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Heteroclinic orbits on noncompact

Riemannian manifolds

A. GERMINARIO

RIASSUNTO: In questo lavoro si considerano sistemi hamiltoniani su varieta Rie-
manniane non compatte. Si prova I’ esistenza di un’orbita eteroclinica sotto l’ipotesi
che il potenziale V' sia periodico rispetto a t ed abbia due punti di massimo indipendenti
da t.

ABSTRACT: In this paper we consider a second order hamiltonian system on non-
compact Riemannian manifolds. We prove the existence of one heteroclinic orbit under

the assumption that the potential V is periodic in t and has two maximum points inde-
pendent of t.

1 — Introduction

The goal of this paper is to study the existence of heteroclinic orbits
for second order hamiltonian systems

(1) Dyi(t) + VV (t,z(t) = 0,

where z(t) € M, (M, < -, - >) is a smooth, complete, connected, finite
dimensional Riemannian manifold, & is the derivative of x, D;& is the
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covariant derivative of & with respect to the Riemannian structure of M
and VV(t,z) is the gradient of V(¢,x) with respect to the variable z.
Assume also that V is a smooth potential, namely V € C?*(IR x M, IR)
T-periodic in ¢t and with two maximum points.

More precisely V' satisfies the following assumptions:
there exists T' > 0 such that

(2) Vit+T,2)=V(tz)

foranyt € R and x € M;
there exist &1, &, with d(&1,&2) > 0 such that for any t € R

(3) V(t,&) = V(&) =0

and

(4) V(tyx) <0 Vo € M, x# &,
® i -V(a) >0,

uniformly in t.

In assumption (5), with d(-,-) we denote the distance induced by the
Riemannian structure on M, thus (5) controls the decay at infinity of the
function —V .

For heteroclinic orbit we mean a solution z € C?*(IR, M) of (1) such
that x(—00) = &, x(400) = &, ©(+o0) = 0, where z(+o00) and &(+00)
are the limits of x as t — +o0.

The main result of the paper is the following

THEOREM 1.1. IfV satisfies (2)-(5), there exists one heteroclinic
solution of (1).

Recently the existence of heteroclinic and homoclinic orbits has been
largely studied using variational methods both in IRY (see [1,2,4,12,13,14])
and on Riemannian manifolds (see [3,5,7,6,8]).

The problem of heteroclinic orbits emanating from two maximum
points of the potential has been treated by RABINOWITZ [14,12] in RY
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and by LORICA-MOORE [8] for autonomous systems on compact mani-
folds. In this paper it’s not necessary M to be compact and V' depends
on time in periodic way.

The proof of Theorem 1.1 will be carried out at first by the study
of (1) on bounded intervals [—n,n| and then by passing to the limit
as n — +oo. This approach to the problem is motivated by papers
already cited, expecially [14], where a minimization argument is used to
get critical points. In this paper we prove that it can be extended to the
case of noncompact Riemannian manifolds.

2 — Approximating problems

By a well known Theorem of Nash (see [10]), M can be embedded
in RY, for sufficiently large N. The Riemannian structure at z € M is
given by the restriction of the scalar product of RY to T, M.

Now, we shall consider the hamiltonian system (1) on bounded in-
tervals [—n,n], for any n € IN. For this reason, it’s useful to introduce
the space

H’rlL = Hl([_nvn]7M) =

={z:[-n,n] = M|V chart (U,p) pox € H' (z~*(U),R™)},
where m = dim M. As M — IR", we have
Hvlz = {$ € Hl([_nan]va) ‘ w([_nan]) C M}

It’s known (see [11]) that H! is a Hilbert manifold of class C* and
its tangent space at € H} is given by

T.H) ={ve H ([-n,n],TM) | v(s) € TysyM V s € [-n,n]}.
Now we introduce, for any n € IN

Qflz = Q;(fhfva) ={zre Hrll | 2(=n) =&, z(n) = &}
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In [11] it has been proved that Q! is a submanifold of H} and if
x € H}, we have

T.Q) = {veT,H |v(-n) =v(n) =0} =
={ve H'([-n,n],RY) | v(s) € TpsyM Vs, v(—n) = v(n) = 0}.

Define a functional on Q! by
Lo
(6) Fi(z) = /[5 < @i > —V(tx(t))dt.

We have the following

THEOREM 2.1. IfV satysfies (2)-(4), then

1. For every n € IN, there exist

(7) ¢, = min F,(z) > —o0
zeQl

2. there exist M > 0 such that for any n € IN

(8) 0<e, <M.

PROOF. Since F,, > 0 (by (4)), ¢, = infg1 F), is finite. So we can
consider a minimizing sequence, namely a sequence (Z,,)men C 2L such
that

(9) F.(x,,) = ¢, as m — +oo.

From (9) and (4) we deduce that

/<:‘cm,:'cm>dt§K,

—n

where K is a constant independent of m, therefore (z,,)mnen is bounded
in H'([-n,n], R"Y).
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By a well-known theorem, there exist € H'([-n,n],IR") such that (up
to a subsequence) z,, — x weakly in H' and uniformly in [—n,n]. Since
M is closed in R and we have uniform convergence,

z(t) € M Vt € [-n,n],

hence xz € H;}. For the same reason, z(—n) = & and z(n) = &, hence
z €.
Moreover, as m — +00

/—V(t,xm)dt—> /—V(t,x)dt

and for the weakly lower semicontinuity of the functional [ < &, & > dt,

—n

n

lim inf <:'Um,:bm>dt2/<x',ﬂt>dt.
m——+oo
—n

Thus we have

. r ..
< lnllg}rrg [5 < By B, > =V (t, 2 (1))]dE = ¢,
from which we deduce that F,(x) = ¢, so 1. is proved.

It’s easy now to prove 2. Let’s consider a curve v € Q1 and for every

n > 1 define v, : [-n,n] — M

& ift<-1
& ift>1.

Obviously, v, € Q! and by (2), (4) and the definition of ~,,, we have

Fo(vm) = Fi(m),
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thus
0 < cn < Fo(vn) = Fi(m) = M. 0

We can establish in standard way that

vnelN F,eC'(Q,R)

and its critical points are curves that join & and & and solve (1). Let
x, € Q! such that F,(z,) = ¢,. Since, by Theorem 2.1, z,, is a critical
point of F;, now we have a sequence of solution of (1). In next section we’ll
see that we can pass to the limit as n — +oo and obtain a heteroclinic
orbit.

3 — Limit process
First of all, it’s useful to extend z,, to IR, assuming that
z,(t) =& ift<-—n
(10) z,(t) = & if t > n.

If we denote for z € Q),

(11) F(z) = / [% <@ > =Vt a(t)]d,
we have F(z,) = F,(x,), so from Theorem 2.1

(12) F(z,) < M.

From (12)

—+oo
1

thus, as in the proof of Theorem 2.1, there exist € H} (IR, M) such
that (up to a subsequence) z,, — z as n — +o0o, weakly in H'(IR, M) and
uniformly on compact sets of IR. We want to prove that x is a heteroclinic
orbit. To this aim the following Lemmas are necessary.

LEMMA 3.1. F(z) < +oo.
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ProOOF. If by contradiction, F(z) = +oo, there exists a > 0 such
that

a

(13) / [% <@,@ > =Vt a(t)]dt > M +1,

0

where M is defined in (8). On the other hand from (12) we have

[l
/ [ < it > V(b 2a(0)]de < M,
0
from which, passing to the limit, we obtain
rrl
/ [5 <@ > =Vt a(t)]dt < M,
0

in contradiction with (13). 0

REMARK 3.2. Let’s consider R € IR, such that 0 < R < d(&,&2).
For every y : R — M, we define 7,y : R — M, in the following way:

7y(t) = y(t — jT),

for j € Z. Since for all n € IN z,,(—00) = &, substituting, if necessary,
x,, with 7;z,, for some j € Z, we can suppose that

(14) d(z,(0),6) = R
and for t <0
(15) d(z,(t),&) < R.

Thanks to the periodicity assumption (2), for all j € Z, n € IN
F(Tj$n) - F(l‘n),

so (12) is still true and this traslaction doesn’t affect the results obtained
at this moment.
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LEMMA 3.3. There exist M, > 0 such that

supd(x(t), &) < M.
teR

PRrROOF. We assume, by contradiction, that for all £ € IN there exists
t, € R" such that

(16) d(z(ty), &) > k.

Since x,(t) — z(t) uniformly in [0,%;] as n — 400, there exists
ni € IN, n, > k, such that if n > n,

N

(17) sup d(z,(t),z(t)) <

te[0,t]
From (16) and (17) we deduce

k S d(x(tk)vgl) S sup d(z(t)’l‘nk (t)) + d($nk(tk)7§1) S

te(0,ty]
k
< 5 + d(l’nk (tk)? 51)7
thus
k
(18) A (0),6) > 5.

Moreover x,, (—o0) = & implies that there exists a sequence (s;)renw C IR
such that for all k

e~

(19) d(@n, (s), &) <

Therefore there exist an interval [ay, by], such that
k k
d(l‘nk (ak)agl) = Za d(xnk (bk)vgl) = 5

te [ak, bk]
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It’s easy to see that if t € [ay, by]

e~

d(@n, (1), &) = & — d(&, &),
so if we take k > 4d(&;,&,), we have
d(n, (1), &2) > 0

and this, with (2)-(5), ensure that

—d(&,6)} > 0.

|

o = min{~V(t,) | € 0,7, d(a,6)>" d(z, &) >

Now let’s consider

(21) /—V(t, 2o (D)dt > (b — az) > (b — az),

ag

where v is the smallest integer such that v > 4d(;,&,). Moreover

by
% < A, (), 0y (@) < / < (1), o, (1) >V2 dt <
ag
by,
< (b= ) 2 <y (0,20, (8) > d0)'7,
ag
from which we deduce
by
) [ <> de = Gyt
47 by — ay,
ag

Finally, from (21) and (22) we have

Lk,
24 bk—ak

1
—a, k.
22 “

(23) F(an,) 2

+ au(bk - ak) Z

(24)

Vv
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In (24), passing to the limit as £k — +o0o0 we obtain

in contradiction with Lemma 3.1. 0

REMARK 3.4. From Lemma 3.3, we get that x(¢) is bounded in
M, therefore if we denote with A~ (z) (respectly with A*(z)) the set of
accumulation points of x(t) as t — —oo (respectly as t — +00), we have

A= (z), A (z) # 0.

LEMMA 3.5. z(—00), z(400) € {&1,62}.

PROOF. Let’s prove that z(—o0) € {&1,62}.As in [14] (Proposition
3.11), we'll see at first that

(25) A7 (z) N {&, &} #0
and then that
& eA(z) = x(-00) =&,
(26) §r€ A (z) = x(-00) = &.
If (25) isn’t true, there exist § > 0 and p € IR, such that for t < p
(27) d(x(t),&1) = 6 d(x(t),&) = 6.

From (27) and (4), we get

m@z/ﬁvmmmﬁ:+w

— 00

in contradiction with Lemma 3.1.
Let’s prove now that

& e A (z) = z(-00) =&
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From & € A~ (z) we have that there exists a sequence t, — —oo such
that x(t,) — & . If, by contradiction, x(—o00) # &; there exist 6’ > 0 and
s, — —oo such that

(28) d(z(sg), &) > ¢

Define § = min{d’, 3d(&, &)}, if k is sufficiently large we have

(29) d(z(t), &) <

l\DIOn

From (28) and (29), there exist a sequence of intervals [ay, by] such
that

d(z(ag), &) = g’ d(z(by), &) = 0,
S <d(e(®).6) <5 t€lab

Moreover, by our choice of ¢, if ¢ € [ay, by]

d(x(t), &2) 2 d(§1,&2) — 0 >0,

so if we define the constant M; as

M; = min{-V(t,z) | t € [0,T],d(z,&) > =,d(x,&) > d(&,&) — 0},

|

we have M; > 0. Using the same estimates in proving Lemma 3.1, we get

/E < (1), &(t) > =V (t,2(1))|dt > v/2M; 4,

and finally

f/ < @(t), () > —V(t,z(t))|dt =

in contradiction with Lemma 3.1. 0
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4 — Existence of heteroclinic orbits

To complete the proof of Theorem 1.1, it remains to prove that x is a
solution of (1) and that z(—o00) = &, x(400) = &, &(£o0) = 0. We'll see
it in next lemmas, using the properties already got in previous section.

LEMMA 4.1. z(—00) =&, z(+00) =&

PROOF. It’s easy to get x(—o0) = &;. From Remark 3.2 we deduce
that 2(—o0) € Bgr(&:1), while from Lemma 3.5, x(—00) € {&1,&}. There-
fore

r(—00) € Br(&1) N{&, &) = {61}

In proving z(400) = & we follow the same method used by RABI-
NOWITZ in [14] (Proposition 3.12), but it’s necessary to adapt it to the
case of Riemannian manifolds. To this aim we recall that for any z, € M
is defined the exponential map (see [9]) in the following way:

TPy : TogM — M, eapy,(v) = y(1),

where ~ : [0,1] — M is the geodesic such that v(0) = 2, and §(0) = v.
It’s known that there exist € and p such that

expy,  {v e TpyyM: |v] <&} —= {o e M : d(z,z0) < p}

is a diffeomorphism of class C? (|- | is the euclidean norm in IRY).

Let’s consider exp,, and the corresponding € and p. Now we define
(30)

o =min{~V(t,0) [+ € [0,T), dz,6) > 5, dx,&) > d(&,&) ~ B}

and choose ¢ such that

1 R
31 &2 + max —V(t,z) < Va—-=,
(31) 2 t€[0,T), d(z,61)<e (,2) < \/_2\/5

Since the left hand side of (31) goes to 0, as € — 0, such a ¢ certainly
exists. Since expgll is continous, there exist M. > 0 such that

(32) d(z,&) <M. = |exp:'(z)|<e.
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Take 6 > 0, so small that
40 < R, 26 <p, 20 < M..

If by contradiction x(+00) # &, by Lemma 3.5, z(+00) = &;, so there
exist ts > 0 such that ¢ > ts implies that x(¢t) € Bs(&;). Since z, — =
uniformly, if n is sufficiently large we have

(33) (2, (t5), &) < 26.

From (33) and Remark 3.2 and since 20 < R/2, there exist an interval
[a,b] with a < b < t4, such that

dlra(@), &) = Ry d(ea(D),6) = 5,

(34) g < dla,(t),6) <R t€ab.
From (34) we have, for any ¢ € R

d(xn(t), &) > d(61,6) — R
and
(35) A(rala), 2.(0)) > .
As in Lemma 3.3
(36) d(z,(a), z, (b)) < (b— a)l/Q(/b < By dn > dt)V2

a

Combining (35) and (36) and using « as defined in (30), we get

/ E <y dn > =V (t2a(t))]dt >

(37) >
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By (37),

Fl,) > / [% < >~V (taa(t)]dt+

a

+oo
1
- / |5 < i > =V(t2a ()] dt >
ts

+o0

R 1
> SVt / (5 < s > =Vt 2 (1))]dt,
from which
s R
(38) / (5 < i > =Vt 2a(0)]dt < Fa) - 5V
Define
£ it <ts;—1
Ou(t) =4 4(t)  iftelts— 1,4
zo(t)  ift >t
where 7 is the geodesic joining &; and z,(t5).
From (38) we get
P
FQn) = [ [3 <3040 > V(LA 0)de+
. 1
4 / (5 < it > —V(t2a(0))]dt <
P R
3) < [ [5 <4040 > Ve +F) - 5Va

ts—1
Now observe that since 7 is a geodesic

d

g < (0,7 >=0
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thus
<), 3(t) > =<A(ts —1),4(ts — 1) > .

By the definition of the exponential map we have

expe, Y(ts — 1) = xn(ts),

SO

ts

| <040 > dt =< eapglw (), copgau(ts) >=
(40) ts—1

=| expg, z,(ts) < €%,
since (32) holds and d(x,,(ts),&1) < 20 < M.. For the same reason, for
any te [t5 - ].,t[;]

ts

A6 = [ <3040 > dr < ([ <050 > e =

ts—1 ts—1

(41) =| expg, 'z (ts) [< e,
therefore, by (40), (41) and (31), we get in (39)
FQ)<:24  max  —V(La)+ Fo) - Vot <
2 t€[0,T), d(x,€1)<e V2
(42) < Vas o+ Fla,) ~Va s =
R R
= F(z,) — \/Eﬁ =c, — \/5%
As Q,, € Q! (if necessary we can translate it) by (42) we get
0 S Fu(Qu) = F(Qu) < 0 vVar o
2v2
which is impossible. O

LEMMA 4.2. @(£o0) = 0.



278 A. GERMINARIO [16]

PROOF. It’s exactly the same as in the case of homoclinic orbits (see
[5], page 30-32), hence we omit it. 0

End of the proof of Theorem 1.1 By the preceding Lemmas, to prove
that x is a heteroclinic solution of (1) we need only to show that z solves
(1). To this aim it suffices to prove that

+oo
(43) /[< Dyio > — < VV(t,2),0 >]dt = 0

— 00

for all v € C°(R,IRY), but it’s easy to get (43) using the uniform con-
vergence of x,, on compact sets of M.
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