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Attractive Holomorphic Limit Cycles
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Riassunto: Foliazioni olomorfe su varietà complesse sono studiate come sistemi
dinamici. Nozioni come insiemi limite, bacini di attrazione e attrattori sono definiti
geometricamente. In presenza di pochi fogli compatti e nell’ipotesi che lo spazio dei
fogli non compatti sia hausdorff, si dimostra che ogni foglio compatto è un attrattore
quasi globale. Per ogni foglio F non compatto il numero dei componenti connessi del
suo insieme limite è uguale al numero dei fogli compatti, un limite superiore del quale
è dato dal numero di buchi di F . Questi risultati sono interpretati nel caso speciale di
C-azioni olomorfe sulla varietà.

Abstract: Holomorphic foliations on connected complex manifolds are studied as
dynamical systems, notion like limit sets, limit cycles, basins of attraction, attractors
being defined geometrically. Under the assumptions that there are only “few” compact
leaves and that the space of the non-compact leaves is hausdorff, it is shown: each
compact leaf is an almost global attractor; for each non-compact leaf F the number
of connected components of its limit set is equal to the number of compact leaves, an
upper bound of which is given by the number of ends of F . These results are interpreted
especially for holomorphic C-actions.

1 – In holomorphic dynamical systems attractive limit cycles exhibit

very special phenomena quite different from those one is used to in the

differentiable case. The various kinds of holomorphic dynamical systems
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on complex manifolds can be best dealt with in the framework of holo-

morphic foliations. Notions like limit sets, stability, attractors etc. can

be defined quite naturally here. Of course on has to find purely geometric

descriptions, but this is an advantage for it often leads to a better under-

standing of special analytic cases, like holomorphic differential equations,

integrable Pfaffian systems of holomorphic partial differential equations,

holomorphic Lie group actions on complex manifolds.

For holomorphic foliations F on compact complex manifolds one

problem has been studied extensively since long, the so called Reeb–

Haefliger conjecture (compare [14]), which says that such a foliation is

stable if all leaves are compact. The problem is still open although many

special criteria for stability have been proven (compare [5], [6], [7], [12],

[13]). In the conference “Sulla Geometria delle Varietà Differenziabili” in

Roma, 17-21 September 1984, I have given several talks on this problem.

They are published in a book, edited by Professor Ida Cattaneo Gasparini

(see [8]).

In this article we shall deal with the opposite case of “few” compact

leaves (compare [9], [10]). The complex manifolds X need not be compact

now, but we shall always assume that they are connected and that their

topologies T = TX have a countable base.

2 – Let me briefly recall the definition of a holomorphic foliation on a

complex manifold (compare [4]).

Definition 1. An m–dimensional holomorphic foliation on an

n–dimensional complex manifold is given by a holomorphic atlas F =

{(Ui, ϕi); i ∈ I} of X with the following properties:

1. Ui is open in X and ϕi : Ui → Vi × P m
i a biholomorphic mapping,

where Vi is an open connected subset of Cn−m and P m
i is a product

of m disks in C (an m–dimensional complex polycylinder).

2. The biholomorphic coordinate transformations

ϕij := ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj)

locally map fibres of the projections πj : Vj × P m
j → Vj into fibres of πi.
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The foliation F induces a socalled leaf topology τF on X. We start

by defining a leaf topology on Vi × P m
i for all i ∈ I. We take the discrete

topology on Vi and the usual one on P m
i . The product topology of these

two topologies is called leaf topology τi on Vi × P m
i . The coordinate

transformations ϕij are continuous with respect to the leaf topologies

τi, τj. There is a unique socalled leaf topology τF on X such that all

mappings ϕi : Ui → Vi × P m
i are homeomorphisms with respect to τi

and τF .

Definition 2. The connected components of the topological space

(X, τF) are called leaves of F . By F (x) we shall denote the leaf of F
passing through x ∈ X.

Remark 3. The topological space (X, τF) has a canonical complex

manifold structure, such that the inclusion map (X, τF) → (X, TX) be-

comes a holomorphic immersion.

Notations 4. In case we work with the leaf topology τ = τF we use

notations like τ–open, τ–compact, τ–accumulation point, etc. If we use

the usual topology TX in general we do not mention it expressively.

We are going to define now limit sets, limit cycles, basins of attraction

etc. for a holomorphic foliation F on a complex manifold X (compare

[9], [10]).

Definition 5. Let F (x), x ∈ X, be a leaf of the holomorphic

foliation F on X.

1. y ∈ X is called a limit point of F (X) iff there exists a sequence

(xν)ν∈IN on F (x) such that

a. y = lim
ν→∞

xν (with respect to the usual topology TX on X).

b. (xν)ν∈IN has no τF–accumulation point.

2. lim F (x) := {y ∈ X; y is a limit point of F (x)} is called the limit set

of F (x).

3. A non–void union A ⊂ lim F (x) of connected components of lim F (x)

is called a limit cycle (of F (x)), iff A ∩ F (x) = ∅.
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The “number of ends” of a leaf F = F (x) plays an important role

in our results about holomorphic foliations with “few” compact leaves.

We shall recall briefly one of many equivalent definitions of this notion

(compare [1], [2]).

We start with a different description of the limit set limF :

lim F =
⋂

ν∈IN

F − Kν ,

where (Kν)ν∈IN is a sequence of τ–compact subsets of F with Kν ⊂
◦
Kν+1

for all ν ∈ IN and
⋃

ν∈IN
Kν = F . By F − Kν we mean the closure of F −Kν

with respect to the usual topology TX on X, while
◦
Kν+1 denotes the

interior of Kν+1 with respect to the leaf topology τF . We can assume, that

all Kν are τF–complete, i.e. F − Kν has no relative compact component

with respect to the leaf topology τF . Using the notations above we get:

e(Kν) := the number of connected components of F − Kν , is finite.

(e(Kν))ν∈IN is an increasing sequence with a limit e(F ), which is indepen-

dent of the choice of the sequence (Kν)ν∈IN (e(F ) = ∞ can occur).

e(F ) is called the number of ends of the leaf F = F (x).

We need another cardinal number associated with the leaf F :

7(F ) := number of connected components of limF .

We can state now some evident properties of limit sets lim F for leaves

F = F (x) of F (compare [10]).

Proposition 6.

1. lim F is closed.

2. lim F is F–invariant (i.e. F (y) ⊂ lim F if y ∈ lim F ).

3. lim F = ∅ if F is τ–compact (hence compact).

4. lim F %= ∅ if F is not τ–compact, but relatively compact in X.

5. 7(F ) ≤ e(F ) if limF is compact in X, e.g. F is relatively compact

in X.
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We come now to the central definition of this article (compare [10]).

Definition 7. Let M be a non–void, closed, F–invariant subset

of X.

1. M ∪ {x ∈ X; limF (x) %= ∅, a connected component of lim F (x) is

contained in M} is called basin of attraction of M and denoted by

A(M).

2. M is called attractive if A(M) is a neighborhood of M , globally at-

tractive if A(M) = X.

3. M is called almost attractive, resp. almost globally attractive if the

corresponding conditions of 2. are satisfied up to a meager subset of X.

3 – We come now to the principal result of this article. We study holo-

morphic folations F on a complex manifold X which satisfy the following

Assumptions 8.

(1) There are “few” compact leaves, i.e. they form a locally finite family

{Γj; j ∈ J}, where J is finite or countably infinite, but not empty.

(2) The quotient space X ′/F ′ = X ′/R′ is hausdorff.

To understand the second of these assumptions we have to introduce

some notations:

Γ :=
⋃

j∈J Γj, X ′ := X − Γ, F ′ := F | X ′ (restriction of F to X ′).

R = RF := {(x, y) ∈ X × X;F (x) = F (y)} (equivalence relation on X

induced by F).

R′ := R ∩ (X ′ × X ′) (equivalence relation on X ′ induced by F ′).

Remarks 9. The second of the Assumptions 8 implies (compare [3],

[4]):

1. R′ is an open equivalence relation.

2. R′ is a closed subvariety of X ′ × X ′ (in general with singularities).

3. The quotient space X ′/R′ has canonically the structure of a normal

complex variety (in general with singularities).

We can formulate now our main result (a weaker version of which

you find in [10]):
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Theorem 10. For a holomorphic foliation F on a complex manifold

X which satiesfies the assumptions 8 the following holds:

1. lim F (x) = Γ =
⋃

j∈J
Γj for all x ∈ X ′, i.e. Γ is a global attractive

limit cycle.

2. A(Γj) = X ′ ∪ Γj for all j ∈ J ; i.e. the Γj are attractive and almost

globally attractive.

3. 1 ≤ c(F) = 7(F (x)) ≤ e(F (x)) for all x ∈ X ′, where c(F) denotes

the number of compact leaves of F .

Before we prove Theorem 10, let us regard the special case of a holo-

morphic dynamical system Φ : C × X → X on X with no fixed points,

such that for the associated foliation FΦ (the leaves of FΦ being the Φ–

orbits) the assumptions 8 hold.

Theorem 11.

1. If there exists an x∈X ′ with e(F (x))=1, i.e. Ix :={t∈C; Φ(t, x)=x}
={0}, then

1 = c(F) = 7(F (x)) = e(F (x))

and for all y ∈ X ′ with Iy %= {0} we get

1 = c(F) = 7(F (y)) < e(F (y)) = 2.

2. If e(F (x)) = 2 for all x ∈ X ′, i.e. Ix %= {0} for all x ∈ X ′, then

1 = c(F) = 7(F (x)) < e(F (x)) = 2

or

2 = c(F) = 7(F (x)) = e(F (x))).

(There are examples for all these cases; compare also [9], [10].)
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4 – In this section we shall give a proof of theorem 10. It is sufficient

to show that A(Γj) = X ′ ∪ Γj, for the rest is an easy consequence. We

can assume that there is exactly one compact leaf Γ and X ′ = X − Γ.

Under the assumptions 8 we have the following description of the

basin of attraction A(Γ):

A(Γ) = Γ ∪ {x ∈ X ′;F (x) ∩ Γ %= ∅},

where F (x) denotes the closure of F (x) in X. Since R is open, we even

get:

A(Γ) = Γ ∪ {x ∈ X ′;F (x) ⊃ Γ}.

There is still another way to describe A(Γ), using the closure R′ of

R′ in X × X and the projections

πj : R′ → X, j = 1, 2,

of R′ ⊂ X × X onto the j–th component.

Lemma 12. Under the assumptions 8 the following holds:

A(Γ) = π2(π
−1
1 (Γ)) = π2(R′ ∩ (Γ × X))

= {x∈X;∃y∈Γ,∃(yν , xν)∈R′ ∀ ν ∈ IN with lim
ν→∞

(yν , xν)=(y, x)}

We shall state another lemma before we prove theorem 10.

Lemma 13. Under the assumptions 8 the following holds:

(1) R is not closed in X × X.

(2) A(Γ)⊃
0=Γ, i.e. A(Γ) ∩ X ′ %= ∅.

(3) R′ is not analytic in X × X.

Proof. (theorem 10) We regard the analytic subset

E := (Γ × X) ∪ (X × Γ)

of X × X. Because of the second of the assumptions 8 the set R′ is

analytic in X ′ × X ′ = (X × X) − E. Since

dimE = dimR′ = n + m,
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where m denotes the dimension of the foliation F , we can apply the

Thullen–Remmert–Stein singularity theorem:. There are

exactly two possibilities:

(1) R′ is analytic in X × X.

(2) R′ = R′ ∪ E.

(The first proof of this theorem was found by P. Thullen in 1934 in Rome,

where he spent a year to learn algebraic geometry from F. Severi; compare

also [18], [15], [16]).

We can exclude case (1) because of lemma 13(3).

Case (2) implies that R′ ⊃ Γ × X. Using lemma 12 we get

A(Γ) = π2(π
−1
1 (Γ)) = π2(Γ × X) = X.

Proof. (lemma 12) We show first that A(Γ) ⊂ π2(π
−1
1 (Γ)). For each

point x ∈ A(Γ)∩X ′ there exists a point y ∈ Γ and a sequence (yν)ν∈IN in

F (x), i.e. (yν , x) ∈ R′ for all ν ∈ IN, such that lim
ν→∞

(yν , x) = (y, x). This is

equivalent to x ∈ π2(π
−1
1 (Γ)). If x ∈ Γ we can choose a sequence (xν)ν∈IN

in X ′, i.e. (xν , xν) ∈ R′ for all ν ∈ IN, such that lim
ν→∞

(xν , xν) = (x, x), i.e.

x ∈ π2(π
−1
1 (Γ)).

Now we prove the other inclusion “⊃”. For each point x ∈ π2(π
−1
1 (Γ))

we have to show that x ∈ A(Γ). We have to treat the case x %∈ Γ only and

prove that F (x) ∩ Γ %= ∅. Since Γ is compact it is sufficient to show that

F (x)∩U %= ∅ for all compact neighborhoods U of Γ. We can assume that

x %∈ U . To x we can find a y ∈ Γ and points (yν , xν) ∈ R′ for all ν ∈ IN

with lim
ν→∞

(yν , xν) = (y, x). We can assume that yν ∈ U and xν ∈ X − U

for all ν ∈ IN. Since F (xν) = F (yν) is connected there exists always a

point zν ∈ F (xν) ∩ ∂U . The boundary ∂U of U is compact, hence we

can assume that the sequence (zν)ν∈IN converges to a point z ∈ ∂U . By

definition (zν , xν) ∈ R′ for all ν ∈ IN and lim
ν→∞

(zν , xν) = (z, x) ∈ R′. Since

z, x ∈ X ′ the assumptions 8 imply that (z, x) ∈ R′, i.e. z ∈ F (x) ∩ ∂U ,

i.e. F (x) ∩ U %= ∅.
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Proof. (lemma 13)

Ad(1) Suppose R is closed, then R is locally compact in X ×X. Let

p1 : R → X denote the projection of R ⊂ X×X onto the first component.

The fibre p−1
1 (x) = {x}×Γ for x ∈ Γ is compact and connected. Therefore

p−1(y) for y from a suitable open neighborhood of x has to be compact

too, (see [17], page 77, Hilfssatz 3) in contradiction to the assumption

8(1).

Ad(2) Since A(Γ) ⊃ Γ by definition, we have to show that A(Γ) %= Γ.

Suppose A(Γ) = π2(π
−1
1 (Γ)) = π2(R′ ∩ (Γ × X)) = Γ, then

R′ ⊂ R′ ∪ (Γ × Γ) = R ⊂ R′ ∪ (Γ × Γ).

Since R is an open equivalence relation, we have R′ ⊃ Γ × Γ, hence

R′ ∪ (Γ × Γ) = R′.

This implies R = R′ in contradiction to (1).

Ad (3) Because of (2) there exists an x ∈ A(Γ) ∩ X ′. This implies

F (x) ⊃ Γ. The leaf F (x) is closed in X ′, hence F (x) = F (x) ∪ Γ. Since

R′ is closed in X ′ × X ′ we have

R′ ⊂ R′ ∪ (X × Γ) ∪ (Γ × X),

hence

π2(R′ ∩ ({x} × X)) ⊂ F (x) ∪ Γ = F (x).

On the other hand

{x} × F (x) ⊂ R′, i.e. F (x) ⊂ π2(R′ ∩ ({x} × X)).

Therefore

F (x) ∪ Γ = F (x) = π2(R′ ∩ ({x} × X)).

Suppose now that R′ is analytic in X ×X, then R′ ∩({x}×X) is analytic

in {x}×X, hence π2(R′ ∩ ({x}×X)) analytic in X, i.e. F (x) = F (x)∪Γ

is analytic in X. This is impossible since dim F (x) = dim Γ(= dimF).
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5 – In joint work of B. Kaup, H.–J. Reiffen and myself we have succeeded

to extend the theorems 10 and 11 to singular foliations (see [11]). In

special cases it has also been possible to weaken the hausdorff condition

(2) of the assumptions 8. In this joint effort we had to develop new

techniques which finally helped me to obtain the results of this article

which are stronger than those in [9] and [10].
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[3] H. Holmann: Komplexe Räume mit komplexen Transformationsgruppen, Math.
Annalen 150 (1963), 327-360.

[4] H. Holmann: Holomorphe Blätterungen komplexer Räume, Comment. Math.
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