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L-minimal canal surfaces

E. MUSSO–L. NICOLODI

Riassunto: Usando il metodo del riferimento mobile si fornisce una descrizione
esplicita delle superficie che sono inviluppo di una famiglia ad un parametro di sfere
orientate e che sono estremali del problema variazionale sulle superficie immerse nello
spazio euclideo definito dal funzionale (f, S) →

∫
(H2 − K)K−1dA (superficie canale

L-minimali).

Abstract: By the method of moving frames we provide an explicit, elementary
description of the enveloping surfaces of a 1-parameter family of oriented spheres that
are extremals of the variational problem defined on immersed surfaces in Euclidean
space by the functional (f, S) →

∫
(H2 − K)K−1dA (L-minimal canal surfaces).

– Introduction

Let Λ be the unit tangent bundle E3 × S2 of the Euclidean space

endowed with its standard contact structure. By a Legendre surface we

mean an immersed surface F = (f, n) : S → Λ annihilating the linear

differential form df · n(1). The geometry of a Legendre surface is based

on three quadratic forms: I = df · df , II = df · dn and III = dn · dn.

For instance, surfaces in Euclidean space are characterized by having I
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(1)Here “·” denotes the usual inner product on E3.
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positive definite; in this case f : S → E3 is a smooth immersion, n : S →
S2 is a field of unit normals, and I, II, III are the classical fundamental

forms of the surface.

Throughout we shall assume that F is nondegenerate, that is to say,

III is positive definite and II, III are everywhere linearly independent.

We consider the Laguerre area element which is the exterior differential

two-form

(1) Ω(F ) = (l2 − λ)dV,

where 2l = tr
III

II, λ = det II
det III

and dV is the element of area relative to

III. If the Legendre surface arises from an immersed surface in E3, the

Laguerre area element takes the form K−1(H2 − K)dA, where H and K

are the mean and Gauss curvatures, and dA is the induced area element.

The L-minimal surfaces are the critical points of the variational prob-

lem on nondegenerate Legendre surfaces defined by

(F, S) →
∫

S

Ω(F )

with respect to compactly supported variations through Legendrian im-

mersions. Ω(F ) has the remarkable property of being invariant under the

action of a 10-dimensional Lie group L of contact transformations: the

Laguerre group. The resulting geometry, known as the Laguerre sphere

geometry, provides a suitable setting for studying L-minimal surfaces.

An extensive study of this surfaces was carried out by W. Blaschke

in the twenties [2]. See also [5] for a recent study on the subject.

In this paper we use the method of moving frames to study the L-

minimal surfaces that are obtained as envelopes of a 1-parameter family

of oriented spheres (L-minimal canal surfaces). We solve the integration

problem and provide explicit expressions for the solution surfaces.

The paper is organized as follows. In Section 1 we briefly review

some basic facts about Laguerre geometry and develop the method of

moving Laguerre frames to obtain a set of differential invariants (invariant

functions) for nondegenerate Legendre surfaces. For the material in this

section we refer to [2],[3],[4],[5]. Section 2 is devoted to the study of

L-minimal canal surfaces. Special conditions on the invariant functions
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are obtained (Propositions 2 and 3) and adapted coordinate systems are

introduced (Proposition 4). On the grounds of this the L-minimal canal

surfaces are divided in two main types (null type, generic type) and six

classes. Finally, in Sections 3 and 4 we find explicit solutions for surfaces

of null and generic type, respectively.

1 – Preliminaries

1.1 – The Laguerre space

On IR6 with the standard orientation let us consider the scalar prod-

uct of signature (4,2)

(1.1)
〈X, Y 〉 = −(X0Y 5+X5Y 0)−(X1Y 4+X4Y 1)+X2Y 2+X3Y 3 =

= gIJXIY J .

Let G denote the pseudo-orthogonal group of (1.1) and set

L = {A = (AI
J) ∈ G : AJ

5 = 0, J = 0, . . . , 4; A5
5 = 1}.

L is called the Laguerre group and is a 10-dimensional Lie group isomor-

phic to the Poincaré group of the Lorentz-Minkowski 4-space.

Let (ε0, . . . , ε5) be the standard basis of IR6. For any A ∈ L, let

AJ = AεJ denote the J-th column vector of A. {A0, . . . , A5} is a so-

called Laguerre frame, i.e., a basis of IR6 such that

(1.2) 〈AI , AJ〉 = gIJ ; A5 = ε5.

Regarding the AJ ’s as IR6-valued functions, there exist unique 1-forms

{ωI
J}0≤I,J≤5, such that

(1.3) dAI = ωJ
I AJ ,

where ωI
J are the components of the Maurer-Cartan form ω = A−1dA of

L. Differentiating (1.2) and (1.3), we get

ωK
I gKJ + ωK

J gKI = 0, ωK
5 = 0,(1.4)

dωI
J = −ωI

K ∧ ωK
J .(1.5)
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These are the Cartan structure equations of the group L.

The Laguerre group acts on the left on the quadric Q = {[X] :

〈X, X〉 = 0} ⊂ RP5 by A · [X] = [AX]. Besides the ”point at infinity”

P∞ = [ε5], there are two orbits:

QΣ = {[X] ∈ Q : 〈X, ε5〉 %= 0},

QΠ = {[X] ∈ Q : 〈X, ε5〉 = 0, X %= kε5, k ∈ IR∗}.

QΣ is an open and dense principal orbit, while QΠ has dimension 3.

In E3 we consider points p = (p1, p2, p3), oriented spheres σ(p, r) with

center p and signed radius r ∈ IR, and oriented planes π(n, h) : n ·p−h =

0, n = (n1, n2, n3) ∈ S2 ⊂ E3. QΣ is identified with the space of oriented

spheres (including point spheres) by

σ(p, r) → [t(1,
r + p1

√
2

, p2, p3,
r − p1

√
2

,
p · p − r2

2
)],

and QΠ is identified with the space of oriented planes by

π(n, h) → [t(0,
1 + n1

2
,

n2

√
2
,

n3

√
2
,
1 − n1

2
,

h√
2
)].

In particular, the Euclidean space E3 is identified with the subspace

{[X] ∈ QΣ : 〈X, ε1 + ε4〉 = 0} by the mapping

(1.6) p = (p1, p2, p3) 7→ [t(1,
p1

√
2
, p2, p3,

−p1

√
2

,
p · p

2
)].

Accordingly, Euclidean motions correspond to the elements of L fixing

the timelike vector ε1 + ε4.

Two oriented spheres σ(p, r) and σ(p′, r′) are in oriented contact if

d(p, p′) = |r − r′|, where d denotes the Euclidean distance. Analytic

conditions can also be given to express that an oriented sphere and an

oriented plane, as well as a couple of oriented planes are in oriented

contact. In each case the analytic condition for oriented contact is equiv-

alent to the following: [X], [Y ] ∈ Q are in oriented contact if and only if
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〈X, Y 〉 = 0. Note that for every A = (A0, . . . , A5) ∈ L, [A0] represents

an oriented sphere and [A1], [A4] represent oriented planes in oriented

contact with [A0].

A pair [X], [Y ] ∈ Q in oriented contact defines the projective line

entirely contained in Q, say [X, Y ], which consists of points [aX + bY ] ∈
Q, a, b ∈ IR.

The Laguerre space Λ is the space of all projective lines 7 ⊂ Q which

do not meet the point at infinity P∞. L acts transitively on Λ and the

mapping

πL : L → Λ, A 7→ [A0, A1],

makes L into a principal L0–fibre bundle over Λ (the Laguerre fibration),

where

L0 = {A ∈ L : AI
0 = AI

1 = 0, I = 2, . . . , 5}.

Every projective line 7 ∈ Λ contains a unique point p(7) ∈ E3 and a

unique oriented plane π through p(7). Let n(7) denote the unit normal

vector of π. Λ is identified with the unit tangent bundle E3 × S2 by the

correspondence

(1.7) Λ = 7 7→ (p(7), n(7)) ∈ E3 × S2.

Therefore, L can be seen as a 10-dimensional group of contact transfor-

mations acting on E3 × S2.

1.2 – Adapted Laguerre frames

If F : S → Λ is a connected Legendre surface, we then write F =

(f, n), where f : S → E3 and n : S → S2 are smooth mappings. In

general, the Euclidean projection f will not be an immersion.

A local Laguerre frame field along a Legendre surface F = (f, n) :

S → Λ is a smooth map A : U ⊂ S → L defined on an open subset U of

S such that πL(A(s)) = F (s), for each s ∈ U . Any other Laguerre frame

field Â on U is given by Â = AX, where X : U → L0 is a smooth map.

Under the assumption of nondegeneracy of F , by successive frame

reductions, we can consider over S the (globally defined) normal frame
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field (2) A : S → L which is the Laguerre frame field characterized by the

following equations

(1.8)

dA0 = α2
0A2 + α3

0A3,

dA1 = α1
1A1 + α2

0A2 − α3
0A3,

dA2 = α1
2A1 + α3

2A3 + α2
0(A4 + A5),

dA3 = α1
3A1 − α3

2A3 + α3
0(−A4 + A5),

dA4 = α1
2A2 + α1

3A3 − α1
1A4,

dA5 = 0,

where αI
J = A∗(ωI

J), I, J = 0, 1, . . . , 5, and

(1.9) α2
0 ∧ α3

0 %= 0,

(1.10)
α1

2 = p1α
2
0 + p2α

3
0, α1

3 = p2α
2
0 + p3α

3
0,

α3
2 = q1α

2
0 + q2α

3
0, α1

1 = 2q2α
2
0 − 2q1α

3
0.

The real-valued smooth functions q1, q2, p1, p2, p3 are the invariant func-

tions of the surface. The invariant functions and the one-forms α’s satisfy

the structure equations obtained by exterior differentiation of (1.8):

(1.11) dα2
0 = q1α

2
0 ∧ α3

0, dα3
0 = q2α

2
0 ∧ α3

0,

and

(1.12)

dq1 ∧ α2
0 + dq2 ∧ α3

0 = (p3 − p1 − q1
2 − q2

2)α2
0 ∧ α3

0,

dq1 ∧ α3
0 − dq2 ∧ α2

0 = −p2α
2
0 ∧ α3

0,

dp1 ∧ α2
0 + dp2 ∧ α3

0 = (−3q1p1 − 4q2p2 + q1p3)α
2
0 ∧ α3

0,

dp2 ∧ α2
0 + dp3 ∧ α3

0 = (−3q2p3 − 4q1p2 + q2p1)α
2
0 ∧ α3

0.

(2)Actually, the totality of normal frame fields forms a Z4-principal bundle over S;
if A = (A0, . . . , A5) is a normal frame, any other normal frame is either
(A0, A1,−A2,−A3, A4, A5), (A0,−A1, A3,−A2,−A4, A5) or (A0,−A1,−A3, A2,−A4, A5).
Moreover, up to L-equivalence, any such frame field can be so chosen to be globally
defined [5].
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1.3 – L-minimal surfaces

In this setting, a nondegenerate Legendre surface F : S → Λ with

normal frame field A = (A0, . . . , A5) is described in terms of the pair

of functions A0, A1 : S → IR6 by F (s) = [A0(s), A1(s)]. Moreover, the

Laguerre area element (1) takes the form Ω(F ) = α2
0 ∧ α3

0

We now are in a position to state

Proposition 1. ([2],[5]) A nondegenerate Legendre surface F : S →
Λ is L-minimal if and only if p1 + p3 = 0.

2 – Canal surfaces

2.1 – Canal surfaces in Euclidean space

Let f : S → E3 be a connected surface without parabolic and umbil-

ical points with unit normal n : S → S2.

The caustic mappings bi : S → E3, i=1,2, are defined by

bi = f + κi
−1n,

where κ1 and κ2 are the principal curvatures. Denote by σi(s), i=1,2, the

oriented sphere centered at bi(s) with signed radius κi
−1. The σi : S →

QΣ are smooth maps, the curvature-sphere mappings.

If at least one of the two caustic mappings has rank one, then (S, f)

is said to be a canal surface. If rank b1 = 1, then σ1 is a rank one map

with the property that the oriented plane

πf (s) = {p ∈ E3 : (p − f(s)) · n(s) = 0}

is in oriented contact with σ1(s) at f(s), for every s ∈ S. Geometrically

this means that f is the enveloping surface of the one-parameter family

of oriented spheres described by the map σ1.

Conversely, let σ : S → QΣ be a rank-one map such that πf (s)

and σ(s) are in oriented contact at f(s). Then, σ is a curvature-sphere

mapping and (S, f) is a canal surface (cf. [1]).

To sum up: f : S → E3 is a canal surface if and only if there exists a

rank-one mapping σ : S → QΣ with the property that σ(s) and πf (s) are

in oriented contact at f(s), for every s ∈ S.
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2.2 – Canal surfaces in Laguerre space

The above discussion leads to the following

Definition. A canal surface in Laguerre space is a nondegenerate

Legendre immersion F = (f, n) : S → Λ for which there exists a rank-one

map σ : S → QΣ such that σ(s) and πf (s) are in oriented contact at f(s),

for every s ∈ S.

Proposition 2. A nondegenerate F : S → Λ is a canal surface if

and only if either q1 = 0 or q2 = 0.

Proof. Let F be a canal surface, envelope of the rank-one mapping

σ : S → QΣ, and let A : S → L be the normal frame field along F .

By construction, σ(s) belongs to the parabolic pencil of oriented spheres

determined by [A0(s)] and [A1(s)]. We may then write σ(s) = [A0(s) +

RA1(s)], for all s ∈ S, where R is a smooth real-valued function. By

using (1.8), we have

(2.1) dσ = [R2A1 + (1 + R)A2]α
2
0 + [R3A1 + (1 − R)A3]α

3
0,

where R2 and R3 are defined by

(2.2) dR + Rα1
1 = R2α

2
0 + R3α

3
0.

Since σ has rank one, we see that either R = 1 and R3 = 0 or else R = −1

and R2 = 0. If R = 1 and R3 = 0, (1.10) and (2.2) imply q1 = 0. In the

other case we obtain q2 = 0.

Conversely, suppose q1 = 0 and define σ = [A0 + A1] : S → QΣ. By

(1.8) and (1.10) we get dσ ∧ α2
0 = 0. This implies that σ has rank one.

By construction, F : S → Λ is an envelope of σ. Similarly, if q2 = 0, F

is an envelope of the rank-one map [A0 − A1]. In both cases (S, F ) is a

canal surface.

Replacing, if necessary, A = (A0, . . . , A5) with

Ã = (A0,−A1,±A3,∓A2,−A4, A5) ,

we can assume that every canal surface admit a globally defined normal

frame such that q1 = 0. This choice will be assumed henceforth.
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2.3 – L-minimal canal surfaces

The L-minimal canal surfaces are characterized by the equations

(2.3) q1 = 0, p1 + p3 = 0.

We have

Proposition 3. The invariant function p2 of an L-minimal canal

surface vanishes identically:

p2 = 0.

Proof. By (1.11),

dα2
0 = 0, dα3

0 = q2α
2
0 ∧ α3

0.

By (1.12),

(2.4) dq2 ∧ α3
0 = −(2p1 + q2

2)α2
0 ∧ α3

0, dq2 ∧ α2
0 = p2α

2
0 ∧ α3

0

and

(2.5)
dp1 ∧ α2

0 + dp2 ∧ α3
0 = −4q2p2α

2
0 ∧ α3

0,

dp2 ∧ α2
0 − dp1 ∧ α3

0 = 4q2p1α
2
0 ∧ α3

0.

(2.5) implies

(2.6) dq2 = −(2p1 + q2
2)α2

0 − p2α
3
0.

By exterior differentiation of (2.6), we get

(2.7) 2dp1 ∧ α2
0 + dp2 ∧ α3

0 = −3q2p2α
2
0 ∧ α3

0.

From (2.5) and (2.7) we obtain

(2.8)
dp1 = (q2p1 − X)α2

0 − q2p2α
3
0,

dp2 = −5q2p2α
2
0 + (X − 5q2p1)α

3
0,
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where X : S → IR is a smooth function. Differentiation of (2.8) yields

(2.9) dX = (5p2
2 + 30q2

2p1 − 10p1
2 − 11q2X)α2

0 − 3p2(p1 + 2q2
2)α3

0.

Differentiating (2.9) we obtain

(2.10) p2(5p1q2 − X)α2
0 ∧ α3

0 = 0.

If there exists a point s0 on the surface such that p2(s0) %= 0, then

X = 5p1q2 on an open neighbourhood U of s0. From the second equation

of (2.8) follows

dp2 = −5p2q2α
2
0.

This implies that q2α
2
0 is a closed form on U . Thus dq2 ∧ α2

0 = 0 on U
and, by (2.4), we have p2|U = 0, a contradiction. Hence p2 = 0.

Definition. A local coordinate system (u, v) is said to be adapted

to an L-minimal canal surface F : S → Λ if

(2.11) α2
0 = du, α3

0 = gdv,

where g is a positive function such that dg ∧ du = 0. We call g the

potential function with respect to the coordinate system (u, v).

Proposition 4. Adapted coordinate systems exist near any point

of S.

Proof. Since α2
0 is a closed form, we may find for any s0 ∈ S a local

coordinate system (x, y) = Φ : U → IR2 defined in an open neighbourhood

U of s0 such that

(1) Φ(U) is a rectangular open subset of IR2;

(2) α2
0 = dx, α3

0 = T ◦ Φdy,

where T : Φ(U) → IR is a positive smooth function. From dα3
0 = q2α

2
0∧α3

0

we get q2 = ∂
∂x

(log T ). By the second equation of (1.12), since p2 vanishes

identically we then have dq2 ∧ dx = 0. This implies ∂2

∂x∂y
(log T ) = 0 and

hence

T = eP (x)eQ(x).

Define v by dv=eQ(x)dy. Then, (x,v) is an adapted coordinate system.
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Remark. If (u, v) and (u′, v′) are adapted coordinates on an open

connected subset U ⊂ S, the potential functions g and g′ are related by

(2.12) g′ =
1

r
g

for r a positive constant. Thus

(2.13) u′ = u + a, v′ = rv + b,

a, b arbitrary constants.

From the structure equations of the surface we get

q2du = d(log g),(2.14)

dq2 = −(2p1 + q2
2)du,(2.15)

dp1 = −4p1q2du.(2.16)

By (2.14) and (2.16),

(2.17) p1 = hg−4,

where h is a constant depending on the local coordinate system. Substi-

tuting (2.17) and (2.14) into (2.15) we have

(2.18)
d2g

du2
+ 2g−3h = 0.

This implies

(2.20) (dg)2 = (2g−2h + k)(du)2,

where k is a constant.

We call h, k the structure constants of the surface with respect to the

coordinate system (u, v). If (u, v) and (u′, v′) are adapted coordinates on

U ⊂ S, then the corresponding structure constants are related by

(2.21) h′ = r−4h, k′ = r−2k.
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Accordingly, we may then give a classification of L-minimal canal

surfaces in terms of the structure constants:

Class A : k = h = 0

Class B : k = 0, h > 0

}
Null type

Class C : k < 0, h > 0

Class D : k > 0, h = 0

Class E : k > 0, h < 0

Class F : k > 0, h > 0





Generic type

3 – L-minimal canal surfaces of null type

Theorem 1. The Euclidean projection of an L-minimal canal sur-

face of class A is L-equivalent to a piece of the rational surface defined

by

(3.1) x = −
√

2(u2 − v2)

u2 + v2 + 2
, y =

2u(v2 + 1)

u2 + v2 + 2
, z =

2v(u2 + 1)

u2 + v2 + 2
.

Proof. Without loss of generality we may suppose that S is simply

connected. Since h = k = 0, it follows that the potential functions

are constants, and hence α3
0 is a closed 1-form. We introduce functions

u, v : S → IR such that α2
0 = du, α3

0 = dv and we let Ω be the image of

(u, v). This is an open connected subset of IR2. According to (1.11) and

(1.10), the equations (1.8) for the normal frame A become

(3.2)

dA0 = duA2 + dvA3,

dA1 = duA2 − dvA3,

dA2 = du(A4 + A5),

dA3 = dv(−A4 + A5),

A4 = C4,

where C4 is a constant null vector satisfying 〈C4, ε5〉 = 0. By the third

and fourth equation of (3.2) we get

(3.3) A2 = C2 + u(C4 + ε5), A3 = C3 + v(ε5 − C4),
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where C2 and C3 are constant vectors satisfying

‖C2‖2 = ‖C3‖2 = 1,

〈C2, C3〉 = 〈C2, C4〉 = 〈C3, C4〉 = 〈C2, ε5〉 = 〈C3, ε5〉 = 0.

The first two equations of (3.2) give

d(A0 + A1) = 2du(C2 + u(C4 + ε5)),

d(A0 − A1) = 2dv(C3 + v(−C4 + ε5)),

and therefore

(3.4)
A0 = C0 + uC2 + vC3 +

1

2
(u2 + v2)ε5 +

1

2
(u2 − v2)C4,

A1 = C1 + uC2 − vC3 +
1

2
(u2 + v2)C4 +

1

2
(u2 − v2)ε5,

where C0, C1 are constant vectors and C = (C0, C1, C2, C3, C4, ε5) is a

Laguerre frame. Replacing F by C−1F , we may assume that CJ = εJ , J =

0, . . . , 4. The Euclidean projection f : S → E3 ⊂ QΣ is given by [A0 +

XA1], where X : S → IR is the smooth function determined by imposing

〈A0 + XA1, ε1 + ε4〉 = 0 (cf. (1.6)). By (3.4), we obtain

(3.5) X = − u2 − v2

u2 + v2 + 2
.

By using (3.4) and (3.5), we obtain for f = (x, y, z) : S → E3 the expres-

sion (3.1).

Remark. The image of the surface defined by (3.1) is described by

the equation

x3 + x(y2 + z2) +
√

2(z2 − y2) − 2x = 0.

Theorem 2. Theeuclidean projection of an L-minimal canal surface

of class B is L-equivalent to a piece of the rational surface defined by the

equations

(3.6)

x = − 4w3

3(1 + w2 + t2)
, y =

w2[3(t2 + 1) − w2]

3(1 + w2 + t2)
, z =

4w3t

3(1 + w2 + t2)
.
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Proof. Suppose S be simply connected and let (u, v) be an adapted

coordinate system. We may suppose that u is a real-valued function

defined on all S. If k = 0 and h > 0, equation (2.20) implies

u = ± 1√
8h

g2 + C.

We take (u, v) such that C = 0 and 8h = 1. Thus, u is uniquely defined

and v is well-defined up to an additive constant. Therefore, there is a

local diffeomorphism (u, v) : S → IR2 onto an open connected subset of

IR2 which is a local adapted coordinate system near any point of S such

that u = ±g2. We distinguish two cases: u > 0, u < 0.

Suppose u > 0. In this case we have

α2
0 = du, α3

0 =
√

udv, p1 =
1

8u2
, q2 =

1

2u

and by (1.8)

dA0 = duA2 +
√

udvA3,

dA1 =
du

u
A1 + duA2 − √

udvA3,

dA2 =
du

8u2
A1 +

dv

2
√

u
A3 + du(A4 + A5),

dA3 = − dv

8u
3
2

A1 − dv

2
√

u
A2 +

√
udv(−A4 + A5),

dA4 =
du

8u2
A2 − dv

8u
3
2

A3 − du

u
A4.

Setting

(3.7)

Γ0 = A0 + A1, Γ1 =
1√
u

A1, Γ2 = A2 +
1

2u
A1

Γ3 = A3, Γ4 =
1

8u
3
2

A1 +
1

2
√

u
A2 +

√
u(A4 − A5), Γ5 = ε5,

Γ = (Γ0, . . . ,Γ5) : S → L is a frame field along the surface satisfying the
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following equations

(3.8)

dΓ0 = 2duΓ2, dΓ1 =
du√

u
Γ2 − dvΓ3,

dΓ2 =
du√

u
Γ4 + 2duΓ5, dΓ3 = −dvΓ4, dΓ4 = 0.

This implies

(3.9) Γ4 = C4, Γ3 = C3 − vC4, Γ2 = C2 + 2
√

uC4 + 2uε5,

where C2, C3 and C4 are constant vectors such that

‖C4‖2 = 0, ‖C2‖2 = ‖C3‖2 = 1, 〈Ca, Cε5〉 = 〈Ca, Cb〉 = 0,

a, b = 2, 3, 4, a %= b. By substituting (3.9) into the first two equations of

(3.8) we get

dΓ0 = d(2uC2 +
8

3
u

3
2 C4 + 2u2ε5),

dΓ1 = d(2
√

uC2 − vC3 + (2u +
1

2
v2)C4 +

4

3
u

3
2 ε5),

from which we obtain

(3.10)
Γ0 = C0 + 2uC2 +

8

3
u

3
2 C4 + 2u2ε5,

Γ1 = C1 + 2
√

uC2 − vC3 + (2u +
v2

2
)C4 +

4

3
u

3
2 ε5,

where C = (C0, . . . , C4, ε5) is a Laguerre frame. Replacing F by C−1F ,

we may suppose that C is the standard basis of IR6.

By (3.7), the Euclidean projection f : S → E3 ⊂ QΣ is given by

[Γ0 + XΓ1], where X : S → IR is determined by

(3.11) 〈Γ0 + XΓ1, ε1 + ε4〉 = 0.

It follows that

(3.12) X = − 16u
3
2

3(2 + 4u + v2)
.
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Therefore, f = (x, y, z) : S → E3 is given by

(3.13) x =
√

2X, y = 2u + 2
√

uX, z = −Xv.

Setting w =
√

2u, t = v√
2
, we obtain (3.6).

If u < 0, we have g =
√−u and

α2
0 = du, α3

0 =
√

−udv, p1 =
1

8u2
, q2 =

1

2u
.

We set

Γ0 = A0 + A1, Γ1 =
1√−u

A1, Γ2 = A2 +
1

2u
A1

Γ3 = A3, Γ4 =
1

8(−u)
3
2

A1 − 1

2
√−u

A2 +
√

−u(A4 − A5), Γ5 = ε5.

The framing Γ = (Γ0, . . . ,Γ5) satisfies

dΓ0 = 2duΓ2, dΓ1 =
du√−u

Γ2 − dvΓ3,

dΓ2 =
du√−u

Γ4 + 2duΓ5, dΓ3 = −dvΓ4, dΓ4 = 0.

Proceeding as above, we have that, up to L-congruence, the Euclidean

projection of F is given by

(3.14) x = − 16
√

2(−u)
3
2

3(2 − 4u + v2)
, y = 2u −

√
−2ux, z = − xv√

2
.

By setting w =
√

−2u, t = v√
2
, we get

x = − 4w3

3(1 + w2 + t2)
, y = −w2[3(t2 + 1) − w2]

3(1 + w2 + t2)
, z =

4w3t

3(1 + w2 + t2)
.

By composing f with the reflection r : (x, y, z) 7→ (x,−y, z), we obtain

the expression (3.6).
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4 – L-minimal canal surfaces of generic type

Let (u, v) be an adapted local coordinate system with potential func-

tion g. Equation (2.20) yields

(4.1) u = ±1

k

√
kg2 + 2h + C.

We may choose (u, v) such that C = 0 and |k| = 1. The function u : S →
IR is globally defined and v is uniquely determined up to an additive

constant. If S is simply connected we may suppose that v is well defined

on all of S. By (4.1) we get

(4.2) g =

√
k2u2 − 2h

k
,

k2u2 − 2h

k
> 0, |k| = 1.

It follows that

(4.3) dg =
ku

g
du,

and then, by (2.14), (2.17), we have

(4.4) q2 =
ku

g2
, p1 =

h

g4
.

The normal frame A is characterized by

(4.5)

dA0 = duA2 + gdvA3, dA1 =
2ku

g2
duA1 + duA2 − gdvA3,

dA2 =
h

g4
duA1 +

ku

g
dvA3 + du(A4 + A5),

dA3 = − h

g3
dvA1 − ku

g
dvA2 + gdv(−A4 + A5),

dA4 =
h

g4
duA2 − h

g3
dvA3 − 2ku

g2
duA4.

Next we define

(4.6) Γ2 = − h

g3
A1 − ku

g
A2 + g(A5 − A4), Γ3 = A3.
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These are IR6-valued mappings such that

(4.7) ‖Γ2‖2 = k, ‖Γ3‖2 = 1, 〈Γ2,Γ3〉 = 0.

By (4.5), we get

(4.8) dΓ2 = −kdvΓ3, dΓ3 = dvΓ2.

This shows that there exists a 2-dimensional subspace ∆ ⊂ IR6 and that

Γ2 and Γ3 are ∆-valued. The index ν of ∆ depends on the sign of k: ∆

has index ν = 0 if k = 1 and ν = 1 if k = −1. By (4.8), we get

(4.9)
d2Γ3

dv2
= −kΓ3.

Two possible cases arise:

Case 1. k = −1. Then

(4.10) Γ2 = ev

√
2

2
C1 + e−v

√
2

2
C4, Γ3 = ev

√
2

2
C1 − e−v

√
2

2
C4,

where C1, C4 are constant vectors satisfying

(4.11) ‖C1‖2 = ‖C4‖2 = 〈Ci, ε5〉 = 0, 〈C1, C4〉 = −1.

Case 2. k = 1. Then

(4.12) Γ2 = − sin vC2 + cos vC3, Γ3 = cos vC2 + sin vC3,

where C2, C3 are constant vectors satisfying

(4.13) ‖C2‖2 = ‖C3‖2 = 1, 〈C2, C3〉 = 〈Ci, ε5〉 = 0.

We start by considering the surfaces of class C.

Theorem 3. The Euclidean projection of an L-minimal canal sur-

face of class C is L-equivalent to a piece of the curve γ : (−π

2
,
π

2
) → E3

defined by

x = 0, y =
√

2h sin2 t, z = −
√

2h(t + sin t cos t).
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Proof. We set

(4.14)

Γ0 = A0 + A1, Γ1 = − u

g2
A1 + A2,

Γ4 =
u2 − g2

2g3
A1 − u

g
A2 + g(A4 − A5), Γ5 = ε5.

We then have ΓJ(s) ∈ ∆⊥, J = 0, 1, 4, 5, for all s ∈ S and

(4.15)

‖Γ0‖2 = 0, 〈Γ0,Γ1〉 = 〈Γ0,Γ4〉 = 0, 〈Γ0,Γ5〉 = −1,

‖Γ1‖2 = 1, 〈Γ1,Γ4〉 = 〈Γ1,Γ5〉 = 0,

‖Γ4‖2 = 1, 〈Γ4,Γ5〉 = 0.

By (4.5),

dΓ0 = 2duΓ1, dΓ1 =
du

g
Γ4 + 2duΓ5, dΓ4 = −du

g
Γ1.

We now introduce t : S → (−π
2
, π

2
) by u =

√
2h sin t. It follows that

(4.16)
dΓ0

dt
= 2

√
2h cos t Γ1,

dΓ1

dt
= Γ4 + 2

√
2h cos t Γ5,

dΓ4

dt
= −Γ1,

and

(4.17)
d2Γ4

dt2
+ Γ4 = −2

√
2h cos t ε5.

Equation (4.17) implies

(4.18) Γ4 = C2 cos t + C3 sin t −
√

2ht sin t ε5,

where C2 and C3 are constant vectors satisfying

(4.19)

‖C2‖2 = ‖C3‖2 = 1,

〈C2, C3〉 = 〈C2, C1〉 = 〈C2, C4〉 =

〈C3, C1〉 = 〈C3, C4〉 = 〈C2, ε5〉 = 〈C3, ε5〉 = 0.

Equations (4.16) and (4.18) imply

(4.20) Γ1 = C2 sin t − C3 cos t +
√

2h(sin t + t cos t)ε5
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and

(4.21)
dΓ0

dt
= 2

√
2h cos t(C2 sin t − C3 cos t +

√
2h(sin t + t cos t)ε5),

from which

(4.22) Γ0 ≡ C0 +
√

2h sin2 t C2 −
√

2h(t +
1

2
sin 2t)C3 mod ε5,

where C0 ∈ IR6 and C = (C0, . . . , C4, ε5) is a Laguerre basis of IR6.

Replacing, if necessary, F with C−1F , we may assume that C be the

standard basis (ε0, . . . , ε5).

By (4.14) and (4.2), we have

A1 = −g(Γ2 + Γ4), A0 = Γ0 + g(Γ2 + Γ4).

This implies that [Γ0] is the Euclidean projection of F and hence that

f = (0,
√

2h sin2 t,−
√

2h(t + sin t cos t)).

In what follows we shall be concerned with the surfaces of class

D, E, F .

Let F : S → Λ be an L-minimal canal surface of one of such classes.

We set

(4.23)

Γ0 = A0 + A1, Γ1 =
u

g2
A1 + A2,

Γ4 =
u2 + g2

2g3
A1 +

u

g
A2 + g(A4 − A5), Γ5 = ε5.

These are ∆⊥-valued smooth mappings satisfying

(4.24) dΓ0 = 2duΓ1, dΓ1 =
du

g
Γ4 + 2duΓ5, dΓ4 =

du

g
Γ1.

We introduce the new parameter w : S → IR defined by

(4.25)
du

dw
= g.
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Then we have

(4.26)
dΓ0

dw
= 2gΓ1,

dΓ1

dw
= Γ4 + 2gΓ5,

dΓ4

dw
= Γ1,

and

(4.27)
d2Γ4

dw2
− Γ4 = 2gε5.

Theorem 4. The Euclidean projection of an L-minimal canal sur-

face of class D is L-equivalent to a piece of the surface obtained by re-

volving the plane curve

x =
2ew(w + 1)

ew + e−w
, y =

2w + 1 − e2w

ew + e−w
, z = 0

around the x-axis.

Proof. For surfaces of class D we have g = |u|. Two cases may

occur: u > 0 and u < 0. In the first case g = u and we may set

(4.28) w = log u.

By (4.28), equation (4.27) becomes

(4.29)
d2Γ4

dw2
− Γ4 = 2ewε5,

from which we obtain

(4.30) Γ4 = ew

√
2

2
C1 + e−w

√
2

2
C4 + wewε5,

where C1, C4 are constant vectors satisfying

(4.31)
‖C1‖2 = ‖C4‖2 = 0, 〈C1, C4〉 = −1

〈Ca, C2〉 = 〈Ca, C3〉 = 〈Ca, ε5〉 = 0, a = 1, 4.
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By (4.26) and (4.30), we obtain

Γ1 = ew

√
2

2
C1 − e−w

√
2

2
C4 + (1 + w)ewε5,

and

(4.32)
dΓ0

dw
= 2ew(ew

√
2

2
C1 − e−w

√
2

2
C4 + (1 + w)ewε5),

so that

(4.33) Γ0 = C0 + e2w

√
2

2
C1 − (

√
2

2
+

√
2w)C4 mod ε5,

where C = (C0, . . . , C4, ε5) is a Laguerre basis. As above we may assume

that C is the standard basis of IR6. According to (4.6) and (4.23), we see

that the Euclidean projection of F is determined by [Γ0 + X(Γ2 + Γ4)],

where X : S → IR is a smooth function determined by 〈Γ0 + XΓ4, ε1 +

ε4〉 = 0. This gives

X =
2w + 1 − e2w

ew + e−w
,

and accordingly

(4.34)

f = (x, y, z) =

=
(2ew(w + 1)

ew + e−w
,−2w + 1 − e2w

ew + e−w
sin v,

2w + 1 − e2w

ew + e−w
cos v

)
.

If u < 0, by a reasoning similar to that used for the positive case, we

find that the Euclidean projection is given by

f = (x, y, z) =

=
(

− 2e−w(1 − w)

ew + e−w
,−1 − 2w − e−2w

ew + e−w
sin v,

1 − 2w − e−2w

ew + e−w
cos v

)
.

By composing with the reflection r : (x, y, z) 7→ (−x, y, z) and by replac-

ing w with −w, we thus obtain for f the expression (4.34).

Theorem 5. The Euclidean projection of an L-minimal canal sur-

face of class E is L-equivalent to a piece of a catenoid in E3.
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Proof. In this case we define w : S → IR by

u =
√

−2h sinhw.

Then g =
√

−2h cosh w and by (4.27) we have

d2Γ4

dw2
− Γ4 = (2

√
−2h cosh w)ε5.

This implies

(4.35) Γ4 = ew

√
2

2
C1 + e−w

√
2

2
C4 +

√
−2h(w sinhw − cosh w)ε5,

where C1 and C4 are constant vectors satisfying

‖C1‖2 = ‖C4‖2 = 0, 〈C1, C4〉 = −1

〈Ca, C2〉 = 〈Ca, C3〉 = 〈Ca, ε5〉 = 0, a = 1, 4.

By (4.35) and (4.26),

(4.36) Γ0 = C0+
√

−h(w+
e2w

2
+

1

2
)C1−

√
−h(w− e−2w

2
− 1

2
)C4 mod ε5,

where (C0, . . . , C4, ε5) is a Laguerre basis of IR6. As above we may assume

that (C0, . . . , C4, ε5) is the standard basis. From (4.35) and (4.36) we

deduce that the Euclidean projection of F is given by

[Γ0 −
√

−2h cosh w(Γ2 + Γ4)].

This implies

(4.37) f = (
√

−2hw,
√

−2h cosh w sin y, −
√

−2h cosh w cos y).

Finally, we have

Theorem 6. The Euclidean projection of an L-minimal canal sur-

face of class F is L-equivalent to a piece of the surface of revolution

obtained by revolving the curve

x =

√
h(wew + (1 − w)e−w)

ew + e−w
, y =

√
2h(2w − sinh 2w − 1)

2 cosh w
, z = 0

around the x-axis.
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Proof. We have h > 0 and

g =
√

u2 − 2h.

Two cases may occur: u < −
√

2h or else u >
√

2h. If u < −
√

2h we set

u = −
√

2h cosh w,

and if u >
√

2h we put

u =
√

2h cosh w.

In any case w > 0 and

g =
√

2h sinhw.

Therefore,

(4.38)
d2Γ4

dw2
− Γ4 = (2

√
2h sinhw)ε5,

and then

(4.39)
Γ4 = ew

√
2

2
C1 + e−w

√
2

2
C4 +

√
2h(w cosh w − sinhw)ε5,

Γ0 = C0+
√

h(
e2w

2
−w+

1

2
)C1−

√
h(

e−2w

2
+w− 1

2
)C4 mod ε5,

where (C0, . . . , C4, ε5) is a Laguerre basis of IR6, that we may suppose

to be the standard basis of IR6. The Euclidean projection f is given by

[Γ0 +X(Γ2 +Γ4)], where X is determined by the equation 〈Γ0 +XΓ4, ε1 +

ε4〉 = 0. We compute

X =

√
2h(2w − sinh 2w − 1)

2 cosh w

and accordingly f = (x, y, z) : S → IR3, where

x =

√
h(wew + (1 − w)e−w)

ew + e−w
,

y = −
√

2h(2w − sinh 2w − 1)

2 cosh w
sin v,

z =

√
2h(2w − sinh 2w − 1)

2 cosh w
cos v.
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