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Uryson operators and Equimeasurable sets

S. SEGURA DE LEÓN

Riassunto: Si dimostra che ogni operatore di Uryson di ordine limitato trasforma
gli intervalli d’ordine in insiemi equimisurabili. Utilizzando poi un risultato ottenuto in
[11], si ottiene una caratterizzazione degli operatori di Uryson che è una versione non
lineare di quella di W. Schachermayer [7].

Abstract: In this paper we prove that every order bounded Uryson operator maps
order intervals onto equimeasurable sets and ”a fortiori” (by the main result of [11])
we obtain a criterion for recognizig Uryson operators. This criterion is a non-linear
version of that proved by W. Schachermayer in [7].

– Introduction

The concept of equimeasurable set goes back to A. Grothendieck’s

memoir [3, p. 20] where it is used for characterizing nuclear operators [3,

p. 64] (see also [1, p. 258]). In 1979, W. Schachermayer characterizes

linear integral operators by this concept [7, theorem 4.4]. Another char-

acterization of linear integral operators had already been given by A.V.

Bukhvalov [2] (see also [15, theorems 96.5 and 96.8]). This one is based

in the difference between (∗)-convergence and almost everywhere conver-

gence. Laterly, A.R. Schep [9] and W. Schachermayer [8] showed

how to deduce one characterization from the other one (see also [14]).
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In a previous article [11] it was proved that a Bukhvalov type charac-

terization enables us to recognize order bounded Uryson operators. Then

a natural question arises, is it possible to give a criterion for Uryson oper-

ators that uses equimeasurable sets?. Theorem 2.1 below gives a positive

answer to this question.

The paper is divided into two sections. Section 1 is on preliminaries.

The main result and some consequences for operators defined between

Banach function spaces are inclosed in section 2.

1 – Preliminaries

For terminology concerning Riesz spaces theory we shall follow [4,

13, 15]. We only recall that a subset H in a Riesz space E is said to be

order bounded if there exists g ∈ E+ such that |h| ≤ g for every h ∈ H.

Throughout this paper we shall write 1A to denote the characteristic

function of the set A.

Let (X, µ) be a σ-finite and complete measure space. By L0(X, µ)

we denote the space of all real-valued measurable functions on X which

are almost everywhere finite. Functions which are equal a.e. will be

identified. The subspace of L0(X, µ) consisting of essentially bounded

functions will be denoted by L∞(X, µ). A subset H ⊂ L0(X, µ) is said to

be equimeasurable if for every X0 ⊂ X of finite measure and every ε > 0

there is Xε ⊂ X0 with µ(X0\Xε) < ε and such that the set {1Xεf | f ∈ H}
is relatively compact in L∞(Xε, µ|

Xε
). The following characterization of

equimeasurable sets will be used several times throughout this paper (see

[10, theorem 1.2] and [8, proposition 2.4]).

Lemma 1.1. A set H ⊂ L0(X, µ) is equimeasurable if and only if

there exists g ∈ L0(X, µ) with g > 0 µ-a. e. such that the set 1
g
H is

relatively compact in L∞(X, µ).

Thus, to prove that a set H is equimeasurable it is enough to see that

the set 1
g
H is so for some positive function g ∈ L0(X, µ).

Recall that for sequences order convergence in L0(X, µ) coincides

with almost everywhere convergence [13, p. 65 and 4, theorem 71.3].

It is said that a sequence (fn)n∈IN in L0(X, µ) (∗)-converges to f if

an arbitrary subsequence (fnk
)k∈N contains a subsequence (fnki

)i∈IN that
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order converges to f ; i.e., fnki
(x) → f(x) a.e. Thus, the sequence (fn)n∈IN

(∗)-converges if and only if it converges in measure on every subset of

finite measure. A. R. Schep [9, lemma 3.1] pointed out the following fact

(see also [7, proposition 2.4]).

Lemma 1.2. In an equimeasurable set every (∗)-convergent sequence

converges a.e.

2 – Recognition of Uryson operators

Consider two σ-finite and complete measure spaces (Y, ν) and (X, µ).

By E and F we shall denote order ideals in the spaces L0(Y, ν) and

L0(X, µ) respectively. We shall assume that Y is the carrier of the ideal

E; that is, the only sets B ⊂ Y such that every f ∈ E is vanished ν-a.e.

on B, are the ν-null sets [15, S86].

Let U : X × Y × IR → IR be a function satisfying

(C0) U(x, y, 0) = 0 for µ × ν-almost all (x, y) ∈ X × Y.

(C1) The function U(·, ·, t) is µ × ν-measurable for all t ∈ IR.

(C2) The function U(x, y, ·) is continuous on IR for µ × ν-almost all

(x, y) ∈ X × Y.

It follows from the Carathéodory conditions (C1 and C2) that if f ∈
L0(Y, ν), then the function U(x, y, f(y)) is µ × ν-measurable and µ × ν-

a.e. finite. An operator T : E → F is called a Uryson operator with

kernel U if for all f ∈ E the following conditions hold.

1. The function x → ∫
Y |U(x, y, f(y))|dν is µ-a.e. finite.

2. (Tf)(x) =
∫

Y U(x, y, f(y))dν µ-a.e.

For a more detailed definition of Uryson operators we refer to [5,

section 5]. As a consequence of (C0) one has that f, g ∈ E with disjoint

supports implies T (f + g) = Tf + Tg. Operators satisfying this property

are known as orthogonally additive operators. An orthogonally ad-

ditive operator from E into F is order bounded if it transforms order

bounded sets in E onto order bounded sets in F.

Our aim in this section is to obtain theorem 2.1 which characterizes

those order bounded orthogonally additive operators which are Uryson

operators. By the main result in [11], it is enough to prove that every or-

der bounded Uryson operator maps order intervals onto equimeasurable
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sets, and we are able to do this using a kind of uniform order conver-

gence. We point out that neither the similar result in the linear case

nor its methods can be applied in a straightforward manner for Uryson

operators (although we remark that this approach works for Hammer-

stein operators, see [12]). On the other hand, the technics developed in

[8] to arrive to Schachermayer’s condition from Bukhvalov’s one, essen-

tially depend on the fact that linear operators maps order intervals onto

absolutely convex sets, and neither can be used in our case.

Theorem 2.1. Let T : E → F be an order bounded orthogonally

additive operator. The following assertions are equivalent.

1. T is a Uryson operator with kernel satisfying the Carathéodory con-

ditions.

2. If (fn)∞
n=1 and (gn)∞

n=1 are order bounded sequences in E such that

fn − gn → 0(∗), then Tfn(x) − Tgn(x) → 0µ-a.e.

3. (a) T maps every order interval onto an equimeasurable set.

(b) For every (fn)∞
n=1 and (gn)∞

n=1 order bounded sequences in E,

fn(y) − gn(y) → 0ν-a.e.implies Tfn(x) − Tgn(x) → 0µ-a.e.

Proof. (1) ⇐⇒ (2) This is already proved in [11].

(3) ⇒ (2) Let (fn)∞
n=1 and (gn)∞

n=1 be order bounded sequences in E

such that fn − gn → 0 (∗). Condition (3) (b) implies that Tfn −Tgn → 0

(∗), while it follows from (3) (a) that the set {Tfn − Tgn | n ∈ N} is

equimeasurable. Now (2) follows from lemma 1.2.

(2) ⇒ (3) (b) This is straightforward.

(1) ⇒ (3) (a) Denote by U the kernel of the operator T. Given

g ∈ E+ we have to prove that T [−g, g] is a equimeasurable set. Chang-

ing of variable, if necessary, we may assume restrictions on the space

E and on the function g. In fact, let g ∈ E+ and define the function

V (x, y, t) := U(x, y, tg(y)). It is routine to check that the function V

satisfies the Carathéodory conditions. So the function V is the kernel

of an order bounded Uryson operator from L∞(Y, ν) into F which maps

the order interval [−1Y ,1Y ] onto T [−g, g]. Hence we may suppose that
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E = L∞(Y, ν) and then to prove that the set T [−1Y ,1Y ] is equimeasur-

able. We prove this fact by several stages.

Claim 1. For every n ∈ IN, the set

{T
( n∑

k=−n

k

n
1Bk

)
| the subsets (Bk)

n
k=−nof Y are mutually disjoint}

is equimeasurable.

Fix t ∈ [−1, 1] and define a linear operator St : L∞(Y, ν) → F by

Stf(x) :=
∫

Y U(x, y, t)f(y)dν . By Schachermayer’s characterization of

linear integral operators, the set St[−1Y ,1Y ] is equimeasurable and hence

the set

{St(1B) | B ⊂ Y } = {T (t1B) | B ⊂ Y }
is so. Since the number t is arbitrary, taking t = k

n
, −n ≤ k ≤ n, and

considering the sum of all them claim (1) follows.

Next we shall aproximate functions uniformly in [−1Y ,1Y ] by sim-

ple ones. For each f ∈ [−1Y ,1Y ] and each n ∈ IN define Pnf :=∑n
k=−n

k
n
1Bk

where

Bk := {y ∈ Y | k−1
n

< f(y) ≤ k
n
} whenever k > 0;

B0 := ∅ and

Bk := {y ∈ Y | k+1
n

> f(y) ≥ k
n
} whenever k < 0.

Claim 2. For µ-almost all x ∈ X, TPnf(x) → Tf(x) uniformly

on f ∈ [−1Y ,1Y ].

Since the operator T is order bounded, it follows from [5, theorem

6.2] that there exists a µ × ν-measurable function M : X × Y → IR such

that

(1) |U(x, y, f(y))| ≤ M(x, y) µ × ν-a.e. for all f ∈ [−1Y ,1Y ].

(2) For µ-almost all x ∈ X, the function M(x, ·) is ν-integrable.

(3) The function x → ∫
Y M(x, y)dν belongs to F.

Consider x ∈ X such that the function M(x, ·) is ν-integrable and

the set {y ∈ Y | the function U(x, y, ·) is not continuous} is ν-null and

let us see that
∫

Y

U(x, y, Pnf(y))dν →
∫

Y

U(x, y, f(y))dν uniformly for f in [−1Y ,1Y ].
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Let ε > 0, since the measure ν is σ-finite, there is an increasing sequence

(Yn)∞
n=1 of subsets of Y such that

⋃∞
n=1 Yn = Y and 0 < ν(Yn) < ∞ for all

n ∈ IN. Then limn→∞
∫

Yn
M(x, y)dν =

∫
Y M(x, y)dν and it follows that

there is n ∈ IN such that
∫

Y \Yn
M(x, y)dν < ε/6. Let n be fixed. For each

k ∈ IN define the set

Dk := {y ∈ Yn | t, s ∈ [−1, 1], |t − s| <
1

k
=⇒

=⇒ |U(x, y, t) − U(x, y, s)| <
ε

3ν(Yn)
}

It is easy to see that limk→∞ ν(Dk) = ν(Yn), so given ε > 0 it may be

found k0 ∈ IN such that k ≥ k0 implies
∫

Yn\Dk
M(x, y)dν < ε/6. Thus,

fixed k ≥ k0, for every f ∈ [−1Y ,1Y ] and for every y ∈ Dk we have that

|U(x, y, Pkf(y)) − U(x, y, f(y))| < ε
3ν(Yn)

and it yields

∣∣∣
∫

Dk

U(x, y, Pkf(y))dν −
∫

Dk

U(x, y, f(y))dν
∣∣∣ <

ε

3
.

Now compute to obtain that if f ∈ [−1Y ,1Y ] and k ≥ k0, then

∣∣∣
∫

Y

U(x, y, Pkf(y))dν −
∫

Y

U(x, y, f(y))dν
∣∣∣ < ε.

and so claim (2) is proved.

Claim 3. There exists h ∈ L0(X, µ), with h(x) > 0 µ-a.e., such

that

‖ · ‖∞ − lim
n→∞

1

h
TPnf =

1

h
Tf uniformly on [−1Y ,1Y ].

For every n ∈ IN define gn := sup{supk≥n |TPkf − Tf | | f ∈ [−1Y ,1Y ]},

where the supremum is taken in the order of F. Observe that each

function gn lies in F since the operator T is order bounded. Further-

more, applying the order separability of F (see, for instance, [4, exam-

ple 23.3 (iv)]) there exists a sequence (fnp)
∞
p=1 in [−1Y ,1Y ] such that

gn = supp∈IN supk≥n |TPkfnp − Tfnp| and so we may consider that each

gn is the pointwise supremum of |TPkfnp − Tfnp|. It follows from claim

(2) that gn(x) ↓ 0 µ-a.e.
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Applying [4, theorems 71.4 and 16.3] there exists h ∈ L0(X, µ), which

we may take positive, such that gn → 0 h-uniformly; that is, for every

ε > 0 there is n0 ∈ IN such that gn(x) ≤ εh(x) µ-a.e. for all n ≥ n0 .

Therefore, if f ∈ [−1Y ,1Y ] and n ≥ n0, then 1
h(x)

|TPnf(x) − Tf(x)| ≤ ε

µ-a.e. and consequently we have got claim (3).

Claim 4. There exists h ∈ L0(X, µ), with h(x) > 0 µ-a.e., such

that the set { 1
h
Tf | f ∈ [−1Y ,1Y ]} is equimeasurable.

Let X0 ⊂ X be a set of finite measure and let ε > 0. As a conse-

quence of claim (1) and lemma 1.1, the set { 1
h
(TPnf) | f ∈ [−1Y ,1Y ]}

is equimeasurable for all n ∈ IN. So there exists Xn ⊂ X0 such that

µ(X0\Xn) < ε/2n and the set {1Xn
1
h
(TPnf) | f ∈ [−1Y ,1Y ]} is relatively

compact in L∞(Xn, µ|
Xn

) . Define X ′ :=
⋂∞

n=1 Xn, then µ(X0\X ′) < ε

and each set {1X′ 1
h
(TPnf) | f ∈ [−1Y ,1Y ]} is relatively compact in

L∞(X ′, µ|
X′ ). Hence, it follows from claim (3) that the set {1X′ 1

h
(Tf) |

f ∈ [−1Y ,1Y ]} is also relatively compact and this proves claim (4).

Finally, as a consequence of claim (4) and lemma 1.1, the desired

statement follows.

Criteria in the above result must be seen as complementary. Next

we shall make clearer this fact.

remark 2.2. Observe that condition (2) suggests a kind of uniform

continuity on order bounded sets but it is not obvious how to precise this

idea since in general almost everywhere convergence does not came from

any metric (or uniform structure). However, it follows from condition (3)

(a) that the above statement can be precised. On the one hand, take

B ⊂ Y with ν(B) < ∞ and for each g ≥ 0 consider in the interval [−g, g]

the metric dg,B defined by dg,B(f1, f2) :=
∫
supp(g)∩B (|f1 − f2|/g)dν. Note

that by the dominated convergence theorem, convergence with respect

to this metric is equal to convergence in measure. On the other hand, if

H ⊂ L0(X, µ) is an equimeasurable set, then there is a positive function

v ∈ L0(X, µ) such that 1
v
H is relatively compact in L∞(Y, ν). Observe

that the formula δv(h1, h2) := ‖1supp(v)(h1 − h2)/v‖∞ defines a metric on

[−v, v]. With these preliminaries the following result is straightforward.

Corollary 2.3. A necessary and sufficient condition for an or-

thogonally additive operator T : E → L0(X, µ) to be an order bounded
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Uryson operator is the following. For each g ∈ E+ there is v ∈ L0(X, µ)+

such that T : ([−g, g], dg,B) → ([−v, v], δv) is uniformly continuous for all

B ⊂ Y of finite measure.

We point out that uniform continuity may be changed by continuity

when T is a Hammerstein operator (see [12, theorem 2.4]).

We next consider operators defined between Banach function spaces.

Recall that an ideal of measurable functions is a Banach function space

if it is also a Banach space and its norm is a Riesz norm; that is, |f | ≤ |g|
implies ‖f‖ ≤ ‖g‖. A Banach function space is said to have order contin-

uous norm if for every net (fα)α∈A in the space, it follows from fα → 0

(o) that ‖fα‖ → 0. It is easy to see that Lp(X, µ) is a Banach function

space for every p, 1 ≤ p ≤ ∞; moreover, the space Lp(X, µ) has order

continuous norm whenever 1 ≤ p < ∞. An order bounded orthogonally

additive operator is called AM-compact if it maps order bounded sets

onto relatively compact ones. In the next result we show that theorem

2.1 gives a new proof of [6, theorem 3.5]. To see it, note that, as a con-

sequence of theorem 2.1, it is enough to check that every equimeasurable

set in a Banach function space with order continuous norm is relatively

compact and this fact is a consequence of [10, theorem 2.2].

Corollary 2.4. Let E be an ideal in L0(Y, ν) and let F be a

Banach function space in L0(X, µ) having order continuous norm. Then

every order bounded Uryson operator from E to F is AM-compact.

Finally, we state several other consequences of theorem 2.1, which

are non linear versions of results in [9]. We shall omit the proofs since

they are similar to those in the linear case.

Corollary 2.5. Let E be an ideal in L0(Y, ν) and let F be a

Banach function space in L0(X, µ). Suppose that T : E → F is an order

bounded Uryson operator. Then the following property holds.

(†) If (fn)∞
n=1 and (gn)∞

n=1 are order bounded sequences in E, then

‖Tfn − Tgn‖ → 0 implies Tfn(x) − Tgn(x) → 0 µ-a.e.

Property (†) characterizes order bounded Uryson operators under

some conditions.

1. If F has besides order continuous norm and T is an order bounded

orthogonally additive operator which satisfies that given two order
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bounded sequences (fn)∞
n=1 and (gn)∞

n=1 in E, fn(y)−gn(y) → 0 ν-a.e.

implies Tfn(x) − Tgn(x) → 0 µ-a.e., then T is a Uryson operator.

2. If E is a Banach function space with order continuous norm and T is

an order bounded orthogonally additive operator which is uniformly

continuous on the order bounded sets of E, then T is a Uryson op-

erator.

In particular one deduces that if E has order continuous norm, then

every order bounded orthogonally additive operator T : E → L∞(X, µ)

which is uniformly continuous on the order bounded sets is a Uryson

operator.

Corollary 2.6. Let E and F be Banach function spaces and as-

sume that T : E → F is an order bounded orthogonally additive operator.

Consider the following assertions.

1. T is a Uryson operator.

2. (a) T maps order bounded sets in E onto equimeasurable sets.

(b) T is uniformly continuous on the order bounded sets of E.

Then, if E has order continuous norm, (2) ⇒ (1) and if F has order

continuous norm, (1) ⇒ (2).
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