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The convolution in Bq
ap spaces

G. BRUNO

Riassunto: In questo lavoro viene introdotta l’operazione di convoluzione negli
spazi Bq

ap di funzioni quasi periodiche secondo Besicovitch. Si stabiliscono proprietà
riguardanti la trasformata di Bohr e si dimostrano alcuni teoremi di tipo Riesz. Inoltre
l’operazione definita viene estesa agli spazi Bq

ap(IR, IH).

Abstract: In this paper we introduce the convolution in Bq
ap spaces of almost

periodic functions and we find the expected properties concerning the Bohr transform.
Moreover we establish some theorems of Riesz type. Finally we extend the convolution
to the Bq

ap(IR, IH) spaces.

1 – Introduction

As a continuation of the studies initiated in [2, 3, 7, 8], this paper

is devoted to defining the operation of convolution in the Bq
ap spaces

of almost periodic functions, and to examining some properties of this

operation.

In [2] the authors defined the space Bq
ap = Bq

ap(IR, C), for q ∈ [1,+∞[,

of almost periodic (a.p.) functions in the sense of Besicovitch (B-

almost periodic), as the completion of the complex vectorial space P of
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all trigonometric polynomials

P (x) =
n∑

j=1

cje
iλjx , ∀x ∈ IR ,

where λ1, . . . , λn are distinct real numbers and c1, . . . , cn are arbitrary

complex numbers, with respect to the norm

(1.1) ‖P‖q = lim
T→+∞

(
1

2T

T∫

−T

|P (x)|qdx

)1/q

, q ∈ [1,+∞[ .

If cj %= 0, ∀ j = 1, . . . , n, the set

(1.2) σ(P ) := {λ1, . . . , λn}

is called the spectrum of P and the function

(1.3)

a(λ;P ) := lim
T→+∞

1

2T

T∫

−T

P (x)e−iλxdx =

{
cj if λ = λj , j = 1, . . . , n

0 if λ /∈ σ(P )

is called the Bohr transform of P .

Any element of Bq
ap is given by a class of Cauchy sequences of trigono-

metric polynomials (Pn)n∈IN that are equivalent with respect to the norm

‖ · ‖q. It is well known that

‖f‖q = lim
n→∞

‖Pn‖q

and, by Hölder inequality, that

(1.4) B∞
ap := C0

ap ↪→ Bq′′
ap ↪→ Bq′

ap ↪→ B1
ap ,

with 1 < q′ < q′′ < +∞.

On the other hand, via a standard procedure to any f ∈ B1
ap it is

possible to associate univocally its Bohr transform in the following way.

Since

|a(λ;P ) − a(λ;Q)| ≤ ‖P − Q‖1 , ∀ P, Q ∈ P ,
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one has that for any (Pn)n∈IN that is a Cauchy sequence in B1
ap, the se-

quence a(λ;Pn) is uniformly convergent with respect to λ ∈ IR. Therefore,

if (Pn)n∈IN defines the element f of B1
ap, the definition

(1.5) a(λ; f) = lim
n→∞

a(λ;Pn) ,

is also well posed.

This paper is organized as follows:

In Section 2 we introduce the convolution of two trigonometric poly-

nomials.

In Section 3 we extend by continuity the given definition to the B1
ap

spaces and we present some properties of the convolution in the B1
ap

spaces, in particular we state that the Bohr transform of the convolution

is equal to the product of the Bohr transforms.

In Section 4 we establish some theorems of Riesz type concerning

the convolution of the Bq
ap spaces, with q > 1.

Finally in Section 5 we define the convolution of elements of B1
ap(IR, IH)

and B1
ap(IR, C), where IH is a Hilbert space, and we extend the results

to this case.

2 – Convolution in P

Let P denote the complex vector space of all trigonometric polyno-

mials P (x) of the form

(2.1) P (x) =
n∑

j=1

cje
iλjx , ∀ x ∈ IR ,

where n ∈ IN, cj ∈ C and λj ∈ IR, with λj %= λi for j %= i, are arbitrary.

By using the Bohr transform of P (x), a(λ;P ), which was defined in

([2], prop. 2.1) as

(2.2)

a(λ;P ) := lim
T→+∞

1

2T

T∫

−T

P (x)e−iλxdx =

{
cj if λ = λj , j = 1, . . . , n

0 if λ ∈ IR \ {λ1, . . . , λn}



296 G. BRUNO [4]

and the definition of the spectrum of P ([2], def. 2.3), σ(P ), as

(2.3) σ(P ) := {λ ∈ IR / a(λ;P ) %= 0} ⊆ {λ1, . . . , λn} ,

we can then write

(2.4) P (x) =
∑

λ∈σ(P )

a(λ; P )eiλx , ∀ x ∈ IR .

Let us introduce, now, the map

∗ : P × P −→P ,

called the convolution of trigonometric polynomials, by setting for any

P (x) ∈ P and for any Q(x) ∈ P, with Q(x) =
m∑

k=1

dke
iµkx =

∑
µ∈σ(Q)

a(µ; Q)eiµx,

∀x ∈ IR.

(P ∗ Q)(x) := lim
T→+∞

1

2T

T∫

−T

P (x − t)Q(t)dt =(2.5)

= lim
T→+∞

1

2T

T∫

−T

∑

λ∈σ(P )

∑

µ∈σ(Q)

a(λ;P )a(µ;Q)eiλ(x−t)eiµtdt =

= lim
T→+∞

{ ∑

λ∈σ(P )

∑

µ∈σ(Q)

a(λ;P )a(µ;Q)eiλx · 1

2T

T∫

−T

ei(µ−λ)tdt

}
.

By introducing the function (see [1]) ψ(s) =

{
1 if s = 0

0 if s %= 0
and not-

ing that

(2.6) ψ(µ − λ) = lim
T→+∞

1

2T

T∫

−T

ei(µ−λ)tdt =

{
1 if µ = λ

0 if µ %= λ .

We obtain

(2.7)

(P ∗ Q)(x) =
∑

λ∈σ(P )

∑

µ∈σ(Q)

a(λ;P )a(µ;Q)eiλxψ(µ − λ) =

=
∑

λ∈{σ(P )∩σ(Q)}
a(λ;P )a(λ;Q)eiλx .
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We can then deduce

Proposition 2.1. The convolution of two trigonometric polyno-

mials P (x) and Q(x) is a trigonometric polynomial; it is not identically

zero if and only if σ(P ) ∩ σ(Q) %= ∅.
Moreover,

1a) the limit (2.5) exists uniformly with respect to x ∈ IR;

1b) if σ(P ) = σ(Q) = {λ1, . . . , λn} then

(P ∗ Q)(x) =
n∑

j=1

a(λj;P )a(λj;Q)eiλjx .

3 – Convolution in B1
ap

In this section we extend the map introduced by (2.5) to the B1
ap

spaces.

With this aim, fixed two sequences (Pn)n∈IN and (Qn)n∈IN of trigono-

metric polynomials that converge in B1
ap, we set

(3.1)

(Pn ∗ Qn)(x) : = lim
T→+∞

1

2T

T∫

−T

Pn(x − t)Qn(t)dt =

=
∑

λ∈{σ(Pn)∩σ(Qn)}
a(λ;Pn)a(λ; Qn)eiλx .

For each n ∈ IN, (Pn ∗ Qn)(x) is a trigonometric polynomial.

Setting now Rn(x) = (Pn ∗ Qn)(x), we have

Proposition 3.1. Let (Pn)n∈IN and (Qn)n∈IN be Cauchy sequences

of trigonometric polynomials which converge to f and g in B1
ap, respec-

tively. Then (Rn)n∈IN, with Rn = Pn ∗ Qn, is a Cauchy sequence in B1
ap.
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Proof. Firstly, observe that

1

2S

S∫

−S

|Rm(x) − Rn(x)|dx =(3.2)

=
1

2S

S∫

−S

∣∣∣ lim
T→+∞

1

2T

T∫

−T

Pm(x − t)Qm(t)dt+

− lim
T→+∞

1

2T

T∫

−T

Pn(x − t)Qn(t)dt
∣∣∣dx =

=
1

2S

S∫

−S

lim
T→+∞

1

2T

∣∣∣
T∫

−T

[Pm(x − t)Qm(t)−Pn(x − t)Qn(t)]dt
∣∣∣dx=

=
1

2S

S∫

−S

lim
T→+∞

1

2T

∣∣∣
T∫

−T

[Pm(x − t) − Pn(x − t)]Qm(t)+

+Pn(x − t)[Qm(t) − Qn(t)]dt
∣∣∣dx ≤

≤ 1

2S

S∫

−S

[
lim

T→+∞

1

2T

T∫

−T

(|Pm(x − t) − Pn(x − t)| |Qm(t)|+

+|Pn(x − t)| |Qm(t) − Qn(t)|)dt

]
dx=

= lim
T→+∞

1

2S

S∫

−S

[
1

2T

T∫

−T

(|Pm(x − t) − Pn(x − t)| |Qm(t)|+

+|Pn(x − t)| |Qm(t) − Qn(t)|)dt

]
dx =

= lim
T→+∞

1

2T

T∫

−T

|Qm(t)|dt
1

2S

S∫

−S

|Pm(x − t) − Pn(x − t)|dx+

+ lim
T→+∞

1

2T

T∫

−T

|Qm(t) − Qn(t)|dt
1

2S

S∫

−S

|Pn(x − t)|dx .
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Therefore we have

‖Rm − Rn‖1 = lim
S→+∞

1

2S

S∫

−S

|Rm(x) − Rn(x)|dx ≤(3.3)

≤ lim
S→+∞

lim
T→+∞

{
1

2S

S∫

−S

(
1

2T

T∫

−T

|Pm(x−t)−Pn(x−t)| |Qm(t)|dt

)
dx+

+
1

2S

S∫

−S

(
1

2T

T∫

−T

|Pn(x − t)| |Qm(t) − Qn(t)|dt

)
dx

}
=

= lim
S→+∞

lim
T→+∞

1

2T

T∫

−T

|Qm(t)|
(

1

2S

S∫

−S

|Pm(x−t)−Pn(x−t)|dx

)
dt+

+ lim
S→+∞

lim
T→+∞

1

2T

T∫

−T

|Qm(t) − Qn(t)|
(

1

2S

S∫

−S

|Pn(x − t)|dx

)
dt .

Taking now into account that

(3.4)
1

2S

S∫

−S

|Pm(x − t) − Pn(x − t)|dx =
1

2S

S−t∫

−S−t

|Pm(τ) − Pn(τ)|dτ

and since

(3.5) lim
S→+∞

1

2S

S−t∫

−S−t

|Pm(τ) − Pn(τ)|dτ = ‖Pm − Pn‖1

holds uniformly with respect to t ∈ IR (see [1]), from (3.2), (3.3) and (3.4)

it follows that

(3.6) ‖Rm − Rn‖1 ≤ ‖Pm − Pn‖1‖Qm‖1 + ‖Pn‖1‖Qm − Qn‖1 .

Since ‖Qm‖1 and ‖Pn‖1 are bounded sequences in IR it follows that

(Rn)n∈IN is a Cauchy sequence in B1
ap.
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Remark 3.2. Observe that if (P ′
n)n∈IN and (Q′

n)n∈IN are two se-

quences of trigonometric polynomials which converge to f and g in B1
ap,

respectively, one has

‖P ′
n − Pn‖1 −−−−→

n→∞
0 and ‖Q′

n − Qn‖1 −−−−→
n→∞

0 .

Therefore, using the same technique as in the proof of Proposition

2.1, it is possible to show that

‖R′
n − Rn‖1 = ‖(P ′

n ∗ Q′
n) − (Pn ∗ Qn)‖1 −−−−→

n→∞
0 .

We are going to give the following

Definition 3.3. For each f , g ∈ B1
ap and for each Pn, Qn ∈ P,

such that (Pn)n∈IN and (Qn)n∈IN converge to f and g in B1
ap, respectively,

we define the “almost periodic convolution” of f and g in the following

way:

(3.7) (f ∗ g)(x) := lim
n→∞

(Pn ∗ Qn)(x) , ∀ x ∈ IR .

Remark 3.4. The Definition 3.3 is well posed since f ∗g, as observed

in Remark 3.2, does not depend on the sequences (Pn)n∈IN and (Qn)n∈IN

which represent f and g in B1
ap.

Remark 3.5. The almost periodic convolution defined by (3.7) is

more general than that one defined in [1], which is referred to an a.p.

function f and a summable function g.

Given now two sequences (Pn)n∈IN and (Qn)n∈IN of trigonometric

polynomials converging in B1
ap, we can consider the Bohr transform of

the a.p. convolution a(λ;Pn ∗ Qn) of Pn and Qn. Recalling definition

(3.3), (2.2) and (2.3) we have

(3.8) a(λ; Pn ∗ Qn) =

{
cjdk if λ ∈ {σ(Pn) ∩ σ(Qn)}

0 if λ /∈ {σ(Pn) ∩ σ(Qn)} .

Then we can deduce
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Theorem 3.6. Let (Pn)n∈IN and (Qn)n∈IN be two sequences of

trigonometric polynomials converging in B1
ap to f and g, respectively. We

then have

(3.9) a(λ;Pn ∗ Qn) = a(λ; Pn) · a(λ;Qn) , ∀ λ ∈ IR

and

(3.10) a(λ; f ∗ g) = a(λ; f) · a(λ; g) , ∀ λ ∈ IR .

Proof. The thesis (3.9) trivially holds. Indeed it sufficies to observe

that from (3.8) it follows that

a(λ;Pn ∗ Qn) =

{
a(λ;Pn)a(λ; Qn) if λ ∈ {σ(Pn) ∩ σ(Qn)}

0 if λ /∈ {σ(Pn) ∩ σ(Qn)} .

Then, by setting n → ∞ in (3.9), (3.10) holds true.

Consequently we obtain the following result

Corollary 3.7. The Bohr transform of the convolution of two

functions f and g, belonging to B1
ap, is equal to the product of the Bohr

transforms of f and g.

From theorem 3.6 it follows that for the Fourier series of f ∗ g we

have

(f ∗ g)(x) ∼
∑

λ∈σ(f)∩σ(g)

a(λ; f)a(λ; g)eiλx .

This relation is important since it shows that the convolution f ∗ g is

always more regular than both f and g. The results of the next Section

clarify this observation.
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4 – Properties of the convolution in Bq
ap

By recalling (1.4) we can complete the properties of the convolution,

by its extension to the Bq
ap spaces, with q ∈ [1, +∞[. If we consider

Pn, Qn ∈ P such that Pn → f in Br
ap and Qn → g in Bs

ap, we can state

the following theorems.

Theorem 4.1. Let f ∈ Br
ap, and g ∈ Bs

ap, for any r ∈ [1, +∞[ and

s ∈ [1,+∞[ with

(4.1)
1

r
+

1

s
= 1 ,

then (f ∗ g) ∈ C0
ap(:= B∞

ap) and one has

(4.2) ‖f ∗ g‖∞ ≤ ‖f‖r‖g‖s .

Proof. By using the Hölder inequality, we get

|Rn(x) − Rm(x)| =(4.3)

=
∣∣∣ lim

T→+∞

1

2T

T∫

−T

[Pn(x − t)Qn(t) − Pm(x − t)Qm(t)]dt
∣∣∣ ≤

≤ lim
T→+∞

(
1

2T

T∫

−T

|Pn(x − t) − Pm(x − t)|rdt

)1/r( 1

2T

T∫

−T

|Qn(t)|s
)1/s

+

+ lim
T→+∞

(
1

2T

T∫

−T

|Pn(x − t)|r
)1/r( 1

2T

T∫

−T

|Qn(t) − Qm(t)|s
)1/s

.

Then, we can deduce that

(4.4) |Rn(x) − Rm(x)| ≤ ‖Pn − Pm‖r‖Qn‖s + ‖Pn‖r‖Qn − Qm‖s .

Thus (Rn)n∈IN is a Cauchy sequence in C0
ap.
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Moreover from (3.1), again using the Hölder inequality, we obtain

(4.5)

|(Pn∗Qn)(x)|≤ lim
T→+∞

(
1

2T

T∫

−T

|Pn(x − t)|rdt

)1/r( 1

2T

T∫

−T

|Qn(t)|sdt

)1/s

=

= ‖Pn‖r‖Qn‖s .

Hence, taking into account that Pn and Qn converge to f and g,

respectively, one has that, for fixed ε ∈ IR+ there exists ν ∈ IN such that

for each n > ν, we get

(4.6) ‖Pn‖r < ‖f‖r + ε and ‖Qn‖s < ‖g‖s + ε .

Therefore from (4.3), for each n > ν, it follows that

(4.7) |(Pn ∗ Qn)(x)| ≤ (‖f‖r + ε)(‖g‖s + ε) .

Then, from (4.5), (4.7) and by recalling that (Rn)n∈IN is a Cauchy

sequence in C0
ap, setting h(x) := (f ∗ g)(x), we obtain

(4.8)

|h(x)| = |h(x) − Rn(x) + Rn(x)| ≤ |h(x) − Rn(x)| + |Rn(x)| ≤

≤ |h(x) − Rn(x)| + ‖Pn‖r‖Qn‖s ≤

≤ ε + (‖f‖r + ε)(‖g‖s + ε) .

and since ε is arbitrary we can claim that (4.2) holds true.

Theorem 4.2. Let f ∈ Br
ap and g ∈ Bs

ap, for any r ∈ [1, +∞[ and

s ∈ [1,+∞[, with

(4.9)
1

r
+

1

s
− 1 =

1

t
> 0

then (f ∗ g) ∈ Bt
ap and one has

(4.10) ‖f ∗ g‖t ≤ ‖f‖r‖g‖s .
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Proof. We follow the classical procedure. For the reader’s conve-

nience, we report some details.

From (4.5) we have

(4.11)
1

r
=

(
1 − 1

s

)
+

1

t
=

1

v
+

1

t
, with

1

v
= 1 − 1

s
,

therefore we obtain

(4.12) 1 =
r

t
+

r

v
.

Hence, setting

(4.13) c =
1

s
− 1

t
= 1 − 1

r

from (4.11) and (4.13) it follows that

(4.14) c +
1

t
+

1

v
= 1 , with 0 < c < 1 .

It is easy at this point to prove, by using the same technique of proof

as for the theorem 4.1, that (f ∗ g) ∈ Bt
ap.

Let us prove, now, the (4.10).

Observe that from (3.1) we obtain

(4.15) |(Pn ∗ Qn)(x)| ≤ lim
T→+∞

1

2T

T∫

−T

|Pn(x − t)| |Qn(t)|dt

and taking into account (4.11), (4.12) and (4.14) one has

|(Pn ∗ Qn)(x)| ≤(4.16)

≤ lim
T→+∞

1

2T

∫ T

−T

|Pn(x − t)|
r
v (|Qn(t)|

s
t |Pn(x−t)|

r
t |Qn(t)|scdt ≤

≤ lim
T→+∞

(
1

2T

∫ T

−T

|Pn(x−t)|rdt

)1
v
(

1

2T

∫ T

−T

|Qn(t)|s|Pn(x−t)|rdt

)1
t ·

·
(

1

2T

∫ T

−T

|Qn(t)|sdt

)c

=

= ‖Pn‖r/v
r ‖Qn‖s(1/s−1/t)

s lim
T→+∞

(
1

2T

∫ T

−T

|Qn(t)|s|Pn(x − t)|rdt

)1/t

.
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Hence, it follows that

lim
S→+∞

1

2S

S∫

−S

|Rn(x)|tdx ≤(4.17)

≤ ‖Pn‖tr/v
r ‖Qn‖t−s

s lim
S→+∞

S∫

−S

dx lim
T→+∞

T∫

−T

|Qn(t)|s|Pn(x − t)|rdt =

= ‖Pn‖
rt
v

+r
r ‖Qn‖t

s .

Consequently we have

(4.18) ‖Rn‖t ≤ ‖Pn‖
r
v

+
r
t

r ‖Qn‖s = ‖Pn‖r‖Qn‖s .

Then passing to the limit as n → ∞, we can conclude that

‖f ∗ g‖t ≤ ‖f‖r‖g‖s .

Finally, let f ∈ Br
ap, g ∈ Bs

ap, with
1

r
+

1

s
< 1 (r ∈ [1,+∞[, s ∈ [1,+∞[ ).

In this case we can establish that the convolution of f and g is

hölderian, under a summability assumption for the sequence (1/λj)j∈IN.

Indeed, if we have

(4.19)
∞∑

j=1

1

|λj|γ
< +∞ , with γ ≤

(
1 − 1

r
− 1

s

)−1

,

and supposing, with reference to the Hausdorff-Young theorem, that

the sequence of the Fourier coefficients of f and g verifies conditions of

the type

(4.20)

|a(λj; f)| ≤ H

|λj|γ/r′ ; |a(λj; g)| ≤ K

|λj|γ/s′ , with H, K ∈ IR+ ;

we can state the following
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Proposition 4.3. If f ∈ Br
ap, g ∈ Bs

ap, with

(4.21)
1

r
+

1

s
< 1 ,

and the relations (4.19) and (4.20) are true then f ∗ g ∈ C0,α
ap , with

(4.22) α = γ

(
1 − 1

r
− 1

s

)
.

Proof. Note that it is easy to state that f ∗g ∈ C0
ap. It is an obvious

consequence of theorem 4.1 and of the embeddings concerning the Bq
ap

spaces.

Moreover using the same technique as in the proof of the theorem 6.1

in [3], it is enough to observe that

(4.23)

∣∣∣a(λj; f)a(λj; g)|λj|α
∣∣∣ ≤ H

|λj|γ/r′
K

|λj|γ/s′ |λj|γ(1− 1
r − 1

s ) =

=
HK|λj|γ

|λj|γ( 1
r′ + 1

r )+γ( 1
s′ + 1

s )
=

HK

|λj|γ
.

5 – Extension to the Bq
ap(IR, IH) spaces

It is possible to define the spaces Bq
ap(IR, IH), where IH is a Hilbert

space (or more generally a Banach space), as the completion of the

trigonometric polynomials space P(IH), with values in IH (see [8]).

An element of P(IH) can be written as

(5.1) P (x) =
n∑

j=1

γje
iλjx ∀ x ∈ IR ,

where n ∈ IN, γj ∈ IH and λj ∈ IR, with λj %= λi, for j %= i, are arbitrary.

The completion of P(IH) is made relative to the norm

(5.2) |‖P |‖q = lim
T→+∞

(
1

2T

T∫

−T

‖P (x)‖qdx

)1/q

, q ∈ [1,+∞[ ,
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where ‖P (x)‖ is the norm of P (x) in the Hilbert space IH.

If Pn → f in Bq
ap(IR, IH), with Pn ∈ P(IH), for any n ∈ IN, we have

(5.3) |‖f |‖q = lim
n→∞

|‖Pn|‖q .

It is also possible (see [8]) to consider the C0
ap(IR, IH) space and, if f ,

g ∈ C0
ap(IR, IH) and Pn, Qn ∈ P(IH), to set

(5.4) 〈f |g〉 =: lim
n→∞

〈Pn|Qn〉 .

Moreover the following extension of the Hölder inequality holds

(5.5) |〈f |g〉| ≤ |‖f |‖r|‖g|‖s ∀ f ∈ Br
ap(IR, IH) , g ∈ Bs

ap(IR, IH) ,

where
1

r
+

1

s
= 1.

We can now define the convolution of two polynomials P (x) ∈ P(IH)

and Q(x) ∈ P, where P is the set of all numerical trigonometric polyno-

mials, by setting

(5.6) (P ∗ Q)(x) := lim
T→+∞

1

2T

T∫

−T

P (x − t)Q(t)dt .

It is easy to extend (2.5), (2.6) and Proposition 2.1 to this case.

Observe that the convolution in B1
ap(IR, IH) can be seen as an opera-

tion defined in P(IH) × P with values in P(IH)

∗ : P(IH) × P −→P(IH) .

The trigonometric polynomials of numerical type play the role of external

operators for which the commutativity (represented by (2.6) in Bq
ap) and

the continuity with respect to the norm of B1
ap(IR, IH) hold.

By recalling that the Hölder inequality holds also for the prod-

uct of numerical functions and functions which are defined in Hilbert

spaces, we can easily extend our results about the convolution in Bq
ap to

Bq
ap(IR, IH).

By setting Bq
ap(IR, C) = Bq

ap, we have
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Proposition 5.1. Let (Pn)n∈IN ⊂ P(IH) and (Qn)n∈IN ⊂ P be

Cauchy sequences which converge to f in B1
ap(IR, IH) and g in B1

ap(IR, C),

respectively.

Then (Rn)n∈IN, with Rn = Pn ∗ Qn, is a Cauchy sequence in B1
ap(IR, IH).

Definition 5.2. For each f ∈ B1
ap(IR, IH) and g ∈ B1

ap(IR, C)

and for each Pn ∈ P(IH) and Qn ∈ P, such that Pn −→ f and Qn −→ g,

we define the “almost periodic convolution” of f and g, with values in

B1
ap(IR, IH) in the following way

(5.7) (f ∗ g)(x) := lim
n→∞

(Pn ∗ Qn)(x) , ∀ x ∈ IR .

Finally, let us indicate with γ(λ; f) the Bohr transform of the func-

tion f ∈ B1
ap(IR, IH) and with γ(λ, f ∗ g) the Bohr transform of the con-

volution of f and g, with g ∈ B1
ap(IR, C). Then the following theorems

hold true.

Theorem 5.3. Let (Pn)n∈IN ⊂ P(IH) and (Qn)n∈IN ⊂ P be two

sequences of trigonometric polynomials converging to f in B1
ap(IR, IH) and

g in B1
ap(IR, C) respectively, then we have

(5.8) γ(λ; f ∗ g) = γ(λ; f) · a(λ; g) , ∀ λ ∈ IR .

Theorem 5.4. Let f ∈ Br
ap(IR, IH) and g ∈ Bs

ap(IR, C), for any

r ∈ [1,+∞[ and s ∈ [1,+∞[, with
1

r
+

1

s
= 1, then (f ∗ g) ∈ C0

ap(IR, IH)

and one has

(5.9) |‖f ∗ g|‖∞ ≤ |‖f |‖r‖g‖s .

Theorem 5.5. Let f ∈ Br
ap(IR, IH) and g ∈ Bs

ap(IR, C), for any

r ∈ [1,+∞[ and s ∈ [1,+∞[, with
1

r
+

1

s
− 1 =

1

t
> 0, then (f ∗ g) ∈

Bt
ap(IR, IH) and one has

(5.10) |‖f ∗ g|‖t ≤ |‖f |‖r‖g‖s .
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Finally it is easy to extend Proposition 4.3 to the Bq
ap(IR, IH) spaces.
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