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Conformal geometry of Riemannian submanifolds

Gauss, Codazzi and Ricci equations

L. ORNEA – G. ROMANI

Riassunto: Sia f : (N, g) → (N, ḡ) un’immersione di varietà Riemanniane. Sta-
biliamo una relazione tra il tensore di Weyl di N ed il tensore di Weyl della restrizione
ad N del tensore di curvatura di N . Tale relazione è invariante per cambiamenti
conformi delle metriche di N e di N . Se ne deduce un’applicazione alle varietà local-
mente conformemente kähleriane. Supponendo poi f solamente isometrica si dimostra
che le equazioni di Ricci di N , come sottovarietà di N , sono invarianti rispetto a cam-
biamenti conformi della metrica di N . Infine si trovano equazioni analoghe a quelle di
Codazzi ma, a differenza di queste, invarianti per cambiamenti conformi della metrica
di N .

Abstract: Let f : (N, g) → (N, ḡ) be a conformal immersion of Riemannian
manifolds. We establish a relation between the Weyl tensor of N and the Weyl tensor
of the restriction to N of the curvature tensor of N . Such relation is invariant for
conformal changes of the metrics of N and N . An application to the locally conformal
Kähler manifolds is given. If f is an isometry we prove that Ricci equation of N ,
as submanifold of N , is invariant under conformal changes of the metric of N . The
analogous of Codazzi equation, in conformal geometry, is found.

– Preliminaries

This paper is composed of two parts. These are similar but different

for the context and for the techniques used. In the first one we deal with
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isometric and conformal immersions of Riemannian manifolds and from

it we deduce a “Conformal Gauss equation”. We use here a well known

projector, C, defined on the space of curvature tensors (see [1]).

In the second part we only consider an isometric immersion to deduce

from it “Conformal Codazzi and Ricci” equations. Another projector, C,

is now involved.

Conformal Gauss, Codazzi, Ricci equations are used in [4] to find out

the ones we call fundamental equations of a conformal submertion.

Finally, let us make the convention that all manifolds and geometric

objects defined on them are supposed to be differentiable of class C∞.

Furthermore, as our study is purely local, we shall consider the case of a

Riemannian submanifold N of (N, g) and shall make no formal distinction

between g and gN , nor between a tangent vector field on N and its image

in f(N).

We want to thank one of the refererees to having suggested a pre-

sentation of the projectors C and C, different from the original one, that

simplified the proofs of Lemma 3.1, and of Lemma 8.1.

PART I

1 – Introduction

For an isometric immersion f : N → N of Riemannian manifolds, the

Gauss equation shows that the curvature tensor of N , when evaluated on

vector field tangent to N , differs from the curvature tensor of N by a

tensor involving only the second fundamental form of the immersion.

When we let the metric on N move in its conformal class it is natural

to ask about the relation among the Weyl conformal curvature tensors of

N and N , Their difference must be conformally invariant. We shall call

such a relation conformal Gauss equation for an isometric immersion.

It is to note two different view point in formulating the problem.

Firstly, one considers the relation between the restriction on N of the

Weyl tensor W of R and the Weyl tensor of N,W . This view point was

adopted in [8]. Secondly, one looks at the Weyl tensor W N of the re-

striction on N of R and W . This second way is followed in the present

work. A part from this view point the equation we obtain in Section 3

is the same as that obtained by K. Yano. Nextly, in Section 4 we shall
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be concerned with conformal changes of the metric of the immersed sub-

manifold. Starting with a conformal immersion f : N → N we obtain

an equation we call conformal Gauss equation for conformal immersion.

It will relate the Weyl tensor of N and W N . In the end of this section

we unify these two approaches using a 2-form which is invariant at inde-

pendent conformal changes of metric on the ambient manifold and on the

immersed one. In Section 5, we give an application for a locally conformal

Kähler manifold N obtaining a necessary condition for a submanifold of

N to be totally umbilical.

2 – Algebraic curvature tensors

In this section, we briefly recall, from [1], for the sake of completeness,

the definition and main properties of algebraic curvature tensors.

Let (V, g) be an n-dimensional Euclidean vector space.

Definition 2.1. A (0, 4) tensor T on V is said an algebraic cur-

vature tensor (a.c.t) if it satisfies the following properties

1) T (X, Y, Z, W ) + T (Y, X, Z, W ) = 0

2) T (X, Y, Z, W ) + T (X, Y, W, Z) = 0

3) T (X, Y, Z, W )+T (X, W, Y, Z)+T (X, Z, W, Y ) = 0 (Bianchi iden-

tity).

We shall denote the space of algebraic curvature tensor by R. If

S2(V ) is the space of symmetric bilinear forms on B and h, k ∈ S2(V ),

then Kulkarni-Nomizu product, h !: k, is defined by

(h !: k)(X, Y, Z, W ) = h(X, Z)k(Y,W ) + h(Y,W )k(X, Z)+

− h(X, W )k(Y, Z) − h(Y,Z)k(X, W ) .

One can easily verify that

h !: k ∈ R
h !: k = k !:h

(h + h′) !: k = h !: k + h′ !: k .

Moreover, if n > 2, the map h → h !: g gives an immersion of S2(V )

in R. Let S be the image of S2(V ) in R and let S⊥ be its orthogonal

complement.
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Definition 2.2. For an a.c.t. T the component of T in S⊥ will be

called the Weyl tensor of T and denoted by C(T ).

By definitions of S and of C for h ∈ S2(V )

C(h !: g) = 0 .

Then if h0 = h −
( 1

n
trh

)
g, k0 = k −

( 1

n
tr k

)
g are the trace-free

components of h, k ∈ S2(V )

C(h0
!: k0) = C(h !: k) .

The Kulkarni-Nomizu product can be extended to V -valued sym-

metric bilinear forms on a subspace U of V , by replacing the ordinary

products by scalar products.

More precisely, for H, K symmetric bilinear forms on a subspace U

of V with values on V , we can define

(H !: K)(X, Y, Z, W ) = g
(
H(X, Z), K(Y,W )

)
+ g

(
H(Y,W ), K(X, Z)

)
+

− g
(
H(X, W ), K(Y, Z)

) − g
(
H(Y,Z), K(X, W )

)
.

As before
H !:K ∈ R

H !: K = K !:H

(H + H ′) !: K = H !: K + H ′ !:K

and if H0, K0 are the trace-free components of H, K,

(2.1) C(H0
!:K0) = C(H !: K) .

In the following for a given symmetric bilinear form K and U with

values in V we shall write

K̃ =
1

2
K !: K .

It is easy to check that C does not vary if g varies in its conformal

class. We shall not specify the metric in which C is computed being the

conformal class of the metric supposed fixed.
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We remark that if
∗
K̃ is defined similarly to K starting from the metric

g∗ = e2σ then

(2.2)
∗
K̃ = e2σK̃ C(

∗
K̃) = e2σC(K̃) .

If (N, g) is a Riemannian manifold with Riemannian curvature tensor

R and Weyl conformal curvature tensor W then

W = C(R) .

3 – Conformal Gauss equation

Let (N, g) be a Riemannian manifold and N a Riemannian subman-

ifold. We denote by B the second fundamental form of N and by H its

mean curvature vector field.

Suppose we make a conformal change of the metric g on the ambient

manifold (from now on, unless otherwise specified, the conformal changes

will always refer to the metric on N) Then the trace - free part of B

usually denoted by

M = B − g · H

is conformally invariant [P − W ]. By definition N is totally umbilical if

M ≡ 0. From (2.1) we immediately obtain

Lemma 3.1. C(B̃) = C(M̃).

Using the Lemma 3.1 we are able to show how C(B̃) and C(M̃) change

when we let g vary in its conformal class.

Let σ be a differentiable function on N and g∗ = e2σg. We denote by

B∗, M∗, the same tensors B,M computed out of g∗. As M is a conformal

invariant, M∗ = M , from (2.1) and Lemma 3.1 we have

C(
∗

B̃∗) = e2σC(B̃∗) = e2σC(M̃∗) = e2σC(M̃) = e2σC(B̃)

and

C(
∗

M̃∗) = e2σC(M̃∗) = e2σC(M̃)
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then

Lemma 3.2. C(
∗

B̃∗) = e2σC(B̃), C(
∗

M̃∗) = e2σC(M̃).

Observe now that the Gauss equation may be written as:

(3.1) RN = R + B̃

where RN is the restriction on N of curvature tensor of N and R is the

curvature tensor of N .

Applying C in both members of (3.1) (thus taking the Weyl part) we

obtain:

(3.2) C(RN) = C(R) + C(B̃) .

But we have seen that C(R) = W . Denoting by W ∗ the Weyl curva-

ture tensor of R∗ (which is the curvature tensor of g∗ = e2σg) we obviously

have

C(R∗) = W ∗ = e2σW = e2σC(R) .

Thus, from Lemma 3.2 and from (3.2) considered for both metrics g

and g∗, we obtain:

C(R
∗
N) = e2σC(RN) .

This shows that formula (3.2) is left unchanged by conformal changes

of the metric on N . Hence, letting W N=C(RN), on account of Lemma 3.1,

(3.2) may be written in a form involving the tensor M , putting better into

evidence its conformal invariance. This is the relation we were looking

for. Now we may state:

Theorem 3.3. With the previous notations, the Gauss conformal

equation of N is

W N = W + C(M̃) .

Corollary 3.4. Let N(dimN > 3) be a submanifold of (N, g). If

C(M̃) is everywhere zero and if the Weyl tensor of the restriction of R to

N is zero, then N locally is conformally flat.

Particularly, M and thus C(M̃) is zero when N is totally umbilical.

We then derive [8]:
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Corollary 3.5. If dimN > 3, N is totally umbilical and N is

locally conformally flat, then N must also be conformally flat.

Remark 3.6 For each x ∈ N and each subspace Vx ⊂ TxN , we

can consider the Weyl tensor of the restriction of R to Vx. Denote it by

C(RV ). From conformal Gauss equation in Theorem 3.3 we deduce

C(R
∗
V ) = e2σC(RV )

where R
∗
V is the restriction of R

∗
, curvature tensor of ḡ∗ = e2σ, to V .

Indeed, one can always consider a local submanifold N passing through

x and with TxN = Vx (e.g.N = expx Vx) and apply the Theorem 3.3.

4 – Conformal immersion

Let (N, g) and (N, ḡ) be two Riemannian manifolds. Suppose i : N →
N is a conformal immersion of N into N , i.e. i∗ḡ = e2σg, σ ∈ C∞(N).

By the above Theorem 3.3 the equality

(4.1) WN = W ∗ + C(
∗
M̃)

holds for (N, g∗ = i∗ḡ). For each x ∈ N , the three (0, 4) tensors involved

in this equation are defined on TxN . We denote by WN , W∗ and D∗(
∗

M̃)

the corresponding (1, 3) tensors with respect to the metric ḡ, the first, g∗

the seconds. From (4.1) we then deduce

(4.2) WN = W∗ + D∗(
∗

M̃∗) .

The reader should observe that D(M̃) is a self defined tensor, not

obtained by a projection. In order to derive the analogous of equation

(4.2) for the manifold N with its fixed metric g we recall the definition of

the second fundamental form of the immersion i in the sense of [3]. This

is defined by

h̄(X, Y ) = ∇XY − ∇XY , X, Y ∈ χ(N)
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where ∇ (resp ∇) is the Levi-Civita connection of ḡ (resp g). Associate

to h̄ its projection on the normal space, with respect to i∗ḡ, of N in N

h(X, Y ) = ⊥h̄(X, Y ) = ⊥∇XY .

It is then clear that

Proposition 4.1. h is independent from the metric of N : h is

infact the second fundamental form B of N endowed with the metric

g∗ = i∗ḡ induced on it by N .

Proposition 4.1 and Lemma 3.1 imply

C(
∗
h̃) = C(

∗
B̃∗) = C(

∗
M̃)

and then also

D∗(
∗

M̃) = D∗(
∗
h̃) .

From (4.2) we deduce

WN = W∗ + D∗(
∗
h̃) .

Note that this last equation holds considering on N the metric i∗ḡ.

A simple computation shows

D∗(
∗
h̃) = D(h̃) .

Observe that W∗ is the Weyl (1, 3) tensor of (N, g∗). If W is the

Weyl (1, 3) tensor of (N, g) by its conformal invariance we deduce:

Proposition 4.2. For a conformal immersion i : N → N the

equation

WN = W + D(h̃)

holds good.
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Let us emphasize that, contrarily to the viewpoint of the previous

section, we were here concerned with conformal changes of metric on the

immersed submanifold, not on the ambient one.

We now try to unify these two approaches. To this end we define on

N the (0, 2) tensor S by:

S(X, Y ) = h(X, Y ) − 1

n
ḡ(X, Y ) trḡ h

(where trḡ h is the trace of h with respect to ḡ).

Remark 4.3 By Proposition 4.1, for any immersion N → N , S

coincide with the form M considered in [6], of the submanifold N with

the metric induced by N . Then,

Proposition 4.4. The 2-form S is invariant at conformal changes

of metric both on N and on N .

Let us look once more to the conformal immersion i : N → N . From

Remark 3.6 we deduce that the tensor WN is invariant with respect to

conformal changes of metric on N . D(S̃) is also invariant at conformal

changes of metric both on N and N . Taking on N the metric i∗ḡ we

obtain an isometric immersion for which equation (4.2) holds good. But

for an isometric immersion S = M and, due to the noted invariance of

the tensor involved in this equation we may state:

Proposition 4.5. The equation

WN = W + D(S̃)

is true for conformal immersion and is left invariant by independent con-

formal changes of metric on N and N .

5 – An application for locally conformal Kähler manifolds

Let (N, J , g) be a Hermitian manifold. If there exists a maximal

open covering {Uα} of N with Kähler metrics g̃α on each Uα, conformally

related to the restriction of g to Uα, g|Uα , then N is said locally conformal

Kähler (l.c.K.). The condition g|Uα = eσα g̃α, σα ∈ C∞(Uα), on Uα shows
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that the fundamental two-forms Ω(X, Y ) = g(X, J Y ) and Ω̃α(X, Y ) =

g̃α(X, J Y ) are related on Uα by the equation Ω = eσαΩ̃α. This, in turn,

implies that the local one forms ωα = dσα fit together and give rise to a

global closed one form ω verifying the equation

dΩ = ω ∧ Ω .

One may now consider the Weyl connection ∇̃ defined by

∇̃XY = ∇XY − 1

2

{
ω(X)Y + ω(Y )X − g(X, Y )ω#

}

and see that ∇̃ is, in fact, the global Levi-Civita connection of the local

system of Kähler metrics {g̃α}; thus ∇̃J = 0. This shows that a l.c.K.

manifold is a Hermite-Weyl structure i.e.
(
N, [g], ∇̃)

is a Weyl manifold,

J is a complex structure parallel with respect to ∇̃ and g(J X, J Y ) =

g(X, Y ) for each representative metric of the conformal class [g]. Con-

versely, it was proved in [5] that, if dimC N ≥ 3, a Hermite-Weyl structure

is always a l.c.k. structure.

We now suppose (N, J , g) be as above with the additional property

that all the local Kähler metrics are flat. Then N is called a l.c.K. flat

[l.c.K0.] manifold. The complex Hopf manifold Hn = Cn \{0}/∆λ, where

∆λ is the group generated by z (→ λz (λ ∈ C, |λ| %= 0, 1) with the metric

4
( ∑

dzk ⊗ dz̄k
)/ ∑

zkz̄k is an example.

It was proved in [7] that, for a compact l.c.K0. manifold, the universal

covering space is Cn \ {0} and the Betti numbers are equal to those of

the Hopf manifold of same dimension.

For a l.c.K0. manifold the Weyl tensor W̃ of the metrics g̃α is of course

zero; g beeing locally conformal to g̃α, due to the local character of a

tensor, we also find the Weyl tensor W of g is zero. So a l.c.K0. manifold

is indeed a locally conformally flat manifold. Then, from Theorem A we

deduce

Corollary 5.1. Let N be a locally conformal Kähler-flat manifold

and N (dimR N > dimR N > 3) a totally umbilical submanifold. Then N

is locally conformally flat. Particularly this is true for totally umbilical

submanifolds of the Hopf manifold.
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PART II

6 – Introduction

We start with an isometric immersion (N, g) → (N, g) of Riemannian

manifolds. As it is well known, Codazzi equation expresses the normal

component of the curvature tensor on N in terms of the second funda-

mental form of the immersion. On another hand Ricci equation gives

the relation between the curvature tensor in the normal bundle and the

curvature tensor on N , always in terms of the second fundamental form.

Our problem is to find out what these equations become when we let the

metric on N move in its conformal class. Are they conformally invari-

ant? The answer is - rather suprisingly, but with a quite simple proof -

affirmative for the Ricci equation (Section 2.6). On the contrary Codazzi

equation is not conformally invariant. To find a conformal analogue for

it we first develop an algebraic theory (Section 2.2) very close to that of

algebraic curvature tensors in [1] but for (1, 3) tensors. We thus construct

an analogue of the Weyl projector; it will be applied in both members of

the Codazzi equation yielding a conformally invariant equation that we

call conformal Codazzi equation.

We note that the same problem was put by K. Yano in [9]. However,

our conformal Codazzi equation is different form that in the quoted paper,

and simpler. On the other hand, the conformally invariance of the Ricci

equation shows the redundance of the corresponding equation in [9].

7 – Algebraic preliminaries

We first prepare some algebraic facts to be used in the next sections.

Let (V n, g) and (V
n̄
, ḡ) be two Euclidean spaces and W the vector

space of all trilinear forms on V with values in V satisfying also the

properties:

1) T (X, Y, Z) + T (Y,X,Z) = 0

2) T (X, Y, Z) + T (Z, X, Y ) + T (Y,Z,X) = 0.

We define a linear endomorphism C of W.

The space V ∗ ⊗ V can be embedded (for n > 1) in W associating to
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α ∈ V ∗ ⊗ V the element of W

(α !: g)(X, Y, Z) = α(X)g(Y, Z) − α(Y )g(X, Z) .

Let L be the image of V ∗⊗V in W and L the orthogonal complement

of L in W.

We shall denote by C the orthogonal projector of W on L.

In particular for α ∈ V ∗ ⊗ V

C(α !: g) = 0 .

Then, as in part I, if T ∈ W and To denote the trace-free part of T

with respect to the first two arguments then

Lemma 7.1. C(To) = C(T ).

If explicitly computed C(T ) looks as follows

C(T )(X, Y, Z) = T (X, Y, Z) − 1

n − 1

∑

i

[
T (Ei, Y, Ei)g(X, Z)+

− T (Ei, X, Ei)g(Y,Z)
]

where {E1, . . . , En} is an orthonormal basis of V .

We consider the action of O(n) on W : for A ∈ O(n),

(AT )(X, Y, Z) = T (AX, AY, AZ) .

With the same method used in [1] for algebraic curvature tensor one

proves:

Proposition 7.2. C(W) is an invariant irreducible subspace of W
with respect to the action of O(n).

Remark 7.3 Although the projection C was defined with the aid of

the metric g it is not affected by a conformal change, indeed, if g∗ = e2σg

is another metric on V and C∗ is the projector C computed with respect

to g∗ then it is easy to check that C∗(T ) = C(T ): we thus see that C is

the proper analogue for (1, 3) tensors of the projector C considered in [1].
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8 – Conformal Codazzi equation

Let f : (N, g) → (N, g), n̄ = dimN > n = dimN > 3, be an

isometric immersion of Riemannian manifolds. We denote by ∇ the Levi-

Civita connection of g on N and by B the second fundamental form of

the immersion. The Codazzi equation is:

⊥R(X, Y )Z = (∇XB)(Y, Z) − (∇Y B)(X, Z)

where ⊥R(X, Y )Z denotes the orthogonal component tensor R of ∇.

For a point x ∈ M we now apply the results of the previous section

for V = TxN and V = T ⊥
x N . We think of ⊥R(X, Y )Z as an element of

W and write the Codazzi equation as

(8.1) ⊥R = ∇̃B

where, generally, for a symmetric (0, 2) tensor field, s with values on

T ⊥N , ∇̃s is defined as

(∇̃s)(X, Y, Z) = (∇Xs)(Y,Z) − (∇Y s)(X, Z) ;

one may check that ∇̃s is also an element of W. Applying the projector

C to both members of (8.1) we get

C(⊥R) = C(∇̃B)

by Lemma 7.1

Lemma 8.1. C(∇̃B) = C(∇̃M).

Although M is conformally invariant, ∇̃M is not. However a straight-

forward computation based on the well-known formula

∇∗
XY = ∇XY + X(σ)Y + Y (σ)X − g(X, Y ) gradσ

relating two connections ∇ and ∇∗ of two conformal metrics, G and

G∗ = e2σG, shows that

Lemma 8.2. If k is a field on N of symmetric bilinear forms with

values on T ⊥N then C(∇̃k) is conformally invariant with respect to g; in

particular C(∇̃M) is left invariant by conformal changes of g on N .
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These two results allow us to state

Theorem 8.3. The equation

C(⊥R) = C(∇̃M)

holds for an isometric immersion and is invariant at conformal changes

on the ambient manifold.

We call this equation the conformal Codazzi equation for isometric

immersion; it is the proper conformal analogue of (8.1).

9 – An explicit expression

From the definition we see that the explicit expression of the confor-

mal Codazzi equation is:

(9.1)

⊥R(X, Y )Z − 1

n − 1

∑

i

[(⊥R(Ei, Y )Ei

)
g(X, Z)+

− (⊥R(Ei, X)Ei

)
g(Y,Z)

]
= (∇XM)(Y, Z)+

− (∇Y M)(X, Z) − 1

n − 1

∑

i

[
(∇XM)(Y, Ei)g(X, Z)+

− (∇Y M)(Ei, Ei)g(X, Z) − (∇Ei
M)(X, Ei)g(Y,Z)+

+ (∇XM)(Ei, Ei)g(Y, Z)
]
.

On another hand we have

Lemma 9.1.
∑
i
(∇XM)(Ei, Ei) = 0 ∀X ∈ TxM .

Proof. Denoting with ∇⊥ the connection induced in the normal

bundle of the immersion and extending E1, . . . , En by parallel displace-

ment along X we obtain

∑

i

(∇XM)(EiEi) =
∑

i

∇⊥
XM(Ei, Ei) =

∑

i

[∇⊥
XB(Ei, Ei)+

− g(Ei, Ei)∇⊥
XH)

]
= ∇⊥

X

∑

i

B(Ei, Ei) − n∇⊥
XH =

= ∇⊥
XnH − n∇⊥

XH = 0 .
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Now (9.1) may be put in the simpler form

(9.2)

⊥R(X, Y )Z − 1

n − 1

∑

i

[(⊥R(Ei, Y )Ei

)
g(X, Z)+

− (⊥R(Ei, X)g(Y, Z)
)]

= (∇XM)(Y,Z) − (∇Y M)(X, Z)+

− 1

n − 1

∑

i

[
(∇Ei

M)(Y,Ei)g(X, Z) − (∇Ei
M)(X, Ei)g(Y,Z)

]
.

Remarks 9.2 1) The first number of (9.2) is a conformal invariant

of an isometric immersion. Besides, this expression may be attached to

any x ∈ N and any subspace Vx ⊂ TxN . It suffices, in fact, to make the

previous reasoning for M = expx Vx.

2) It is to be noted the difference between the equation in Theorem 8.3

(or equivalently (9.2)) and equation (2.5) in [9]. Our equation involves

only the curvature tensor of g while Yano performs essentially the same

computation as we do, but on the Weyl tensor of g.

10 – Ricci equation

This section is devoted to the analyse of the Ricci equation of an

isometric immersion. We first recall it:

g
(
R⊥(X, Y )U, V

)
= g

(
R(X, Y )U, V

) − g
(
[AU , AV ]X, Y

)

where R⊥ is the curvature of the normal bundle and AU(AV ) is the Wein-

garten operator in the normal direction U(V ).

As easy computation convinces us that

g
(
R(X, Y )U, V

)
= g

(
W (X, Y )U, V

)

where W is the (1, 3) Weyl tensor of g on N .

Thus for a conformal metric g∗ = e2σ we have

g∗(R∗(X, Y )U, V
)

= e2σg
(
R(X, Y )U, V

)
.

On the other hand B.Y. Chen proved in [2] that R⊥ is conformally

invariant.
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Then

g∗(R∗⊥(X, Y )U, V
)

= e2σg
(
R⊥(X, Y )U, V

)
.

Now the validity of Ricci equation for the metric g and for the metric

g∗ implies

(10.1) g∗([A∗
U , A∗

V ]X, Y
)

= e2σg
(
[AU , AV ]X, Y

)

and we deduce:

Theorem 10.1. The Ricci equation for an isometric immersion is

conformally invariant.

Remark 10.2. The above result show that equation (2.3) in [10] is

redundant.

Remark 10.3. Equality (10.1) asserts that the map [A] :T ⊥
x N×T ⊥

x N

−→End(TxN) defined by

[A](U, V ) = [AU , AV ] U, V ∈ T ⊥
x N

is conformally invariant.
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