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An interesting connection between hypoellipticity and
branching phenomena for certain differential operators

with degeneracy of infinite order
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RIASSUNTO: Lo scopo di questo lavoro é studiare Uinfluenza del termine di ordine
inferiore sul comportamento di certi operatori con degemerazione di ordine infinito.
Usando differenti metodi si dimostra un’interessante legame tra la non-ipoellitticita de-
gli operators ellittici degeneri e fenomeni di diramazione per ¢ corrispondenti operatori
debolmente iperbolici. Inoltre viene studiata la risolubilitd locale e non locale. I ri-
sultati ottenuti mostrano che nel caso di degenerazione nel tempo anche la condizione
di Levi di tipo C*° non é sufficiente a caratterizzare il comportamento gqualitativo dei
corrispondenti operatori degeneri.

ABSTRACT: In the present paper the influence of lower order term is studied on the
qualitative properties of some infinitely degenerate elliptic operators. Using different
methods one can prove an interesting connection between the non-hypoellipticity for
infinitely degenerate elliptic operators and branching of singularities for corresponding
weakly hyperbolic operators. The question for local and nonlocal solvability is considered,
too. The results show, that the fulfilment of C*-type Levi conditions is not sufficient
to characterize the qualitative properties of degenerate elliptic operators.
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— Introduction

The object of this paper is to study the operator

N L 1)
(1) L = D} + X*(t)D? — a(t) Q) D,
on IR?, where D, = —i0/0t, D, = —id/ 0z,
(2) A(t) = exp(ig — |t|™), ¢ €[0,7/2),
a(t):{a_e(ﬂ t<0,
a, €C t>0,

At) :=iD;A(t) = (signt)t 2 exp(i¢ — [t|71).

Thus, in more explicit form the operator L can be written as follows
L= —8?% — 71" 1 ja(t)e'*t~te /g, ¢ €[0,7/2).

At the point ¢ = 0 some coeflicients of L have a zero of infinite order.

The question to be considered is when the operator L is hypoelliptic
or locally solvable.

We recall that the operator L is said to be hypoelliptic if, given any
open subset of U of IR?, any distribution u in U, Lu € C*°(U) demands
u € C*®(U). Further, the operator L is said to be locally solvable at a
point (zo, to) if there exist neighbourhoods U and V of this point such that
U cc V and if for every function f € C®(V) there exists a distribution
u € £'(V) such that Lu = f in U. '

For t # 0 the operator L is elliptic. Consequently, for ¢ # 0 the
operator L is hypoelliptic and locally solvable, too. For this reason and
the fact that the coefficients of L are independent of x we can restrict
ourselves to a neighbourhood of the point (0, 0).

In the case of degenerate operators the term of lower order can have
a strong influence on the qualitative properties of L. Even if a = a(t)
is a piecewise constant function this phenomena appears. In the weakly
hyperbolic case (¢ = m/2) the term of lower order of L has an influence
on the propagation of singularities. This was studied in [1]. For the finite
order degenerate case we refer to [2, 6, 8, 9]. One should mentione that
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the Levi condition of C*°-type is satisfied for L. In the weakly hyperbolic
case this leads to C-well posedness of the Cauchy problem [10].

But what about the situation for the degenerate elliptic case? For
the operator

(3) P = (D, —iat*D,) (D; — ibt*D,) + ct*~' D,
when k is odd, GILIOLI and TREVES [4] have proved

THEOREM 1.  For operator P of form (8) in which k is odd, the
following are equivalent:
(i) P is locally solvable at the origin;
(ii) P is hypoelliptic with loss of 2k/(k + 1) derivatives;
(iii) Rea-Reb< 0 andc/(a—0b) #n(k+1)+0 orl for any integer n.

For the case in which k is even, the following theorem has been proved
by Menikoff [7]:

THEOREM 2. Assume that operator P has form (3) where k is even,
then the following are equivalent:
(i) P s locally solvable at the origin,
(ii) P is hypoelliptic (with loss of 2k/(k + 1) derivatives);
(iii) the estimate

[ullsrzsesry < C ([Pulls + Julls) s w € C5°(K)

is valid, where K is any compact subset of R? ;
(iv) Either Rea-Reb > 0, or Rea-Reb < 0 andc/(a—b) # n(k+1)+1/2
formn=0,£1,+2,...

Thus in the case A(t) = t*, A(t) = t**!/(k + 1) the above mentioned
questions for the operator L are completely studied. If a(t) = a € C, then
L is hypoelliptic (with loss of 2k/(k + 1) derivatives) or locally solvable
at the origin only when a(k + 1) # 2n(k +1) — k + 0 or —2 (k odd) or
a(k+1) #2n(k+1) — k—1 (k even).

The case when A(t) is real and has a zero of infinite order was studied
by HosHIRO [5]. The assumption of the main theorem (Theorem 2 [5])
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of this paper concerning a sufficient condition for hypoellipticity, applied
to (1) is the following:
there exist positive constants §, R and C such that the inequality

[{wer+ (20 + a3 5e]) o i <

(4)

<¢ / ){ D7+ ()¢ - a(t) f((f)) ()t

holds for all v € C§°(—6,6) and all £ € R, |£| > R.

Moreover, there is shown that the condition (4) holds under the
assumptions, that A?(t) is strictly monotone in the intervals (—4,0)
‘and (0,6), and |a(t)] < 2C|A(E)A"?(t)DA(t)| on these intervals with
0 < C < 1/2. If we apply this result to (1) we obtain the condition
max(lay],|a_|) < 2C(1 - 2Jt|) with 0 < C < 1/2 and t € (=6,6) for
obtaining hypoellipticity.

It will be shown later (see Sec.1) that the operator (1) for example,
with a_ = —2n — 1,a; = 2l + 1 (here n and | are non-negative integer)
is hypoelliptic. Otherwise the operator (1) with a_ = a, = 1 is not
hypoelliptic. This means, hypoellipticity cannot be proved for C = 1/2,
there appear some exceptional values for a_ and a,.

Our main goal in the present paper is to determine all the values of
constants a_, a, for which hypoellipticity and local solvability of L holds.
In a following paper we shall study the case of operator (1) with more
general coefficients.

We prove the following

THEOREM 3. Assume that neither a_ = —2n —1,a, = =2l -1
nor a_ = 2n + l,ay = 2l + 1, where n and | are non-negative integer.
Then the operator L of form (1) with ¢ € [0,7/2), is hypoelliptic as well
as locally solvable, and the following estimate

(5) llulls < Cpx,s (IILU||s+max (|Rear | Rea 1} + [JUlls=1) 5 u € C5°(K)

holds, where K is any compact subset of R?.
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THEOREM 4. Assume that either a_ = —2n—1,ay = =20 — 1 or
a_-=2n+1,a, =21+ 1, where n and !l are non-negative integer. Then.:
(i) the operator L with ¢ € [0,7/2) is not locally solvable at (0,0);
(ii) the operator L with ¢ € [0,7/2) is not hypoelliptic at (0,0).

‘These results allow a very interesting connection between hypoellip-
ticity for L (¢ € [0,7/2)) and branching phenomena in the theory of
weakly hyperbolic equations [1, 2, 6, 8, 9, 10, 11]. As a matter of fact if
we compare Theorem 4 with Theorem 7 [1] we conclude

COROLLARY.  The weakly hyperbolic homogeneous equation corre-
sponding to the operator (1) with ¢ = m/2 has a solution whose singular
support coincides with a simple ray passes through the origin (0,0) and
which changes the direction of motion (is completely reflected by the point
(0,0)) if and only if the operator (1) with ¢ = 0 is not hypoelliptic at the
origin (0,0).

REMARK. We notice it is very interesting that the same phenomena

appears in the case of finite order degeneracy, too. Indeed, we propose
to be convinced by means of comparison the results of {4], (7] and [9].

1 — The proof of Theorem 3

Our method of proof of Theorems 3,4 basing on theory of special
functions is essentially due to ALEXANDRIAN [1] and MENIKOFF (T7].
Let i(t,£) be the partial Fourier transform of u(t, ), then

A%(t)
A(t)

If we introduce the new unknown function (¢, &) = t='a(t,£), then

12 0,8 + 20,0 - (¥OE - o He) 0(t8) = 0.

Further, with the new variable 7 = 1A ()¢ equation (1.2) leads to

(€)1, €) + (1= 82 ) 0(r,) = 0.
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Therefore for the function f(z) = W(z/2i)exp(z/2) of the variable z =

2iT = —2A(t)€ we get Kummer’s equation or confluent hypergeometric
equation
(1.3) 2fet(y—2)f:—af =0, y=1,

where a = a(t) = (1 + a(t)) /2. Equation (1.3) has linear independently
solutions
fi=9(a,1;2), o=V (1 —-aq,l1;-2),

where
1 (0+)
(14)  ¥(x,752) = 5—e T (1~ a) / eI (1 + )77 1dt,
coetw

—7/2 < ¢ +arg z < m/2,argt = ¢ at the starting point, and I'(a)
is Euler’s function [3]. Thus we get two independent solutions of the
equation (1.1):

ay (8,€) = te* DU (e, 1; —2A(2)€)

(1.5) :
fia(t, &) = te "W (1 — o, 1; 2A(2)€) .

These functions 4:(¢,€) and 4s(¢,£) are smooth at any point ¢ except
t = 0. At that point they are, in general, discontinuous.

The main tool of our proof is Green’s function G(t, s;&) of the equa-
tion (1.1), which is defined by means of two independent solutions u(t, £),
v(t, &) of equation (1.1) as follows:

19 oesO={ G Hurs e ior
where we choose u(t,£) and v(s,£) such that

(1.7) wl,6) =v(=1,6) =0 forall {¢€RR,
and

(18) W(U,U) = ut(t7€)v(t’€) - u(t,{)vt(t,g) =1
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for all t € [-1,1],& € R. Using (1.5) these solutions can be represented
in the following way

ct_(&)u(t,€) + ey _(§)d2(t,§) when t<0,

(19) ““’5):{c%_+<f>a1<t,s>+caa+(§)a2<t,§) when ¢>0,

& _(€)ay(t,8) + 5 _(§)U2(t,§) when t <0,

(110} w(56) = { C’f,+(£)ﬁ1(t7§) + Cg,+(§)ﬂ2(t’£) when #20.

Moreover, the functions u(t,£) and v(t,§) have to be continuously
differentiable. Therefore one can rewrite (1.8) at the point ¢ = 0 as
follows: ‘

(1.11) ug (40, &)v(=0,€) — u(+0,8)v:(—0,£) = 1.

Hence, we have seven conditions for the eight unknown coefficients from
(1.9), (1.10), namely

u(+0,¢) = u(-0,£), v(+0,£) = v(-0,¢),
uy(+0,€) = u(=0,8), ve(+0,8) = v(=0,¢)
u(1,§) = v(-1,£) =0,

u(+0, §)v(=0,£) — u(+0,£)v,(-0,) = 1,

for all £ € R.

In order to take into consideration these conditions we have to de-
termine the one-sided limits of 1, (¢,£) and 42(¢,&). By some calculations
we arrive at

1
(1.12)  4,(4+0,¢) = tﬁliloteA(t)g\Il(a+, 1;—2A(t)¢) = T(ay)’
1
(1.13)  4,(=0,¢) = tg@oteA(t)EW(a_, 1;—2A(t)¢) = _I‘(a_) )

2y — i¢ — P(ay) — In(-2¢)
(o) ,

2y —i¢ — P(a-) —In(-2¢)
TNa-) ’

(1.14)  #(+0,8) =

(115)  #(=0,6) =
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(1.16) i5(+0,¢) = lim, te MW (1 — oy, 1;2A(8)€) =
1
T T-ay)’
(1.17) i2(=0,¢) = lim te 2 MEW(1 — o, 1;2A(2)€) =
B 1
T T(l-a)’
- _ 2y —ig—9p(1l —ay) —In(2€)
(1.18) Ty (+0,€) = T —ay) )
ey 2y~ — (1 —a) —In(28)
(119) U2( 0,6) = F(l—a_) )

when each of a_,1 — a_,a,,1 — oy is not a pole of I'-function. The
constant v is Euler’s constant and 4 is the digamma function (psi function
of Gauss): ¢¥(z) :=I"(2)/T'(2).

In the case when a_ = —n, n is non-negative integer,
U(—n,1;2) = (-1)"n!Ll(2), n=0,1,...,

where LY (z) = Le*D} (e *2") are Laguerré’s polynomials. Therefore for

a_ = —n and a4 = —[,! is non-negative integer too, we have
(1.20) 11(40,8) =0, 41(—0,€) =0,

(1.21) 4y (+0,€) = (=11,  04(=0,8) = (—1)"n!.
While for the case 1 — a,=—-l,1—a_=-n

(1.22) Uy (+0,8) =0, Uo(—0,8) =0,

(1.23) in(+0,8) = (=11, a4(=0,8) = (—1)"n!.

Other cases can be reduced to above described.
Now let us study the boundary conditions (1.7). Using the special
approaches (1.9), (1.10) gives

u = 2(cos ¢ z:sinqﬁ)g/e\ll(l — 0y, 172A(1)§) u
(120 eh O =~ Sy a1 —2A e 3+

(125) C;) _(6) — _6—2(cos¢>+isin¢)§/e\1/(1 ) 1) 2A(_1)£) & _(5) ,

Y(a_,1;—2A(-1)¢) 7
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where for £ large enough the denominators have no zeros.

In what follows we consider positive £ only, because the case of neg-
ative ¢ can be reduced to the first one if we replace § — —§, a(t) —
—a(t),simultaneously.

The condition of continuous differentiability of v = u(t,€) at t =0
leads to the conditions

(1.26) ¢} 1 (§)81(+0,8) + 5, (§)82(+0,£) =
= ?lb (5) ( O 5) +CZ—(§)ﬁ’2(_0a£)>
(1.27) ¢} 1 (E)h1,6(+0,8) + 5 1 (£)T2,4(+0,§) =

et _(E)tin,e(=0,8) + 5 _(£)d24(=0,£) -

Using (1.24), (1.26), (1.27) it is possible to express ¢} _(§),cy _(§) by the
aid of c§ , (£). We obtaln

(128) CIIL’_ (5) = 51—{6111"4_ (5) ('&'1 (+0) g)ﬁ'Z,t (_Oa é) - ’al,t (+07 S)sz(—O, 5))+

+ ¢4 4 (©)(Aa(+0, £) a1 (—0,&) — tip(=0, §)ti2,(+0,£))}
(129) ¢ _(¢) = Di{c’f,Jr(f)(ﬁl(—O,§)ﬁ1’t(+0,5)—17,1),5(—0,{)&1(-{—0,5))4—
+ 5 1 (€) (11(—0,§)d2,(+0,€) — o(+0, &) 11,(—0,8))},
where '
D, = 01(—0,£)2,(-0,€) — d1,4(—0,€)5(=0,€).
For the denominator D, we have

7 (ctg(ra) — i) £0

(1.30) Du=F( o)

provided that a_ is no integer.
In the same way the conditions for v = v(t,£) lead to representations

(1 31) c1 +( ) {Cl —(E (ul( Oag)a2,t(+0,€)_ﬁl,t(_076)’0’2(+0)g))—i_
+ 62,— (f) (u’2( Oa €)ﬂ2,t(+0) 6) —ﬂ2(+07 E)’alt(_oa 5))} )

(132) 012},+<£) = —’g-_{cql},—(5)('&1(—'_0’.5)&1,1‘(_075)—al,t(+0af)ﬂl(_oag))—*_
+ Cg,— (E) (’&1(+0a £)a2»t(_0, §) —’llg(—O, g)al,t('l—o, 6))} ’
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where
Dv = 711(+O» £)a2,t(+0a 5) - '&'2(—*‘0) f)al,t(+0, 6) :

If o, is no integer, then

__ m(ctg(may) —1)
P = e —ap 7"

Now we give the final formulas in some main cases.

Case A: a_ and oy are no integers. One has

u . 1 NG
(1.33) ¢ _(&) = Cz,ﬁﬁ);m

Ay —2ip — (1 — o) — (1 — a_) — In(4€?)
ot 0= a) +
+ e—2(cos¢+isin P)E/e 1 \II(]- — Oy, 11 2A(1)§)
Play) ¥lay,1;-2A(1)¢)

X (=47 +2i¢ + (1 — a-) +9(ay) + In(—4€2) },

(138) () = ~ef, ()7 o
4y = 2ip— (1 — o)) — P(a_) — In(—4¢?)
% { 'l —ay) *
—2(cos ¢+isin p)€/e 1 \Il(]' — Oy, 1’2A(1)£)
e N e W, 12

X (=47 +2i¢ +p(a-) + $(ay) + In(4?) }.

Analogously,

(1.35)  c}, (6= (5);%—z

Ay —2ip— (1 — o) — (1 — ) — In(46?)
% { 'l —a.) *

1 U(l—a_,1;2A(-1)
F(a—) \I’(Q{_,].,—2A( )f

X (47 =21 — (1 ay) = Y(a) — In(-4¢?) },

_ e—2(cos ¢+isinp)é/e

X
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(130) 3.0 = Or a5
7~ 2ig~ Y1 = a) — ¥las) = In(-4¢?)
{-= T(l-a) i +
1 ¥(l-a,L;2A(-0)8)
M) W(a, 1 —2A(-1)

x (4y — 2i¢ — P(ay) — Pla) — In(4g?)) }.

+ e—2(cos o+isin@)€/e

Case E: a, =2l +1, a_ = —2n— 1, where [,n = 0,1,2,.... One
has ay =1+4+1, 1 —ay = —I, a_ = —n, 1 —a_ = n+ 1. Therefore,
u u -1)"
(1.37) Cl,—(&) = Cz,+(§)(—ﬁl)_x

U(=1,1;24(1)8)
T(l+1,1;—2A(1)€)

% {(_1)111 +e—2(cos¢+isin¢)£/e
Pl +1)—p(n+1)+ir
X 7 } ,

u _ __u ’I’L_' —2(cos ¢p+isinp)é/e \I[(_l’]'?2A(1)£)
(138) () =—ci (e U +1,1;—2A(0)8)

(139) o, (6) =~ (6)

o
(1.40) &, (&) =cy_(6) (_lll) {w(l +1) - Tﬁjn +1) +im

_ (__ 1)nn!e—2(cos P+isinP)é/e

+

U(n + 1,1;2A(—1)§)}
¥(—n,1; —2A(-1)¢)

Case G: ay =2l +1, a_ # —2n —1, where [,n = 0,1,2,.... One
has ay =1+1, 1 —ay = =1, I(a_) # oo, I'(1 — a_) # oo. Therefore,

(4 () = O F e —
U(-1,1;2A(1)¢)
(11,1 —2A(1)8)
o 4y —2ip—Pp(l+1) —yp(l—a_) — ln(—4§2)}
! ’

X {(_1)ll| _ e—2(cos¢+isin¢)§/e
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) - U(—1,1;2A(1)¢)
-1 ll' _ 2(cos p+isin p)E/e ’
UL T+ 1,1;—2A(1)€)

X (4y = 2i¢ — (=) = (1 +1) — In(462) }.

Analogously,

1 .
(1'43) Clll,—l-(g) = —cg,_(f)l!{m — 5—2(cos¢+zsm¢)§/er(;_) %

Ul —a_,1;2A(-1)¢)
" Wl L—2A(-D8)
(148) 5,0 =5 (6"
dy —2im — (1 +1) — (1 — a_) — In(—4£?)
X { r'l-o.) *
—2(cos ¢p+isin e lII(l —a, 1; 2A(_1)§)
e e T A
o dy —2im — (I + 1) — ¢Y(a_) — In(4§2)}
ING '

We have to consider all the cases of the following Table 1.1.

Table 1.1: Cases

Case Value of a4 | Value of a- | cf (€)cy (&) Results
A #+(20+ 1) # +(2n+1) ~ (Ing)~? Lec. S., Hyp.
B ~20-1 —2n -1 *k Not L. S., Not H.
C 20+ 1 2n+1 *ok Not L. S., Not H. -
D -2l -1 2n+1 ~ const Loc. S., Hyp.
E 20+1 —2n—-1 ~ const Loc. S., Hyp.
F -2l -1 #+(2n+1) ~ (Ing)~? Loc. S., Hyp.
G 20+1 #+(2n+1) ~ const Loc. S., Hyp.
H #+(204+1) 2n+1 ~ const Loc. S., Hyp.
I #x(20+1) —2n—-1 ~ (In¢)? Loc. S., Hyp.
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Now werhave used all conditions for 4 and v besides the condition for
Wronskian. Setting (1.28), (1.29), (1.31), (1.32) into this condition gives

3+ (s (€) . _
(1.45) (L, 00 ( ){U1(1,§)U1( L,¢§)x
x (1ig.4(+0, €) uz( 0,&)— 12 (+0, £)2,(—0,€) ) +12(1, )t (—1,€) X

X | Uy +0 £) U1t (-0, f)—ul( 0,¢ U2t(+0 3 +U2(1 £) “1 l’f)x

(¢ )
X ( 1,:(+0,8)41(=0,€) — 4, (40,¢) Gy +(—0 §)) (L, €)ia(~1, €)%
(o )
(11 (+0, €)tig,s(—0,&) — ti,4(+0, ) da(— ,f))} =

X

Using (1.5) one can conclude that in all cases of Theorem 3 the term Z =
41(1, €)1 (—1, €) (G, (+0, £)tia(—0, &) — @2(40,£)ti,:(—0,€)) in parenthe-
sis dominates the others. It gives the asymptotical behaviour for the
product ¢ , (€§)cs _(£). The results one can find in Table 1.1.

Now let us turn to Green’s function G = G(t,s;£). Our goal is to
derive for every compact K C IR, x [—1,1] an a-priori estimate of the
form

(1.46) lulls < Cp,x.s (”Lu”s+u + llulls-1), u € C5°(K).

By using Schur’s lemma the first step to derive such an a-priori esti-
mate is to estimate Green’s function by ‘

1
(1.47) /|G(t,s;§)| ds < Cle)* forall te[-1,1], €€,

-1

where as usually (£)2 := 1 + ¢2. From this it follows immediately

[e o]
[ @l <

(1.48) % _ R i
2
SC’( / 27Ol N 2 JRO dt)'
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In order to estimate G(t, s; £) we have to consider in both cases t < 0
and t > 0 the following twelve terms:

for t <0:

I

I

Iy

I4

Iy

Is

I

Is

¢t - (€)ei (&)t 5)

¢t - (€)c3,- (§) i (¢, €)

c5(€)ct,_()da(t, €

~—

¢t ()c3 _(€)ia(t,€)
¢t (€)eh () (t,€)
& ()t () (t,€)
¢ _(€)ch_(€)aa(t,€)
& _(€)ch_(€)n(t,€)
¢ (E)e_(©)n(t,)
& ()} _(E)in(t,€)

¢t +(6),- (§)a(t,€)

= |c34(8)e5, - (§)82(t,€)

/ (5, )! ds,

i

/ |fb2(3, g)l dS,
-1

0

/ | (s, €)] ds,
tO

/ |ﬁ2(3a£)| dS,

t
o -

[1as(s,0)1 ds,

t
0

[1aa(s,)l ds,
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for t > 0:

I13 =

Ly =

-[15 =

-[16 =

IZD =

I21 =

Iz2 =

c5 +(€)es, - (§)a(t,€)

= ‘311£,+‘(§)C12),+ (é)u4(t,€)

= |54 (§)et 4 (§)da(t, €)

= |t 4 (6)c3, 1 ()in(t, €)

= |y (6)ch , (§)ha(t, )

et +(§)et - () (t,€)
‘311L,+(§)012],-(§)ﬂ1(ta§)

¢z (£)et,_(£)82(8,€)

et +(§)et 1 (§)i (¢, €)

c5+(6)¢5,4 (§)8a(t,€)

Cif,-f- (f)ci_k(f)'&l(t, 5)

szz,+(§)czlj,+(§)'al (t, )

e T T T e O O L O O oA ol l—

=
=
—
vCl)
o
=
Q.
&

>

l 2(S>§)l dS,

|ﬁ'1(3a E)l ds 9

[ﬂ'Q(S) 6)' ds )

l(sif)l dS,

=

2(3’£)| d.S',

=

1(87€)| ds)

=

|Ia2(3a€)| dS,

Iﬁl(sa 6)' dS )

|’042(S,€)| ds ).

|’lAL1(S, 6)' ds ’

2(3’ §)| dS .

=

We will not discuss all cases A to I in detail, we only give some hints
and sketch some calculations. Later we will summarize the results in a

few lemmas.
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In the cases B and C we are not able to prove polynomial growth
of Green’s function. This is impossible because of Theorem 4. It will be
shown that these are exactly the exceptional cases. But one can feel this
fact also after consideration of the above terms. Indeed, let us estimate
I;5 in the case C for a, =a_ =1 and ¢ = 0. By Table 1.1 and (1.5) one
has for t € [-1/2,0] and £ — 400

65 ()8 - ©at, )] [ lia(s, )] ds =

1

=165 (€065 (Ot [ s s >

0

1
> 2/ ee=6/e? ‘/se“":e_msI ds > 065(1/6_1/62) )
0

which has no polynomial growth for £ — +4o00. Here we used that
U(0,1,2A(t)€) is Laguerre’s polynomial of order zero.

In the other cases one can derive the desired estimates for Green’s
function. Here we have to take into consideration that by formulas (1.24),
(1.28), (1.29) and (1.25), (1.31), (1.32) one can represent each product
which appears in I; to I by the aid of c§ , (£)cy _(£). The asymptotical
behaviour of this product is fixed in Table 1. Moreover, the functions
¥(a, 1; 2z) have behaviour logz if |z| is small, and polynomial growth if
|z| tends to infinity, uniformly for argz € [-3/27 +€,3/2m —¢], € > 0,
(see [3]).

"~ We restrict ourselves to the consideration of two typical terms from
Case A appearing in the other cases too.

14: Consider the first term I; in the case A. According to (1.5) one
has the following estimate:

I =16t (O) - @6, ) [ lins,6)lds =

= leb ()t (Ot W (a 1i-2AD)| [ Ise™ (o, Li-2A()E)ds.
-1
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By (1.25), (1.33) and Table 1.1

I, <Ce2éeosd £ (o, 1;-2A(1)8)|x

\Il(l —Qa_, 17 2A(—1)E) } eﬁe_l/ltl cos ¢
\I}(a—a 17_2A(_1)€)

t
x /‘sege_l/lslc"s"s\lf(a_,1;—2A(s)£)l ds.
21

We need the estimate uniformly for all ¢ € [-1,0], ¢ € IRy. Using the
asymptotical behaviour of the W-function gives

1—a_,1;2A(-1)¢)
(a-,1;—2A(-1)¢)

I < C“I;\I(, ’ [t (a_,1; —2A(t)€)| x

X /lS‘I’(Ol_, 1; —2A(s)¢) | ds <
1
< Cgmmen= 1] (o, 1 -2K008) [ 1ol ¥(or, 1 2A()6)] ds.
e

If |A(t)§] < M, where M is some fixed positive constant, then due
to (3]

[t1¥(a-, 1;—2A(£)€)] < [t(C1 + Ca| In(A(£)€))]) <
< |¢(Cr + Co| InA(t)| + C2Iné) <
< |H(Cy + Cagp + Colt|™! + CoIn¢) <
< Cilt|+ Co(1 + pJt]) + Co(In N +1) < Cs.

Otherwise, if |A(t)€] > M, then |A(s)¢| > M and therefore
[t9(ar, 1; —2A()E)| + |s]| ¥ (@, 1; ~2A(5)€)| < Cle|mex{OReat,
It follows the estimate for the first term:

Il S C<€)2Rea_-l+max{0,—Rea_} )
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24: Consider the term I3 in the case A. According to (1.34),(1.25)
one has the following estimate:

‘I/(]. a_,l 2A 1)5) =1/t cos ¢
U(a_,1;—-2A(-1)¢)

I3 < 06—25 cos ¢

10 (o, 1; 2A(t)§)’><

t
X /Iseee_ms‘ °°S¢\Ii(a_,1;—2A(s)£)| ds,

where the function e=é1+e™ ="V eosé s hounded V(s,t) € [-1,1] x
[~1,1] and all £ > 0. Consequently, for each N there is a constant Cn
such that

Iy <Cn(e)™

In this form one can discuss all terms I; to I34 in each case A till L.
Thus, one obtains the next results:

LEMMA 1. (Case A) If a; # £(20+1),a_ # £(2n + 1), wherel
and n are non-negative integers, then for allt € [=1,0] and { — 400 the
following estimates hold:

(149) I1 +I5 < C§2(Rea_+max{0,—Rea_})—l,

(150) 1-2 + I7 < Cgmax{O,—Rea_}+max{0,—1+Rea_} ,
while for t € [0,1]

(1'51) I+ In < C (111 E)_l €2(Rea++max{0,—Rea+})—l ,

(152) Lo+ Inp < C (In§) ! gnoxi0rTeas bhmax(0mtRec ),

where ay = (1+a4)/2,a- = (1+a_)/2. The other terms are uniformly
bounded. '
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Hence,
1
‘/Mﬁﬁiﬂdsgcgwuwwuumu@
21
forall te[-1,1], (€.
LEMMA 2. (Case E) Ifa, =21+1, a- = —2n—1 wherel and n are

non-negative integers, then for all t € [-1,0] and £ — +oo the following
estimates hold:

(1.54) I + I, < CE)",
while for t € [0,1]

(1.55) Iis + Ins < C(€)',
(1.56) Iy + Iy < C(€)**1.

The other terms are uniformly bounded.

Hence,

1
(1.57) /-[G(t, 8;€)| ds < C(g)2max{nl+ for all t € [-1,1], £ € R, .

-1

LEMMA 3. (Case G) If ay = £(21 +1),a_ # £(2n + 1), where |
and n are non-negative integers, then for allt € [—1,0] and & — +oco the
following estimates hold:

(158) Il +I5 < Cé—Z(Rea_-f-max{O,—Rea_})-l,
(159) 1'2 + _[7 < CEmax{O,—Rea_}+ma.x{0,—1+Rea_},

while for ¢t € [0, 1]

(1.60) Iz + Iy < CE)'H,
(1.61) Lo+ Iy < C(8)".

The other terms are uniformly bounded.
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Hence,

(1.62) / IG(t, 5 )| ds < C(€)m{IRea-1 IRear 1}

forall te[-1,1], ¢€TRy.

1
The estimates of [ |G(¢,s;€)| ds for £ — +00 can be obtained in the
1

other cases in the same way. As it was noted before we are also able to
conclude the asymptotic behaviour for £ — —oo . Using all estimates we
arrive at the final result:

In cases A,D till I the Green function can be estimated by

1
(1.63) /|G(t,s;£)| ds < C<§>max{lRea_| ,|Rea+|}
sl
forall te[-1,1], (€.
Consequently, the constant p = max{|Rea_|, |Rea;|} in inequality
(1.47).

From the starting equation one can conclude the C*° -property with
respect to t, too, if we have a corresponding estimate for ||Dtu(t)||§{( [ (Ba)*

1
In order to derive this estimate we have to consider [ |Gy(t,s;€)| ds.
21

For this reason it is sufficient to estimate new terms which arise after
replacement of (¢, £),Ua(t,€) by @1.4(t,€), d2.(t,&), respectively, in Iy
to I54. This leads to

1
(1.64) /!Gt(t,s;§)| ds < C{E)*' forall te[-1,1], £€R.

-1

Consequently, (1.46) is proved.
The Theorem 3 is completely proved.
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2 — The proof of (i) of Theorem 4

Suppose that the differential equation
(21) ‘L(t,DtaDz)u’zf
has a solution u € D'(Q) for every f € Cg°(2) (2 is an open subset of

IR?) and let w be an open set with compact closure which is contained in
Q. Then, there exist constants C' and m such that

(2.2) ‘/fvda:dt‘ < Csup Z ‘D;’fo'sup Z ID;‘DfL*v

a+pB<m a+p<m

for all f,v € C$°(w). Functions which violate this inequality will be
constructed.

Suppose that w is a nelghbourhood of the origin for which inequality
(2.2) is valid. For large 7 let f,(z,t) = F(r%z, 7%t)7°, where the function
F(z,t) € C¥(IR?) is such that

oo 00 oo 0 '
(2.3) / /F z,t)dzdt = 1, / / F(z,t)ddt = 1,
—oco 0 —00 —00
and

v, = x(@,1) [ glro)e™ ult, pr)dp,

where y € C°(w), x = 1 in a neighbourhood of (0,0), g € C§°(—00,0),
J9(p)dp =1, and

teMELY (—2E exp(ip — [t|71)) t <0,
t o
"9 {teA<f>fL?<—2sexp(z’¢—|t|-1)> t>0

is a solution of the equation (1.1) with a_ = —2n —1,a4 = -2l — 1.
Further for 7 large enough f, belongs to C§°(w) and

// afT'uT (z,t)dzdt = // 8UT (z,t)drdt = A+ B,
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where

A= /// fT(w,t)Xi(z,t)g(va)e”pTzu(t, p7*)dpdzdt
B = /// fT(:c,t)X(:E,t)g(Tp)ei"”’”zut(t, pr?)dpdzdt .

It follows that

B = /// F(r%z, 72 70x(z, t) g (1p)e™™ uy(t, pr?)dpdzdt .
On the other hand, when ¢ < 0,
uilt, pr) = MO LY (~2072 exp(igp — |1 ™))+
(2.5) + EA() o720 L 10 (_2p7? exp(ip — |t|~))+
— 2L (—=2pr%exp(i¢ — [t 1))}
while, when ¢t > 0,
uy(t, pr?) = eA(t)pTzL?(—QPT2 exp(i¢ — [t|™))+
(2.6) + t)\(t)przeA(t)PTz{L?(—2p’r2 exp(ig — [t|™1)+
— 2L} (=2p7* exp(i¢ — [t|7))} .
Let us denote

(2.7) B= Y (Bi +Biy),

where
By, = ///OF(T2:1:,TQt)TS)C(x,t)g(Tp)e””Tz*”A(t)pTzL?(—2A(t)p7'2)dpdmdt

i z t . 2 t
— Rl ixp/T+A(t/T*)pT 7O [ _
// OF(m, t)X(7-2 )3 )g(p)e L; ( 2A(—7_2>pr) dpdzdt.
According to

T—00

lim A(%)p'r=0 when t>0,
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one has

T—00

lim By, = / dz / dp / dt F(z,8)x (0,0) g(p)LO(0) = 1.

In the same way we conclude that

T—00

0
lim By = / dz / dp / dt F(z,)x (0,0) g(p)L2(0) = 1.
Analogously,

lim B, = lim /// F(Tza:,th)Tsx(m,t)g(rp)e“’”z""\(t)’”zt)\(t)p'rz><
0

T—00 T—00

x LY (—2A(t)pr?) dp dz dt =
o e 1 z 1 iz 2+A(L)pr t
(2.8) = lim ///o F(w,t);X(ﬁ» ﬁ)g(ﬁ’)e T tk(ﬁ)px

X L?( — 2A<%)pr)dpdmdt =

= tim > /[ Fa,9x(0,00(0)\ O L O)dpdz s =0,
and
(2.9) Th_.r{.lo B,_ = TILIEO B3+ =0.
Hence,
(2.10) lim B=2.

T—00

In order to estimate A we choose the function x(z,t) such that
x(z,t) = x(z)x(t) and x(z) = 1 when |z| < ¢, with a fixed positive
number €. Therefore

a=fa | dm]t.z dt £,(z el Dg(r)e = u(t, p7)

= /dp/da: / th(TQx,'rzt)Tsx'(t)X(x)g(rp)e””zu(t,pTz).

[t|=e
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Let us denote
Ay :/dp/da: th(Tzcc,'r2t)7'5x'(t)x(m)g(rp)te”"72+A(t)"T2L?(-2A(t)p72).

Further, if we choose the function g such that suppg C [—¢, —¢], then

—e/T
IA+| < / dp/da:/dt 7-5 A(t)pr? 1 + lpsz)l .
—c/T
On the other hand A(t)pr> = —A(t)|p|r2 < —A(e)|o]r? < —A(e)er.

Hence for every N there is a constant Cy such that, when 7 — oo,

—e/T € 0o
|Ay] < / dﬂ/dz/dt 7o Ae)er (1+ CT)l <Oyt V.
—c/T —€ €

Analogously, for

A_ =/dp/jz/th('rzm,th)rsx’(t)x(x)g(Tp)te“:’”zM(t)”TzL?l(—2A(t)p'r2)

we have
(2.12) |A_| < Cy7™", when 71— 0.
Thus,'?g
(2.13) |A| < Cnt N, when 7 — 00.

Then it is easy to see that the function

w (a,t) = [ g(mp)e u(t, pr?)dp
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satisfies the equation L*(t, Dy, D,)w,(z,t) = 0 in a neighbourhood of the
origin. Therefore,

L*xw, = [L*, x] w, + xL*w, =
= [L*(t,D4,Dz),x(t)x(2)] w (2,t) + x(t)x(x) L* (¢, D¢, D Jwr () =

= Q(t,z, Dy, D,)w,(z,t) = ((t,z)Q(t, z, Dy, Dg)w,(x, 1),

where Q(t,z,7,£) = 0 inside some neighbourhood of (0,0) of the form
[—¢,€)?, that is supp ¢ N [—¢,€]? = §. The inequality

(2.14) sup Z ‘D;‘DtﬁL*vT <cyr ¥
a+pB<m

will be proved if it is shown that for every a,3,o + 8 < m, and any N
there exists a constant Cy ., such that the inequality

(2.15) |D2Dfw.(2,8)] < Crm ™

holds for any (z,t) belonging to supp(.
If t > ¢, then for all =

—e/T

S\ o iT 7'2
D2 Dfw, (x,) = (—i)*(p7?) / g(rp)e™ u) (t, pr¥)dp =

—c/T

—e/T

= (—1)* / (pr2)%g(rp)e’=e™ D {ter 7™ LO(—2A(t)pr?) }dp .

—c/T
It follows as for the estimation of A,

—e/T
(2.16) iD;‘DtﬁwT (w,t)‘ < Cpt? / g(tp) (1 + |p|7’2)a+ﬂ+l e MOy <

—c/T

< CmTe—A(s)er /g(p) (1 +c7_)a+6+l dp <

< CN,mT—N when 7 —o00.
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The case t < —e can be considered in the same way. Hence (2.16) holds
for all ¢, |t| > €.
Furthermore,if |z| > €, then for every k

['rzm}k IDg‘fowT(z,t)‘ <

—e/T
< / (pTQ)"‘g(’rp) ((%)keizprz)Df [teA(t)pTzL?(—QA(t)pTz)] dp} _
—e/T
s
=72 / oizPT? (aﬁp)k{pag(Tp)Dtﬁ [tGA(t)prgL?(—QA(t)pTQ)] }dp’ <
—e/T

S C’k,m7—2m-+-2ﬁ_|—’C )

respectively,
|DsDfw, (,1)| < Cimr™™*

for all ,3 < m and all k. It follows (2.15). Hence, using (2.10) and
(2.12) the inequality (2.2) does not hold for f = 0,f; and v = v, with 7
large enough.

The case a_ = 2n + 1,a, = 2l + 1 can be considered in a similar
form.

The point (i) of Theorem 4 is proved.

3 — The proof of (ii) of Theorem 4

Firstly we consider the case a_ = —2n — 1,a; = —2l — 1. Let us set
| ter L (—2A())x-(§) ¢ <0,
(3.1) at,§) = {
ter L) (—2A(t)E)x-(€) t=0.

Here x- € C®(IR),x-(§) = 0 for £ > —N while x_(§) = 1 when £ <
_2N, where N is a positive number. Then 4 € C*([-1,1] x IR¢) and
i € C=([-1,1];S’). Hence, 4 is the partial Fourier transform of u €
C=([-1,1); ).
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One can regard u as a distribution v € D'((—1,1) x IR,) defined as
follows:

we) = [[at, 0, dtd for every p € D(—1,1) X Ry).
There exists a partial Fourier transform of u with respect to z, and,

of course, it is 4(t,§) itself. Further, L(t, D;, D,)u = 0 while (0,0) €
sing suppu. Indeed,one has

/(0,€) = {eA<t>€L2<—2A(t)s>x_(£>+t§ (ALY (-2A(1)E)x-(6)) }

=Ly (0)x—(€) = x-(¢)-

The theorem can be proved in the case a- = 2n+ l,a; = 2l +1in a
similar way, one has only to choose

t=0

te” ML) (2A(1)E)x+(€) t <0,
weo-{*
te” M OELY(2A(1)E)x+(6) >0,

xX+(&) =1 for £ > 2N while x4 (§) =0 when £ < N.

The theorem is proved.

4 — Proof of Corollary

Let us now devote to the weakly hyperbolic case ¢ = 7/2 in (1).
Firstly we remind the representation (3.1) with A(t) = exp(i¢ — [¢|71),
a.=-2n—1,a, =—21—1 and ¢ € [0,7/2). Hence,

tef (o4O LD (-2 exp(i — |t 7)x-(€) <0,
(41) ﬁ¢(t,f) = { ] -1 )
tet P~ LN (28 exp(ip — [t]71))x-(§) t=0.
We are going to find out v_(¢,€) := limy_,r/2ue(t,z) in D’ ((—1,1) x IR,)
and to determine W F(v_). Simple arguments lead to

tei€exp(=I1T) L0 (—2i¢ exp(—|t|1))x-(€) t <0,

4.2 _(t,€) =
(4.2)  0_(t,¢) {teigexp(—ltl_l)L?(—2i§eXP("ltl—l))X—(f) t>0.
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Hence, 0_(t,&) is the partial Fourier transform of a distribution v_ €
D'((-=1,1) x R,). The distribution v_(¢,2) is a solution of the weakly
hyperbolic equation

(4.3) (D? —t"*exp(—2[t|™")D + a(t)t™* exp(—|t|™")D;) v(t,z) =0,

has been considered by ALEXANDRIAN [1]. From (4.2) it follows that

(4.4) WF(w.)={(t,z;7,8); x = —exp(—|t|™), £ Esuppx-,
te (—1,1), 72 =t *exp(-2[t| )€ }.

In the case a_ = 2n + 1, ay = 21 + 1 we have the representation

te= eI L0 (25¢ exp(—|t| ™)X+ (6) ¢ <0,

(45)  04(,8) = {

te—i&exp(—m_l)L?(Zif exp(—[t|7"))x+(§) t=0,

while

(4.6)  WF(vy) ={(t,z;7,8); z = exp(—|t|™!), € € supp x4+ »
te(—1,1), 72 =t"*exp(—2Jt| )& }.

Conversely, due to [1] if the hyperbolic equation (4.3) has a solution
whose singular support coincides with a simple ray passing through the
origin (0,0) and which changes the direction of motion (is completely
reflected by the point (0,0)), then the operator (1) with ¢ = 0 is not
hypoelliptic at the origin (0,0). The corollary is proved.

CONCLUDING REMARK. After the preparation of this paper the au-
thors have found the paper: T. HOSHIRO, Some ezamples of hypoelliptic
operators of infinitely degenerate type, Osaka J. Math., 30 (1993), 771-
782. In this paper Hoshiro considers (1) with ¢ = 0. He proves the results
of hypoellipticity and non-hypoellipticity from Theorems 3 and 4 in the
cases a; = a- and a; = —a_.
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