Non-linear elliptic systems involving measure data

M. FUCHS - J. REULING

Riassunto: Si dimostra l'esistenza di soluzioni a valori vettoriali per sistemi del tipo $-\partial_{\alpha}\left(|\nabla u|^{p-2} \partial_{\alpha} u\right)=T$ in un insieme aperto e limitato Ω con valore nullo sulla frontiera $\partial \Omega ; T$ è una distribuzione assegnata che agisce sullo spazio delle funzioni test.

Abstract: We prove the existence of vectorvalued solutions for systems of the type $-\partial_{\alpha}\left(|\nabla u|^{p-2} \partial_{\alpha} u\right)=T$ in a bounded open set $\Omega, u=0$ on $\partial \Omega$, where T is a given distribution acting on the space $C_{o}^{\infty}\left(\Omega, \mathbb{R}^{N}\right)$ of testfunctions.

- Introduction

For a smooth bounded domain $\Omega \subset \mathbb{R}^{n}, n \geq 3$, and a given distribution T acting on the space $C_{o}^{\infty}\left(\Omega, \mathbb{R}^{N}\right)$ of vectorvalued testfunctions we want to solve the nonlinear Dirichlet-problem

$$
\left\{\begin{array}{rl}
-\partial_{\alpha}\left(|\nabla u|^{p-2} \partial_{\alpha} u\right) & =T \text { on } \Omega \tag{1}\\
\left.u\right|_{\partial \Omega} & =0
\end{array},\right.
$$

where $p>2-\frac{1}{n}$ denotes a fixed real number and equation (1) has to be unterstood in the sense that

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi=T(\varphi) \tag{2}
\end{equation*}
$$

holds for all $\varphi \in C_{o}^{\infty}\left(\Omega, \mathbb{R}^{N}\right)$. For T sufficiently regular it is easy to construct a unique solution u of (1) in the space $H_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ for example by applying variational methods. On the other hand the lefthand side of (2) makes sense for functions u in the space $H_{0}^{1, p-1}\left(\Omega, \mathbb{R}^{N}\right)$ which suggests to relax the assumptions concerning the integrability of ∇u. In fact, certain applications in physics (see [1]) lead to the study of equations $(N=1)$ of the type (1) where $T=\sum_{i=1}^{l} \delta_{a_{i}}, a_{i} \in \Omega$, is a finite sum of Diracmeasures. In [7] and [8] Kichenassamy and Veron proved the existence of solutions u in this case. Moreover, they showed

$$
|u(x)| \approx \mathrm{const}\left|x-a_{i}\right|^{\frac{p-n}{p-1}} \quad \text { at least locally, }
$$

that is

$$
u \in \bigcap_{1 \leq q<\frac{n}{n-1}(p-1)} H_{0}^{1, q}(\Omega, \mathbb{R})
$$

The results of [7] are valid for any exponent p in the range $(1, \infty)$. But if we consider the fundamental solution of the p-Laplacian $\gamma(x)=$ $c(n, p)|x|^{\frac{p-n}{p-1}}, \quad(N=1, p<n)$ we see $\nabla \gamma \in L^{1}$ near 0 if and only if $p>2-\frac{1}{n}$. This motivates the lower bound for p.

Independently Boccardo and Gallouët [2] discussed equation (1) ($N=1!$) for signed Radon-measures T and obtained existence theorems in $H_{0}^{1, q}(\Omega, \mathbb{R}), q<\frac{n}{n-1}(p-1)$. In this note we concentrate on the vectorial case $N>1$ and prove

Theorem 1. Let T denote a vectorial Radon-measure on Ω such that $\mathcal{L}^{n}(\operatorname{spt} T)=0$ and $|T|(\Omega)<\infty$. Then (1) admits a solution u in the space

$$
\bigcap_{1 \leq q<\frac{n}{n-1}(p-1)} H_{0}^{1, q}\left(\Omega, \mathbb{R}^{N}\right) .
$$

Remarks.

1. The theorem applies to measures of the form $\sum_{i=1}^{L} E_{i} \delta_{a_{i}}, E_{i} \in \mathbb{R}^{N}, a_{i} \in$ $\Omega, i \in\{1, \ldots, L\}$, or $\mathcal{H}^{m}\left\lfloor f, \mathcal{H}^{m}=m\right.$-dimensional Hausdorff-measure, $f: \Omega \longrightarrow \mathbb{R}^{N}$ continuous with support contained in some m-dimensional submanifold of $\Omega, m<n$.
2. The condition $\mathcal{L}^{n}(\operatorname{spt} T)=0$ excludes measures like $\mathcal{L}^{n}\lfloor f$ with $f \in$ $L^{1}\left(\Omega, \mathbb{R}^{N}\right)$. The case of arbitrary Radon-measures causes some technical difficulties which can be overcome with the help of the "blow-up lemma" from [3]. Since the details are rather involved we will present them in a subsequent paper.
3. In the linear case we can consider N equations and quote the results of Littman, Stampacchia and Weinberger [9]. For $p>n$ problem (1) is solvable with direct methods in $H_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ for any vectorial Radonmeasure of finite mass because T is in the dual space of $H_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$.

1 - Proof of the Theorem

From now on we assume that the hypothesis of the Theorem are satisfied and that $p \in\left(2-\frac{1}{n}, n\right]$. The first step in the proof is to approximate the distribution T by a sequence of regular distributions $T_{h_{k}}$, generated by functions $h_{k} \in L^{1}\left(\Omega, \mathbb{R}^{N}\right)$ such that $T_{h_{k}} \longrightarrow T$ in the sense of distributions.

Replacing T by $T_{h}, h \in L^{1}\left(\Omega, \mathbb{R}^{N}\right)$ we can rewrite equation (2) as

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi=\int_{\Omega} h \cdot \varphi \quad \forall \varphi \in C_{o}^{\infty}\left(\Omega, \mathbb{R}^{N}\right) . \tag{1.1}
\end{equation*}
$$

Next we recall an apriori estimate for u satisfying (1.1).
Lemma 1. Let $u \in H_{0}^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ denote the solution of (1.1). For every $1 \leq q<\frac{n}{n-1}(p-1)$ there exists a positive constant C depending only on $n, N, \Omega,\|h\|_{1}$ such that

$$
\|u\|_{1, q} \leq C .
$$

The proof of Lemma 1 follows the lines in [2] where the scalar case is treated. We just have to modify the testfunctions; define

$$
\psi_{1}(t)=\left\{\begin{array}{cl}
1 & : t>k+1 \\
t-k & : k \leq t \leq k+1 \\
0 & :-k<t<k \\
t+k & :-k-1 \leq t \leq-k \\
-1 & : t<-k-1
\end{array}\right.
$$

and test (1.1) with

$$
\varphi^{j}:=\psi_{1}\left(u^{j}\right) e^{j}, \quad j \in\{1, \ldots, N\}
$$

where e^{j} is the j-th unitvector in \mathbb{R}^{N}.
We get

$$
\int_{\left.\left|u^{j}\right| \leq k+1\right]}\left|\nabla u^{j}\right|^{p} \leq\|h\|_{1} \quad \text { for every } j \in\{1, \ldots, N\} .
$$

Choosing

$$
\psi_{2}(t)=\left\{\begin{array}{cl}
L & : t>L \\
t & :-L \leq t \leq L \quad, \quad L \in \mathbb{N} \\
-L & : t<-L
\end{array}\right.
$$

and testing with $\varphi^{j}:=\psi_{2}\left(u^{j}\right) e^{j}$ gives

$$
\int_{\left[\left|u^{j}\right| \leq L\right]}\left|\nabla u^{j}\right|^{p} \leq L\|h\|_{1} \quad \text { for every } j \in\{1, \ldots, N\} .
$$

Let q^{*} denote the Sobolev exponent for $q: q^{*}:=\frac{n q}{n-q}$. Hölder's inequality and Sobolev's imbedding Theorem imply (see [2] for details):

$$
\left\|u^{j}\right\|_{q^{*}}^{q} \leq C
$$

and

$$
\left\|\nabla u^{j}\right\|_{q}^{q} \leq C\left(n, N, \Omega,\|h\|_{1}\right)
$$

for every $j \in\{1, \ldots, N\}$.
Next we choose an approximating sequence $\left(h_{k}\right)_{k \in \mathbb{N}} \subset L^{1}\left(\Omega, \mathbb{R}^{N}\right)$ such that $\operatorname{spt}\left(h_{k}\right) \subset K_{k}:=\left\{x \in \Omega \left\lvert\, \operatorname{dist}(x, K) \leq \frac{1}{k}\right.\right\}, K:=\operatorname{spt}(T)$ and $\sup _{k}\left\|h_{k}\right\|_{1}<\infty$. Let $u_{k} \in H^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ denote a solution of

$$
\left\{\begin{align*}
-\partial_{\alpha}\left(|\nabla u|^{p-2} \partial_{\alpha} u\right) & =h_{k} & \quad \text { in } \Omega \tag{1.2}\\
u & =0 \quad & \text { on } \partial \Omega
\end{align*}\right.
$$

and fix a ball B_{R} in Ω such that $B_{R} \cap K_{k}=\emptyset$.
Lemma 1 implies $\left\|u_{k}\right\|_{H^{1, q}} \leq C$ for every $1 \leq q<\frac{n}{n-1}(p-1)$. Consequently there exists $u \in \bigcap_{1 \leq q<\frac{n}{n-1}(p-1)} H_{0}^{1, q}\left(\Omega, \mathbb{R}^{N}\right)$ such that $u_{k} \rightharpoondown u$ weakly as $k \rightarrow \infty$. Since u_{k} is p-harmonic on B_{R} we have Caccioppoli's estimate

$$
\begin{equation*}
\int_{B_{R / 2}}\left|\nabla u_{k}\right|^{p} \leq \frac{C}{R^{p}} \int_{B_{R}}\left|u_{k}\right|^{p} \tag{1.3}
\end{equation*}
$$

Using (1.2) for u_{k} and $u_{k^{\prime}}$ with the testfunction $\varphi=\eta^{p}\left(u_{k}-u_{k^{\prime}}\right)$, where η is the usual cutoff function

$$
\eta=\left\{\begin{array}{ll}
1 & \text { on } B_{R / 4} \\
0 & \text { on } \Omega \backslash B_{R / 2}
\end{array}, \quad 0 \leq \eta \leq 1, \quad|\nabla \eta| \leq \frac{C}{R}\right.
$$

we get with an ellipticity argument (in case $p \geq 2$)

$$
\begin{align*}
& \int_{B_{R / 4}}\left|\nabla u_{k}-\nabla u_{k^{\prime}}\right|^{p} \leq \\
& \quad \leq \int_{B_{R / 2}} \eta^{p}\left|\nabla u_{k}-\nabla u_{k^{\prime}}\right|^{p} \\
& \quad \leq c \int_{B_{R / 2}}\left(\left|\nabla u_{k}\right|^{p-2} \nabla u_{k}-\left|\nabla u_{k^{\prime}}\right|^{p-2} \nabla u_{k^{\prime}}\right) \nabla\left(u_{k}-u_{k^{\prime}}\right) \eta^{p} \tag{1.4}\\
& \quad \leq c \int_{B_{R / 2}}\left(\left|\nabla u_{k}\right|^{p-2} \nabla u_{k}-\left|\nabla u_{k^{\prime}}\right|^{p-2} \nabla u_{k^{\prime}}\right)\left(u_{k}-u_{k^{\prime}}\right) \nabla \eta \eta^{p-1} \\
& \quad \leq C(R)\left(\int_{B_{R / 2}}\left(\left|\nabla u_{k}\right|^{p}+\left|\nabla u_{k^{\prime}}\right|^{p}\right)\right)^{1-\frac{1}{p}}\left(\int_{B_{R / 2}}\left|u_{k}-u_{k^{\prime}}\right|^{p}\right)^{\frac{1}{p}} .
\end{align*}
$$

Therefore (1.4) together with (1.3) gives
(1.5) $\int_{B_{R / 4}}\left|\nabla u_{k}-\nabla u_{k^{\prime}}\right|^{p} \leq C(R)\left(\int_{B_{R}}\left|u_{k}-u_{k^{\prime}}\right|^{p}\right)^{\frac{1}{p}}\left(\int_{B_{R}}\left|u_{k}\right|^{p}+\left|u_{k^{\prime}}\right|^{p}\right)^{1-\frac{1}{p}}$.

For $2-\frac{1}{n}<p<2$ we argue as follows:

$$
\int_{B_{R / 2}} \eta^{p}\left|\nabla u_{k}-\nabla u_{k^{\prime}}\right|^{p} \leq
$$

$$
\leq c\left(\int_{B_{R / 2}} \eta^{2}\left|\nabla u_{k}-\nabla u_{k^{\prime}}\right|^{2}\left(\left|\nabla u_{k}\right|+\left|\nabla u_{k^{\prime}}\right|\right)^{p-2}\right)^{\frac{p}{2}}
$$

$$
\cdot\left(\int_{B_{R / 2}}\left(\left|\nabla u_{k}\right|+\left|\nabla u_{k^{\prime}}\right|\right)^{p}\right)^{\frac{2-p}{2}} \leq
$$

$$
\leq c\left(\int_{B_{R / 2}}\left(\left|\nabla u_{k}\right|^{p-2} \nabla u_{k}-\left|\nabla u_{k^{\prime}}\right|^{p-2} \nabla u_{k^{\prime}}\right) \eta^{2}\left(\nabla u_{k}-\nabla u_{k^{\prime}}\right)\right)^{\frac{p}{2}}
$$

$$
\cdot\left(\int_{B_{R / 2}}\left(\left|\nabla u_{k}\right|^{p}+\left|\nabla u_{k^{\prime}}\right|^{p}\right)\right)^{\frac{2-p}{2}} \leq
$$

$$
\leq C(R)\left(\int_{B_{R / 2}}\left|u_{k}-u_{k^{\prime}}\right|^{p}\right)^{\frac{1}{2}}\left(\int_{B_{R / 2}}\left|\nabla u_{k}\right|^{p}+\left|\nabla u_{k^{\prime}}\right|^{p}\right)^{\frac{1}{2}}
$$

which proves the appropriate version of (1.4). Quoting (1.3) we also obtain an inequality of the form (1.5).
We now use the compactness of the imbedding $H_{0}^{1, q}\left(\Omega, \mathbb{R}^{N}\right) \hookrightarrow L^{p}\left(\Omega, \mathbb{R}^{N}\right)$ which is true if $p<q^{*}$. Since $q^{*}<\left(\frac{n}{n-1}(p-1)\right)^{*}=\frac{n(p-1)}{n-p}$, this restriction is fulfilled if $n<p^{2}$. In this case (1.5) gives

$$
\int_{B_{R / 4}}\left|\nabla u_{k}-\nabla u_{k^{\prime}}\right|^{p} \longrightarrow 0
$$

We summarize

$$
\begin{aligned}
& \nabla u_{k} \quad \longrightarrow \nabla u \quad \text { in } L_{\mathrm{loc}}^{p}\left(\Omega \backslash K, \mathbb{R}^{n N}\right) \\
& \nabla u_{k}(x) \longrightarrow \nabla u(x) \text { a.e. on } \Omega \backslash K \\
& \nabla u_{k}(x) \longrightarrow \nabla u(x) \text { a.e. on } \Omega \text { at least for a subsequence. }
\end{aligned}
$$

Here our assumption $\mathcal{L}^{n}(K)=0$ enters. Since $\left|\nabla u_{k}\right|^{p-1}$ is bounded in $L^{\frac{q}{p-1}}\left(\Omega, \mathbb{R}^{N}\right), \frac{q}{p-1}<\frac{n}{n-1}$ we have $\left|\nabla u_{k}\right|^{p-2} \nabla u_{k} \rightharpoondown: F$ in $L^{\frac{q}{p-1}}\left(\Omega, \mathbb{R}^{N}\right)$.

With Egoroffs theorem we conclude $\left|\nabla u_{k}\right|^{p-2} \nabla u_{k} \rightharpoondown|\nabla u|^{p-2} \nabla u$ in $L^{\frac{q}{p-1}}\left(\Omega, \mathbb{R}^{N}\right)$. Finally

$$
\int_{\Omega} h_{k} \cdot \varphi=\int_{\Omega}\left|\nabla u_{k}\right|^{p-2} \nabla u_{k} \cdot \nabla \varphi \longrightarrow \int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi,
$$

i.e. $u \in \bigcap_{1 \leq q<\frac{n}{n-1}(p-1)} H_{0}^{1, q}\left(\Omega, \mathbb{R}^{N}\right)$ is a solution of equation (1).

To get rid of the restriction $p^{2}>n$ we have to establish a maximum principle, i.e. we have to show

$$
\begin{equation*}
\sup _{B_{R / 2}}\left|\nabla u_{k}\right|^{p} \leq \text { const } \tag{1.6}
\end{equation*}
$$

To prove (1.6) we show at first that u_{k} is a subsolution of a certain elliptic operator in B_{R}.

Lemma 2. Let us suppose that $p \geq 2$ and $v \in H^{1, p}\left(B_{R}, \mathbb{R}^{N}\right)$ is p-harmonic on B_{R}. Then $|\nabla v|^{p}$ solves

$$
\int_{B_{R}} A_{\alpha \beta}(x) \partial_{\beta}\left(|\nabla v|^{p}\right) \partial_{\alpha} \eta \leq 0 \quad \forall \eta \in H_{0}^{1,2}\left(B_{R}\right), \eta \geq 0,
$$

with coefficients $A_{\alpha \beta} \in L^{\infty}\left(B_{R}\right)$ satisfying

$$
A_{\alpha \beta} \xi_{\alpha} \xi_{\beta} \geq|\xi|^{2} \quad \forall \xi \in \mathbb{R}^{n}
$$

Proof. We follow the lines in [5] and compute $A_{\alpha \beta}$ as

$$
A_{\alpha \beta}=\frac{p}{2} \delta_{\alpha \beta}+p\left(\frac{p}{2}-1\right) \frac{\partial_{\alpha} v^{i}(x) \partial_{\beta} v^{i}(x)}{|\nabla v(x)|^{2}} \chi_{[\nabla v \neq 0]} .
$$

Now we can quote [4, p. 86 "Remark"] (see also [10] for a complete proof) to get

$$
\sup _{B_{R / 2}}\left|\nabla u_{k}\right|^{p} \leq c(R, \alpha)\left(f_{B}\left|\nabla u_{k}\right|^{p \alpha}\right)^{1 / \alpha} \quad \forall \alpha>0 .
$$

For $\alpha<\frac{n}{n-1}\left(1-\frac{1}{p}\right)$ we arrive at

$$
\sup _{B_{R / 2}}\left|\nabla u_{k}\right|^{p} \leq c(R, q)\left(f_{B}\left|\nabla u_{k}\right|^{q}\right)^{\frac{n-1}{n} \frac{p}{p-1}}
$$

for every $q<\frac{n}{n-1}(p-1)$ and we end up with (1.6). The case $2-\frac{1}{n}<p<$ 2 requires some minor technical modifications. The necessary changes can be found in [6] or [11].

It is now immediate that $\left\|u_{k}\right\|_{H^{1, p}\left(B_{R / 2}\right)} \leq c(R)$ and therefore $u_{k} \longrightarrow u$ strongly in $L^{p}\left(B_{R / 2}\right)$.

The same calculation with η defined as above gives

$$
\begin{aligned}
\int_{B_{R / 2}} \eta^{p} \mid \nabla & u_{k}-\left.\nabla u_{k^{\prime}}\right|^{p} \leq \\
& \leq \underbrace{C(R)\left(\int_{B_{R / 2}}\left(\left|\nabla u_{k}\right|^{p}+\left|\nabla u_{k^{\prime}}\right|^{p}\right)\right)^{1-\frac{1}{p}}}_{\leq C(R)<\infty} \underbrace{\left(\int_{B_{R / 2}}\left|u_{k}-u_{k^{\prime}}\right|^{p}\right)^{\frac{1}{p}}}_{\longrightarrow 0} .
\end{aligned}
$$

It follows

$$
\begin{array}{lll}
\nabla u_{k} & \longrightarrow \nabla u \quad \text { in } L^{p}\left(B_{R / 2}, \mathbb{R}^{n N}\right) \\
\nabla u_{k} & \longrightarrow \nabla u \quad \text { in } L_{\operatorname{loc}}^{p}\left(\Omega \backslash K, \mathbb{R}^{n N}\right) \\
\nabla u_{k}(x) \longrightarrow \nabla u(x) \text { a.e. on } \Omega \backslash K \\
\nabla u_{k}(x) \longrightarrow \nabla u(x) \text { a.e. on } \Omega \text { at least for a subsequence, }
\end{array}
$$

and the proof can be finished as before.

REFERENCES

[1] S.L. Adler - T. Piran: Relaxation methods for gauge field equilibrium equations, Rev. Mod. Phys. 56 (1984), 1-40.
[2] L. Boccardo - T. GallouËt: Non-linear Elliptic and Parabolic Equations Involving Measure Data, J. Functional Anal. 87 (1989), 149-166.
[3] M. Fuchs: The Blow-up of p-harmonic Maps, manuscripta math. 81 (1993), 89-94.
[4] M. Giaquinta: Introduction to Regularity Theory for Nonlinear Elliptic Systems, Lecture in Mathematics ETH Zürich, Birkhäuser, 1993.
[5] M. Giaquinta - G. Modica: Remarks on the Regularity of Minimizers of certain Degenerate Functionals, manuscripta math. 57 (1986), 55-99.
[6] C. Hamburger: Regularity of differential forms minimizing degenerate elliptic functionals, J. reine angew. Math. 431 (1992), 7-64.
[7] S. Kichenassamy: Quasilinear Problems with Singularities, manuscripta math. 57 (1987), 281-313.
[8] S. Kichenassamy - L. Veron: Singular Solutions of the p-Laplace Equation, Math. Ann. 275 (1986), 599-615.
[9] W. Littman - G. Stampacchia - H.F. Weinberger: Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola norm. sup. Pisa, Sci. fis. mat., III Ser. 17 (1963), 43-77.
[10] L. Simon: Lecture notes on P.D.E., unpublished.
[11] P. Tolksdorf: Everywhere-Regularity for Some Quasilinear Systems with a Lack of Ellipticity, Ann. Mat. Pura Appl. 134 (1983), 241-266.

Lavoro pervenuto alla redazione il 26 ottobre 1994 ed accettato per la pubblicazione il 15 febbraio 1995.

Bozze licenziate il 10 aprile 1995

Indirizzo DELL'AUTORE:

Martin Fuchs - Jürgen Reuling - Fachbereich Mathematik - Universität des Saarlandes - D 66041 Saarbrücken - Germany

