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Non-linear elliptic systems involving measure data

M. FUCHS - J. REULING

RIASSUNTO: Si dimostra l'esistenza di soluzioni a valori vettoriali per sistemi del
tipo —0a(|VulP7204u) = T in un insieme aperto e limitato Q con valore nullo sulla
frontiera 02; T & una distribuzione assegnata che agisce sullo spazio delle funzioni test.

ABSTRACT: We prove the existence of vectorvalued solutions for systems of the
type —0a(|Vu|P7204u) = T in a bounded open set Q, u = 0 on dQ, where T is a given
distribution acting on the space C°(Q,RN) of testfunctions.

— Introduction

For a smooth bounded domain Q C IR",n > 3, and a given distribu-
tion T acting on the space C2°(€,IR") of vectorvalued testfunctions we
want to solve the nonlinear Dirichlet—problem
{ —0,(|Vu|P~?0,u) =T on Q

u|8Q = O

(1)

9

1
where p > 2 — — denotes a fixed real number and equation (1) has to be

n
unterstood in the sense that

2) [19ur2va- 9o = ()
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holds for all ¢ € C=(Q,RY). For T sufficiently regular it is easy to
construct a unique solution u of (1) in the space Hy?(Q, R") for example
by applying variational methods. On the other hand the lefthand side
of (2) makes sense for functions u in the space Hy”? '(Q,R") which
suggests to relax the assumptions concerning the integrability of Vu. In
fact, certain applications in physics (See [1]) lead to the study of equations

(N =1) of the type (1) where T" = Z da;5 a; € ), is a finite sum of Dirac—

measures. In [7] and [§] KICHENASSAMY and VERON proved the existence
of solutions u in this case. Moreover, they showed

|u(z)| ~ const |z — ai|f%f at least locally,

that is
u € ﬂ Hy'(Q,R).

1<g< ;27 (p—1)

The results of [7] are valid for any exponent p in the range (1,00).
But if we consider the fundamental solution of the p-Laplacian v(z) =
c(n,p)]x\f’%?, (N =1, p < n) we see Vy € L' near 0 if and only if
p>2— % This motivates the lower bound for p.

Independently BocCARDO and GALLOUET [2] discussed equation (1)
(N =11 for signed Radon-measures 7" and obtained existence theorems
in Hy?(Q,1R),q < -2 (p—1). In this note we concentrate on the vectorial
case N > 1 and prove

THEOREM 1. Let T denote a vectorial Radon—measure on £ such
that L"(sptT) = 0 and |T|(Q) < co. Then (1) admits a solution u in the
space

N H(Q,RY).

1<g< 727 (p—1)

REMARKS. 5
1. The theorem applies to measures of the form ) E;d,,, E; € ]RN, a; €

=1
Qi e {1,...,L}, or H™|f, H™ = m-dimensional Hausdorff-measure,
f:Q—R" continuous with support contained in some m-dimensional

submanifold of 2, m < n.
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2. The condition L£"(sptT) = 0 excludes measures like £"| f with f €
LY, RY). The case of arbitrary Radon-measures causes some technical
difficulties which can be overcome with the help of the “blow—up lemma”
from [3]. Since the details are rather involved we will present them in a
subsequent paper.

3. In the linear case we can consider N equations and quote the results of
LITTMAN, STAMPACCHIA and WEINBERGER [9]. For p > n problem (1)
is solvable with direct methods in Hy?(Q,R") for any vectorial Radon—
measure of finite mass because T is in the dual space of Hy” (2, R").

1 — Proof of the Theorem
From now on we assume that the hypothesis of the Theorem are

1
satisfied and that p € (2 — —,n]. The first step in the proof is to ap-
n

proximate the distribution 7" by a sequence of regular distributions T3,
generated by functions hy, € L*(Q,R") such that T}, — T in the sense
of distributions.

Replacing T by T, h € L' (Q,IR") we can rewrite equation (2) as

(1.1) /ywv—?vu V= /h o Ve CrQRY).
Q Q

Next we recall an apriori estimate for u satisfying (1.1).

LEMMA 1. Let u € Hy?(Q,RY) denote the solution of (1.1). For
every 1 < g < Ll(p — 1) there exists a positive constant C' depending
n —_—
only on n, N, ||h||, such that

[ull1,q < C

The proof of Lemma 1 follows the lines in [2] where the scalar case
is treated. We just have to modify the testfunctions; define

1 t>k+1
t—k k<t<k+1

U (t) = 0 -k <t<k , kEelN
t+k —k—-1<t< -k

-1 t< k-1
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and test (1.1) with

(p-] = wl(u])6]7 .7 6 {]‘" i ’N}7

where €7 is the j-th unitvector in IR".

We get
/ |Vu/[P < ||h|, for every j € {1,... ,N}.
(k<|ud [<k+1]
Choosing
L > L
wz(t)z{t r-L<t<L , LeN
—L t< —L

and testing with ¢/ := 1)y (u?) e’ gives

/ |Vu?|P < LA, for every j € {1,... ,N}.
[ud|<L]
ngq

n—q
inequality and Sobolev’s imbedding Theorem imply (see [2] for details):

Holder’s

Let ¢* denote the Sobolev exponent for ¢: ¢* :=

lv’[l3- < C

and
IVu?[[g < C(n, N, Q, |[h],)
for every j € {1,... ,N}. 0
Next we choose an approximating sequence (hy),cp C L'(Q,RY)
such that spt(hy) C K, := {z € Q| dist(z, K) < +},K := spt(T) and
sup || x|y < 0o. Let u, € H'?(,IRY) denote a solution of
k
(1.2) —0u(|VulP~205u) = b, in Q ,
u=0 on 0N
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and fix a ball By in Q such that Bp N K. = 0.

Lemma 1 implies ||ug||g1e < C for every 1 < g < Ll(p - 1).
n_

Consequently there exists u € N Hy(Q,RY) such that uj, — u

1<q< 727 (p—1)
weakly as k — oo. Since uy is p-harmonic on Bi we have Caccioppoli’s
estimate

C
(1.3) / Vul? < ﬁ/yukvﬂ.
Br

BRrj2

Using (1.2) for u;, and uy with the testfunction ¢ = 7P (us, — uy ), where
7 is the usual cutoff function

1 ODBR/4 C
= ’ 0< <17 v S_
7 {0 on Q\ By, = Vil g7

we get with an ellipticity argument (in case p > 2)

/ \Vuk - Vuk./\p S

Brya

S / np]Vuk — Vuk/]p

Br/2
(1.4) <c / (|Vur P >Vuy, — [V [P>Vur ) V (uy — up ) 0P
. Br/2
s ¢ / (IVur[P~*Vuy, — [V [P Vg ) (wg, — ugpr) VP
Br/2
-3 P
< C(R)( / (Vusl” + |Vuk/]p)) ( / g — uk,\p) |

Br/2 BRry2

Therefore (1.4) together with (1.3) gives

2 1
(L5) / IVt — Vg |” gC(R)(/\uk—uk/P) (/\uk|p+|uk,|p>
Br Br

Br/a

1
P
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1
For 2 — — < p < 2 we argue as follows:
n

/ nP|Vuy, — Vuy|P <

Br/2

IS

2

< c( / ?|Vu, — Vug |* (|Vug| + |Vuk/|)p_2>

Br/2
%Tp
(vl 1vuly ) T <
Brja
g
< c( / (|Vug [P *Vuy, — |Vup [P >Vug ) n? (Vuy, — Vuk/))
Brja
%Tp
([ 0vup s vam) T <
Br/2
3 3
gC(R)( / |uk—uk/|p) </|Vuk]p+\Vuk/|p)
Br/2 Br/2

which proves the appropriate version of (1.4). Quoting (1.3) we also
obtain an inequality of the form (1.5).
We now use the compactness of the imbedding Hy?(, R™)— L?(Q, R")
. 1
which is true if p < ¢*. Since ¢* < (Ll(p— 1)) = M, this
n-— p
restriction is fulfilled if n < p*. In this case (1.5) gives

/ |Vuk — Vuk/|p — 0.

BRr/4
We summarize
he(Q\ K, R™)

Vug(x) —Vu(x) a.e. on Q\ K

Vug(z) —Vu(z) a.e. on 2 at least for a subsequence.

Vu, —Vu inlL?!
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Here our assumptlon ,C”( ) = 0 enters. Since |Vug|P~! 1s bounded in
L7 (4, ]RN) - < = we have |Vu,|[P7*Vuy, —: F in Lp—T T (Q,IRY).

, With Egoroffs theorem we conclude |Vu[P72Vu, — |[Vu|P~?Vu in
L7=1(Q,RY). Finally

/hk o= / [Vuy [P~ Vuy, - Vo — / [VulP~?Vu - Vo,
Q Q Q

ie. u€ N Hy'(Q,1RY) is a solution of equation (1).
1<q<z27(p-1)
To get rid of the restriction p® > n we have to establish a maximum
principle, i.e. we have to show

(1.6) sup |Vuy|? < const .
Br/2

To prove (1.6) we show at first that uy is a subsolution of a certain elliptic
operator in Bp.

LEMMA 2.  Let us suppose that p > 2 and v € H"?(Bg,R") is
p-harmonic on Br. Then |Vu|P solves

[ Aas@s (Vo) 0n <0 ¥ € Hy*(Br), =0,

with coefficients A,z € L>(Br) satisfying

Anp €als > |E vV EeR™

ProOOF. We follow the lines in [5] and compute A,z as

0,0 (x) Opv' ()
[Vo(z)[?

L)

_P
A 5a/3+ (2

X[Vo£0]- a

Now we can quote [4, p.86 “Remark”] (see also [10] for a complete
proof) to get

1/«
sup |Vu |’ < (R, « <][|Vuk|pa> vV a > 0.

Br/2
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For a0 <

— <1 — %) we arrive at

n p—1
sup |Vug|” < ¢(R,q) (][ ]Vuk|q) 3

Brj2

1
for every q < Ll(p—l) and we end up with (1.6). The case 2—; <p<
n —

2 requires some minor technical modifications. The necessary changes can
be found in [6] or [11].

It is now immediate that ||ukHH1,p(BR/2) < ¢(R) and therefore u, — u
strongly in LP(Bg/2).

The same calculation with n defined as above gives

/ NPV, — Vuy|P <

BRrya < C(R)< / (|Vugl? + |Vup|P ) " < / |ukuk:|p)

Bry2 Br2

<C(R)<oo —0
It follows
Vu, —Vu  in LP(Bgj, R™)
Vu, —Vu in Il (Q\K,R"™)
Vug(z) —Vu(z) a.e. on Q\ K

Vug(x) —Vu(z) a.e. on Q at least for a subsequence,

and the proof can be finished as before. 0
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