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On infinite-variable Bessel functions

S. LORENZUTTA – G. MAINO – G. DATTOLI

A. TORRE – C. CHICCOLI

Riassunto: In questo articolo viene presentata una classse di funzioni di Bessel a
infinite variabili e vengono discusse le relative proprietà. In particolare, viene eviden-
ziata l’analogia col caso monodimensionale e il legame con le serie di Fourier di una
particolare classe di funzioni continue.

Abstract: A new class of infinite-variable Bessel functions is discussed and their
basic properties are given. The relevant analogy with the ordinary case and the link
with Fourier series of proper smooth functions are also presented and discussed.

1 – Introduction

The infinite-dimensional analogue of ordinary Bessel functions here

considered, was introduced by Pérès in a short note [1] appeared in

1915, where he extended Appell’s definition [2] of finite-dimensional

Bessel functions to the infinite-variable case as follows

(1.1)
Jn

({βm})
=

1

π

π∫

0

cos(nθ−β1 sin θ−β2 sin 2θ−. . .−βm sin mθ−. . . )dθ,

n = 0,±1, ±2, . . .
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with {βm} real and satisfying the condition that the series

(1.2)
∞∑

m=1

|βm| ,

be convergent.

In addition, the following relations have been given for the Jn ≡
Jn

({·})

(1.3)
∂Jn

∂βm

=
1

2
(Jn−m − Jn+m)

and

(1.4) nJn =
1

2

[
β1(Jn−1 + Jn+1) + . . . + mβm(Jn−m + Jn+m) + . . .

]
,

under the condition that the series

(1.5)
∞∑

m=1

m|βm| ,

be convergent.

Taking into account these results, it seems reasonable to assume the

convergence of the series (1.5), which involve that of (1.2), as the con-

dition required for the existence of the infinite-variable Bessel functions

Jn

({·})
and, hereafter, we make this assumption, apart when otherwise

stated.

So-defined functions are easily found to have the following particular

values

(1.6) Jn

({0})
= δn,0 ,

where δl,m is the Kronecker symbol.

These infinite-dimensional Bessel functions, Jn

({·})
, after a long pe-

riod of quiescence, have been recently [3] rediscovered, essentially in con-

nection with physical applications. So, it may be of some interest to ob-

tain further basic results for these functions. To this end, in the present
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note we give some additional properties of Jn

({·})
, which may be of prac-

tical usefulness and, moreover, for the sake of completeness, we present

the corresponding modified version, In

({·})
, whose importance for appli-

cations is shown elsewhere [4].

The present results are essentially based on known properties of the

Fourier series expansions of particular smooth functions, hereafter speci-

fied.

Definition 1.1. We say that a function f(θ), −π ≤ θ ≤ π,

generally complex of the form

(1.7) f(θ) = u1(θ) + i u2(θ) ,

(where uk(θ), k = 1, 2, are real functions) is continuous and piecewise

smooth on the interval [−π, π], if it is continuous with a piecewise con-

tinuous first derivative, f (1)(θ).

As known, so defined functions have some interesting properties here-

after reported from [5] in order to make the present treatment self-

contained.

Theorem 1.1. If a function f(θ), (generally complex of the form

(1.7)) defined in −π ≤ θ ≤ π is continuous and piecewise smooth and

such that

(1.8) f(−π) = f(π) ,

then the following Fourier expansion holds

(1.9) f(θ) =
∞∑

n=−∞
cneinθ ,

which, in the case of f(θ) real, takes the form

(1.10) f(θ) =
∞∑

n=−∞
cneinθ =

a0

2
+

∞∑

n=1

an cos nθ +
∞∑

n=1

bn sin nθ ,

and the relevant series are uniformly convergent on [−π, π].
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Remark 1.1. When the function f(θ) of Theorem 1.1 is odd, obvi-

ously the relevant condition (1.8) implies that f(±π) = 0.

For later use, we recall that the Fourier coefficients in (1.9) and (1.10)

are given by

cn =
1

2π

π∫

−π

f(θ)e−inθdθ , n = 0,±1,±2, . . .(1.11)

an =
1

π

π∫

−π

f(θ) cos nθ dθ , n = 0, 1, 2, . . .(1.12)

bn =
1

π

π∫

−π

f(θ) sinnθ dθ , n = 1, 2, . . . .(1.13)

In addition, if one considers real functions with a higher degree of

smoothness, one has further useful properties, as hereafter described.

Theorem 1.2. If a real function, f(θ), −π ≤ θ ≤ π, and its

derivative, f (1)(θ), are continuous with

(1.14) f (l)(−π) = f (l)(π) , l = 0, 1

and the second derivative, f (2)(θ), exists and is piecewise continuous on

[−π, π], then the series

(1.15)
∞∑

m=1

ml
(|am| + |bm|) , l = 0, 1

(where {am} and {bm} are the Fourier coefficients of f(θ)), are conver-

gent.

Remark 1.2. Obviously, a function of Theorem 1.2 satisfies all the

conditions required for a real function of Theorem 1.1.

At this point, considering (1.1) and (1.5), one can make the following

assertion which will be correctly stated in the following section, more

precisely, in the proof of Lemma 2.2 which refers to a similar context.

Proposition 1.1. The Fourier sine coefficients, {b̄m}, of an arbi-

trary function of Theorem 1.2, which is odd, satisfy the existence condi-

tions for the infinite-dimensional Bessel functions, Jn

({b̄m})
.
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On the basis of the above results we derive in Section 2 additional

properties of Jn

({·})
, while in Section 3 we discuss the relevant modified

version, In

({·})
.

Finally, Section 4 is devoted to further results which may be of in-

terest for applications and Section 5 to the concluding remarks.

2 – Main results for Jn

({·})

First, we present the following statement, which recall known results

valid for ordinary Bessel functions, Jn(x).

Lemma 2.1. The infinite-variable Bessel functions, Jn

({βm})
, sat-

isfy the condition

(2.1)
∣∣∣Jn

({βm})∣∣∣ ≤ 1 , n = 0, ±1, ±2, . . .

and have the reflection property

(2.2) J−n

({βm})
= Jn

({−βm})
, n = 0, 1, 2, . . . .

Proof. Results (2.1) and (2.2) easily come out from the definition

relation (1.1), taking into account the bound and the parity of the cosine

function.

Moreover, one can prove the following statement.

Theorem 2.1. The infinite-variable Bessel functions, Jn

({βm})
,

admit the following expansion of the Jacobi-Anger type

(2.3) exp

(
i

∞∑

m=1

βm sin mθ

)
=

∞∑

n=−∞
einθJn

({βm})
,

and the involved series is uniformly convergent on [−π, π].
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Proof. The convergence of the series (1.5), which follows from the

existence of Jn

({·})
, ensures the existence and the uniform convergence

of the series

(2.4a)
∞∑

m=1

βm sin mθ ,

whose sum is denoted by f̄(θ) and of the series

(2.4b)
∞∑

m=1

(βm sinmθ)(1) ,

where the superscript denotes the derivative order.

It follows from a known theorem that the sum of the series (2.4b) is

the derivative of f̄(θ). Moreover, the uniform convergence of series (2.4a

and 2.4b) and the continuity of the relevant terms, ensure the continuity

of the related sums, f̄ (k)(θ), k = 0, 1.

Since, in addition, for the f̄(θ) ≡ f̄ (0)(θ) function one has that

f̄(−π) = f̄(π), it follows that all requirements of Theorem 1.1 are satis-

fied for this function and it is easy to see that also the relevant complex

function

(2.5) φ(θ) = eif̄(θ) ,

has the same smooth properties as f̄(θ) and satisfies all the assumptions

of Theorem 1.1. It follows that the following Fourier expansion holds

(2.6) exp
[
if̄(θ)

]
= exp

(
i

∞∑

m=1

βm sin mθ

)
=

∞∑

n=−∞
einθ c̄n

({βm})
,

with Fourier coefficients, c̄n

({·})
, which according to (1.11), read as

(2.7)

c̄n

({βm})
=

1

2π

π∫

−π

exp

(
i

∞∑

m=1

βm sin mθ

)
e−inθdθ =

=
1

π

π∫

0

cos

(
nθ −

∞∑

m=1

βm sin mθ

)
dθ ,

n = 0,±1,±2, . . .
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where the known Euler formula and the parities of the circular functions

have been taken into account.

Now, comparing (2.7) with the relation (1.1), one can write

(2.8) c̄n

({βm}) ≡ Jn

({βm})
, n = 0,±1, ±2, . . .

and this completes the proof of Theorem 2.1.

Remark 2.1. From (2.3), when θ = 0, the following sum rule holds

∞∑

n=−∞
Jn

({βm})
= 1 ,

which recalls a known result of the ordinary case.

At this point, taking into account the result of Theorem 2.1 where

the function on the 1.h.s. of (2.3) plays the role of the generating function

of Jn

({·})
, one can prove the following statement.

Lemma 2.2. Let a function of Theorem 1.2 be odd and denoted by

f0(θ) and let {b̄m} be the relevant Fourier sine coefficients; then, function

exp
[
if0(θ)

]
is the generating function of the corresponding Jn

({b̄m})
.

Proof. Since the function f0(θ) of Theorem 1.2 is odd, its Fourier

expansion becomes, as known,

(2.9) f0(θ) =
∞∑

m=1

b̄m sin mθ ,

and the relevant convergent series (1.15) reduces to

(2.10)
∞∑

m=1

m|b̄m| ,

whose convergence guarantees the existence of the infinite-variable Bessel

functions Jn

({b̄m})
with related Jacobi-Anger expansion, (2.3), which -

taking into account (2.9) - can be written as follows

(2.11) eif0(θ) =
∞∑

m=1

einθJn

({b̄m})
,

which completes the proof.
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Another important result valid for Jn

({·})
functions is presented

hereafter.

Theorem 2.2.Given the infinite-variable Bessel functions Jl

({β1,m})

and Jl

({β2,m})
, (l = 0,±1, . . . ), the following addition formula holds

(2.12) Jn

({β1,m + β2,m})
=

∞∑

k=−∞
Jn−k

({β1,m})
Jk

({β2,m})
.

Proof. The proof is only sketched since it is analogous to that of

the monodimensional case considering that the existence conditions for

Jl

({β1,m})
and Jl

({β2,m})
, see (1.5), ensure those of Jl

({β1,m + β2,m})
.

Thus, considering relation (2.3) for Jl

({β2,m})
, one can write

Jn

({β1,m + β2,m})
=(2.13)

=
1

2π

π∫

−π

exp

{
− i

[
nθ −

∞∑

m=1

(β1,m + β2,m) sinmθ

]}
dθ =

=
1

2π

π∫

−π

exp

[
− i

(
nθ −

∞∑

m=1

β1,m sin mθ

)] ∞∑

l=−∞
eilθJl

({β2,m})
dθ =

=
1

2π

∞∑

l=−∞
Jl

({β2,m}) π∫

−π

exp

{
− i

[
(n−l)θ−

∞∑

m=1

β1,m sin mθ

]}
dθ =

=
∞∑

l=−∞
Jl

({β2,m

)
Jn−l

({β1,m})
,

where the uniform convergence of the series in the second line has been

taken into account.

We have thus proved the assertion of the theorem.

Finally, the following statement yields another basic property of Jn

({·})
,

which is the corresponding analogue of that valid for the usual Bessel

function, Jn(x).

Lemma 2.3.For the infinite-dimensional Bessel functions, Jn

({βm})
,

the following relation holds

(2.14)
∞∑

n=−∞
J2

n

({βm})
= 1 .
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Proof. As remarked in the proof of Theorem 2.1, the existence

condition for Jn

({βm})
ensures the existence of the real function f̄(θ)

(sum of the series (2.4a)), which satisfies the conditions of Theorem 1.1,

just as the corresponding complex function φ(θ), see (2.5), which we

rewrite as

(2.15) φ(θ) = exp

(
i

∞∑

m=1

βm sin mθ

)
,

for which a Fourier series expansion of the form (2.6) holds, whose related

Parseval equality reads as follows

(2.16)
1

2π

π∫

−π

φ(θ)φ∗(θ)dθ =
∞∑

n=−∞

∣∣∣c̄n

({βm})∣∣∣
2

,

where φ∗(θ) denotes the complex conjugate of φ(θ).

Using in (2.16) for φ(θ) the expression (2.15) and the corresponding

analogue for φ∗(θ) and considering the relation (2.8), one obtains the

assertion of the Lemma.

We have thus obtained the sought for results for the infinite-dimen-

sional Bessel functions Jn

({·})
.

3 – The infinite-dimensional modified Bessel functions

By analogy with the J-case, we now introduce the infinite-analogue

of the ordinary modified Bessel function, In(x), as follows.

Definition 3.1. The infinite-variable modified Bessel function,

In

({αm})
, is given by

(3.1)

In

({αm})
=

1

π

π∫

0

cos nθ exp

( ∞∑

m=1

αm cos mθ

)
dθ , n = 0,±1,±2, . . .

with {αm} real and subject to the restriction that the series

(3.2)
∞∑

m=1

m|αm| ,
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be convergent.

Likewise to the J-case, one obtains from (3.1) that

(3.3) In

({0})
= δn,0 .

So-defined Bessel functions have some basic properties analogous to

those of the corresponding monodimensional case, as described in the

statement hereafter presented.

Lemma 3.1. For the infinite-dimensional modified Bessel functions,

In

({αm})
, the following result is valid

(3.4)
∣∣∣In

({αm})∣∣∣ ≤ I0

({αm})
, n = 0,±1,±2 , . . .

and symmetry property

(3.5) I−n({αm}) = In

({αm})
.

Proof. The assertion comes out from the definition relation (3.1)

considering the properties and the parity of the cosine function.

In the sequel, we give further statements concerning In

({·})
func-

tions. The relevant proofs are omitted when they are analogous to those

of the J-case.

Lemma 3.2. For the infinite-variable modified Bessel functions,

In ≡ In

({αm})
, the following relation holds

(3.6)
∂In

∂αm

=
1

2
(In−m + In+m) ,

and the recurrence

(3.7) nIn =
1

2

∞∑

k=1

kαk(In−k − In+k) .



[11] On infinite-variable Bessel functions 415

At this point, similarly as in the J-case, one can make the following

assertion.

Remark 3.1. The Fourier cosine coefficients, {ām}, m = 1, 2 . . . , of

any function, fe(θ), of Theorem 1.2 which is even, ensure the existence of

the corresponding infinite-variable modified Bessel functions In

({ām})
.

We now introduce the corresponding analogue of Theorem 2.1, which

reads as follows.

Theorem 3.1. For the infinite-dimensional modified Bessel func-

tions, In

({αm})
, the following expansion of the Jacobi-Anger type is valid

(3.8) exp

( ∞∑

m=1

αm cos mθ

)
=

∞∑

n=−∞
einθIn

({αm})
,

with related series uniformly convergent on [−π, π].

Proof. Proceeding as in the proof of Theorem 2.1, one obtains that

the real function

(3.9) f̂(θ) =
∞∑

k=1

αk cos kθ ,

and the corresponding function

(3.10) ef̂(θ) = exp

( ∞∑

k=1

αk cos kθ

)
,

are functions of Theorem 1.1. It follows that one can expand ef̂(θ) in a

uniformly convergent Fourier series whose coefficients ĉn

({αm})
are easily

recognized to be given by

(3.11) ĉn

({αm}) ≡ In

({αm})
, n = 0,±1, ±2, . . .

and this completes the proof.
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On the basis of Theorem 3.1, Theorem 1.2, (3.1) and (3.2), one can

state the following proposition.

Lemma 3.3. Let a function, fe(θ), of Theorem 1.2 be even and let

{ām}, m = 0, 1, 2, . . . , be the related Fourier cosine coefficients; then, the

function, exp
[
fe(θ)−a0/2

]
, is the generating function of the correspond-

ing infinite-variable modified Bessel functions In

({ām})
.

Proof. The proof is omitted since it is analogous to that of the

J-case.

The following statement yields another important result showing a

further analogy with the case of Bessel functions, Jn

({·})
.

Theorem 3.2. Given the infinite-dimensional modified Bessel func-

tions, Il

({α1,m})
and Il

({α2,m})
(l = 0,±1, . . . ), the following addition

formula is valid

(3.12) In

({α1,m + α2,m})
=

∞∑

k=−∞
In−k

({α1,m})
Ik

({α2,m})
.

Proof. The proof is omitted since it is the same as that given in the

corresponding J-case.

Corollary 3.1. The infinite-variable modified Bessel function,

I0

({αm})
, admits the representation

(3.13) I0

({αm})
=

∞∑

n=−∞
I2

n

({αm

2

})
.

Proof. The assertion easily comes out putting in (3.12) n = 0 and

α1,m = α2,m = α/2 and considering the reflection property (3.5).

The above results show that the infinite-dimensional case has many

analogies with the case of monodimensional Bessel functions and this fact

confirms the validity of the present generalization.
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4 – Further results

In the previous sections we have derived some properties of the in-

finite-analogue of ordinary Bessel functions and we have remarked the

relevant connections with Fourier series expansions of particular smooth

functions (namely those of Theorem 1.2), having proper symmetry prop-

erties.

To this concern, it is to be mentioned that further results can be

obtained if one assumes a weaker condition for the existence of these

functions, more precisely that of convergence of the series (1.2) instead

of that of (1.5) for the J-case and the corresponding analogue for the I-

case. This weaker condition, though less satisfactory from a mathematical

point of view (it does not ensure the existence of the recurrence relations

for these generalized Bessel functions, hereafter denoted by J̃n

({·})
and

Ĩn

({·})
), however it allows to establish some propositions which are of

interest for applications.

The quoted results are essentially based on those of the following

theorem [5] which is the corresponding analogue of Theorem 1.2 and

deals with functions f(θ) given by Definition 1.1.

Theorem 4.1. Let f(θ) be a real function of Theorem 1.1, then the

coefficients of the relevant Fourier series (1.10) are such that the series

(4.1)
∞∑

m=1

(|am| + |bm|) ,

is convergent.

At this point, it is a straightforward manner to show that many

statements of Sections 2 and 3 have corresponding analogous proposi-

tions valid for J̃n

({·})
and Ĩn

({·})
, respectively, which can be written in

the same form apart from obvious modifications (for instance the use of

Theorem 4.1 instead of that of Theorem 1.2).

For this reason and in order to avoid tedious repetitions, we omit to

report most of them while we give hereafter, due to its practical impor-

tance, the following statement valid for J̃n

({·})
, which plays a role similar

to that of Lemma 2.2 for Jn

({·})
.
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Proposition 4.1. If f̃0(θ), −π ≤ θ ≤ π, is an arbitrary real odd

function of Theorem 4.1 with Fourier coefficients {b̃m}, then the following

expansion holds

(4.2) eif̃0(θ) =
∞∑

n=−∞
einθJ̃n

({b̃m})
,

and the involved series is uniformly convergent on [−π, π].

Proof. Since the function, f̃0(θ), is of Theorem 4.1 and is odd, the

relevant (uniformly convergent) Fourier series reads as

(4.3) f̃0(θ) =
∞∑

m=1

b̃m sin mθ ,

and the related convergent series (4.1) reduces to

(4.4)
∞∑

m=1

|b̃m| .

This fact ensures the existence of the relevant infinite-variable gen-

eralized Bessel functions, J̃n

({b̃m})
. Moreover, it is easy to see that also

the function

(4.5) φ̃(θ) = eif̃0(θ) ,

has the same smooth properties as f̃0(θ) and satisfies all the assumptions

of Theorem 1.1, so that it can be expanded in a uniformly convergent

Fourier series as follows

(4.6) eif̃0(θ) = exp

(
i

∞∑

m=1

b̃m sin mθ

)
=

∞∑

n=−∞
einθ c̃n

({b̃m})
,

whose Fourier coefficients, c̃n

({b̃m})
, are easily recognized to be equal to

J̃n

({b̃m})
.

The proof is thus completed.
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The corresponding result for Ĩn

({ãm})
is reported hereafter.

Proposition 4.2. Let f̃e(θ), −π ≤ θ ≤ π, be an arbitrary real even

function of Theorem 4.1 with Fourier cosine coefficients {ãm}, then the

following expansion is valid

(4.7) ef̃e(θ)−a0/2 = exp

( ∞∑

m=1

ãm cos mθ

)
=

∞∑

n=−∞
einθĨn

({ãm})
,

with the relevant series uniformly convergent on [−π, π].

Proof. The proof is omitted since it is analogous to that of the

corresponding J-case.

At this point, it is straightforward to derive the following results

(4.8)

π∫

−π

eif0(θ)dθ = J0

({bm})
,

π∫

−π

efe(θ)dθ = ea0/2I0

({am})
,

(with f0(θ) and fe(θ) functions of Theorem 1.2), which are obtainable

from Lemma 2.2 and 3.3, respectively, while analogous relations hold for

the corresponding J̃0

({b̃m})
and Ĩ0

({ãm})
, by virtue of Proposition 4.1

and 4.2.

We have thus extended the set of smooth functions with symmetry

properties whose Fourier series representations are connected with the

present generalizations of ordinary Bessel functions.

Finally, it is worth mentioning that the link with Fourier series is

extensible to arbitrary real functions of Theorem 1.2, but this requires

the introduction of a wider class of infinite-dimensional Bessel functions

which will be the topic of a forthcoming paper.

5 – Concluding remarks

In the analysis here performed, we have found a natural link be-

tween the present generalized Bessel functions (GBF) and Fourier series

expansions of particular smooth functions and this seems an interesting

analytical result since it allows to perform a rigorous treatment of many
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physical problems in classical and quantum optics (non-dipolar scatter-

ing, multiphoton processes, radiation emission by relativistic electrons in

linearly polarized undulators, etc.) and in statistical cristallography.

In addition, since we have related the n-th coefficient of the above

Fourier series to the n-th variable of the relevant GBF, it follows that

the problem of approximating the quoted series to the n-th partial sums

corresponds to that of annihilating the variables of order greater than

n in the relevant GBF. In other words, the study of the convergence of

the aforementioned Fourier series is related to the choice of the number

of variables that one can take different from zero in the corresponding

GBF. This fact seems to be of particular importance in those problems,

frequently occuring in physics, where one can neglect higher order har-

monics.
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