 + n ,

it follows that A = AG(3, n) and π∞ = v∞. Hence S∞ is a generalized

projective space, and S is AG(3, n) with the generalized projective space

S∞ at infinity. This completes the proof of Theorem 1.1.

In order to complete the classification, it remains to investigate the

structure of the generalized projective 3-space S∞. We know that S∞,

considered as a linear space, is embedded in PG(2, n). Thus, we have to

determine which linear spaces that are embedded in PG(2, n) can be en-

dowed with a set of planes to obtain a generalized projective 3-space. It is

not too difficult to see that there are only the following three possibilities.

S∞ is a projective 3-space PG(3, m) with n = me for an integer e ≥ 4.

S∞ is the direct product of a desarguesian projective plane PG(2, m)

and a point which n = me for some integer e ≥ 3.

S∞ is contained in the union of two lines of PG(2, n).
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