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On the axiomatic treatment of the (a,¢)-mean

P. GIGANTE

RIASSUNTO: Si estende la nozione di media quasi-lineare o (a, p)-media, conside-
rata in letteratura per probabilita o-additive, alle distribuzioni di masse su intervalli
reali. Si analizzano in questo contesto pit generale le proprietd delle (o, p)-medie e si
individuano sistemi assiomatici minimali che permettono di caratterizzare queste medie
relativamente ai diversi livelli di complessita strutturale delle masse: masse semplici,
masse a supporto compatto, masse arbitrarie.

ABSTRACT: We extend to masses on a real interval the notion of quasi-linear
mean or (o, p)-mean considered in literature in the context of o-additive probabilities.
We analyse in this more general setting the properties of the (w,)-means and we
give some minimal aziomatic characterizations at different structural levels of masses:
simple masses, compact support masses, arbitrary masses.

1 — Introduction

It is well known that some of the means commonly employed in Statis-
tics and in other various applications, such as arithmetic mean, geometric
mean, harmonic mean, are special cases of quasi-linear means or ¢-means.
Moreover, the p-means have important implications in decision theory.
It has been pointed out that the expected utility hypothesis is equivalent
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to adopting a quasi-linear mean as a model of certainty equivalence.

Although the class of p-means is very large, nevertheless it does not
include other useful means, for instance the antiharmonic mean. More-
over, difficulties arise from the application of the quasi-linear mean as a
model of certainty equivalence in the description of particular decision
problems (see for instance the celebrated paradox by ALLAIS [1]).

These problems led to the introduction of a more general class of
means, called the (o, p)-means (see [3]), that take the form

(] @(@)p(e)dF (z)
(M a(mdF ) )

where J is a real interval, o and ¢ are continuous real functions, a non-
vanishing and ¢ strictly monotone, and F is a distribution function.

A first axiomatic characterization of the (o, ¢)-mean is due to CHEW
[3]. Later, HOLZER [9] gave a different axiomatization. Both these papers
regard means on distribution functions of probability measures.

The purpose of this paper is to extend the notion of (a, ¢)-mean to
masses on a real interval. Moreover, we analyse, in this more general
setting, the properties of the (,y)-means and we give some minimal
axiomatic characterizations of these means at different structural levels
of masses: simple masses, compact support masses, arbitrary masses.

The general lines of the paper follow the lead of GIROTTO and
HOLZER [7] on the axiomatization of the ¢-means on masses.

In the next section, we give some notations and definitions. In Sec-
tion 3 we present some basic properties of means on masses. Moreover,
we give some connections among basic properties of the means. Finally,
in the last three sections, we present axiomatic treatments of the (a, ¢)-
mean in the settings of simple masses, compact support masses and ar-
bitrary masses, respectively.

2 — Preliminaries

The set IR is the space of real numbers; J =]jo, j1[ is a given open
real interval, bounded or not. We denote (with or without indices) by
8,7, A, 6, p elements of [0,1], by k a positive real number and by z,y
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elements of J. Moreover F is a field on J including all intervals in J; sets
from F are denoted by F.

A mass on F is a positive bounded charge on F; we denote it by p and
put |||l = u(J). Denoting by IR the extended real line, the support of p is
the following set Supp(u) = {z € R|u(UNJ) > 0 for any neighbourhood
U of z in IR such that U NJ € F}; moreover, convSupp(x) is the convex
hull of it in IR. A mass u is called compact support mass iff Supp(u)
is a compact subset of J. We denote by M, the set of compact support
masses. Finally, u[®¥ is the mass on F defined by pl*¥(F) = u(Fn[z,y))
and k, is the following degenerated mass on F : k,(F) = k, if z € F and

k,(F) =0, if z ¢ F. The letter S denotes the set of simple masses (i.e.
finite sums of degenerated masses).

The distribution functzon of p is the real function on J: F. L) =
1(ljo, ). We put ||plla = F.(j7) — F.(4&) and call it the depurated norm
of u, i.e. the norm without the adherent masses at jo and at j;. Finally,
the mass p is tight iff ||p]|q = ||u|| and M, denotes the set of tight masses.

If f is bounded real function on J, the symbol S [ fdu denotes the
S-integral of f (see Definition 4.5.5 in [2]). Given a real function f on
J, bounded on any compact interval, we denote by [ fdu the zmproper
S-integral of f with respect to p that is

/fd,uz lim S/fdu,
(zvy)—'(jOajl) [ ]
z,Y

whenever the S-integrals exist for all z,y and the 11m1t is finite (see Def-
inition 3.1 in [5]).

The sequence of masses p,, converges in distribution to p (fn, —q 1)

iff ||pnll — |lul| and F,,(z) — F,(z) at all continuity points z of F,.

Moreover, the sequence of masses u, converges weakly to p iff S [ fdu =

lim S [ fdu, for all bounded continuous functions f which are S-in-

n—+o0o

tegrable with respect to u, u, for all n (note that the latter type of
convergence implies the former one but not vice versa, see [6]).

Given two quantities @, @’ of the same type (e.g. masses, real num-
bers), QBQ’ denotes the mizture (1 — 6)Q + Q'

Finally, we give the notion of (¢, ¢)-mean.

DEFINITION 2.1.  Let a and ¢ be two continuous real functions
(bounded or not) on J, a nonvanishing and ¢ strictly monotone. Let
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M,,, be the set of masses p with ||plla # 0 such that [ apdp and [odp
both exist. The following real functional on M, ,

1/ fapd
Mg, (1) = ¢ (%‘f) )

is called (a, )-mean.

3 — Some basic properties of means

In order to get some characterizations of the (¢, ¢)-means on masses,
we recall the usual properties of means and some useful connections
among these ones. To state them, we denote by M a set of non null
masses including S and by m a real functional on M.

Cons (consistency): m(k;) = z.

POInv (partial omo-invariance): m(kp) = m(u) for any p € S.

PWAs (partial weak associativity): For any 8 # 0,1, there is 7 #
0,1 such that m(p;Bp) = m(vyyp) for any p € S, whenever
p1, v1 € S, |l = [l and m(p;) = m(w).

PSInd  (partial substitution independence): If there are p;,v1, u e
S and 8,7 # 0,1 such that ||u|| = [jwll, m(u1) = m(vy) #
m(y') and m(p1Bp’) = m(vyyp'), then m(p fp) = m(viyp)
for any p € S.

PRCons (partial ratio consistency): Let p,11 € S such that ||u|| =
|||, m(p1) = m(vy) and B, ; # 0,1 such that m(p.8,4) =
m(vy,p) (=1, 2) for any p € S, then

A-—y)/m _ A=m)/r
(1-60)/6: (1—=8)/B2

RMon (redistribution monotonicity): m(k,SBk,) is a strictly in-
creasing function of 3, whenever z < y.

apd
(W Observe that fadp, # 0 and ff (pd s € p(J) for any p € Ma,p.
adp
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PMMon

Int
Wint
SInt

WSInt

PBet

Cnc
Cn

CCn

WCCn

SCn
TCn

Place

(partial mixture monotonicity): m(u1Bpu2) is a strictly in-
creasing function of 3, whenever pq,ps € S, |1l = ||zl
and m(u;) < m(us).

(internality): m(u) € convSupp(u) N J.

(weak internality): m(k,fk,) € [z,y], whenever z < y.
(strict internality): m(u) is an interior point of convSupp(u),
whenever infSupp(u) < supSupp(u).

(weak strict internality): m(k,fk,) € ]z, y[, whenever 8 #
0,1and z < y.

(partial betweenness): m(uiBu2) € Jm(py), m(us)[ for any
B # 0,1, whenever p1,ps € S, ||l = ||p2| and m(p,) <
m(pz).

(connection): {m(k,pk,)|A € [0,1]} D [z,y], whenever z <
Y.

(continuity): m(u,) — m(p), whenever p, € S for all
n,u € M, and p, — 4 .

(conditioned continuity): m(u,) — m(u), whenever p, € S
for all n, there are a,b € J such that Supp(u,) C [a,b] for
all m and p, — 4 .

(weak conditioned continuity): m(k,fk,) is a continuous
function of 3.

(shift continuity): m(k,fk,) is a continuous function of .

(truncation continuity): m(u*¥)— m(u) as z | jo and
y 1 41, whenever there are a,b € J such that a < b and
pl=vl € M forall z < a, y > b.

(placement): m(u) € J.

We note that the properties PWAs, PSInd, PRCons, PBet and PM-
Mon translate, in the simple masses setting, the properties of weak-
substitution, substitution-independence, ratio consistency, betweenness
and mixture-monotonicity considered by Chew in the o-additive distri-
bution function setting (see [3]). The other axioms, apart from POInv and
SCn, have been considered in [7]. The property PWAs is a weaker formu-
lation of the usual associativity property: m(au; + buo) = m(avy + brsy),
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whenever a,b >0, a+b> 0, s, v; € M and |y = ||will, m(v:) = m(p)
(1=1,2).

In order to give some interesting connections among the previous
properties, we prove the following proposition.

PROPOSITION 3.1.  Let (u,) be a sequence of simple masses such
that pin —aqp and Supp(un) C [a,b] for all n and for some a,b € J.
Then p € M..

PROOF. Let z’ < a and z” > b be continuity points of F,,. Then
F, (z')— F,(z') and F, (z")— F,(z"). Since F,(z') = 0 and
Fur (27 = lm]| for all 7, Fy(z') = 0 and F,(a") = &im ]l = [l
Consequently, u([z’, z"]) = ||u|| and hence p € M.. 0

The following theorem presents some connections among the prop-
erties of means. Although the first nine statements can be found in
Theorem 3.1 in [7], we report them here since they turn out to be useful
in what follows.

THEOREM 3.2. The following statements hold:

(i) Cons+ WSInt = Wint; (viii) Cnc = Cons;

(ii) Cons+RMon = WInt+WSInt; (ix) CCn == WCCn;

(iii) Cons + WCCn = Cnc; (x) Cons+ PBet = WSInt;
(iv) Int == Place; (xi) Cons+PMMon = RMon;
(v) WiInt = Cons; (xii) Cn = CCn;

(vi) WSInt + CCn = Cons + WInt; (xiii) CCn = SCn.

(vii) SInt + CCn = Cons + Int;

Given two simple masses y, pz such that ||u1]] = [jp2] and jo <
m(p;) < m(pz) < Ji, let

@, ,(8) = m(piBus), B €0,1].

This function was first introduced by DE FINETTI [4]. In [9], HOLZER
employs some properties of this function to prove that his axiomatic sys-
tem is equivalent to Chew’s. Following [7], § 4, where the function is
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considered in the framework of masses, by suitably adapting the proofs of
analogous results given in [7] and [9], we obtain the following Lemma 3.3
regarding some properties of ®,, ,, and Theorems 3.4 and 3.5 that state
the equivalence among collections of basic properties.

LEMMA 3.3. The function ®,, ., 1S a strictly increasing continuous
function from [0,1] onto [m(u1), m(uz)], whenever one of the following
statements holds:

(i) PWAs + WInt + Cnc;
(i) PWAs + RMon + Cng;
(iii) Cons + PWAs + WCCn;
(iv) Cons + PWAs + CCn.

THEOREM 3.4. The following statements are pairwise equivalent:
(i) PWAs + WInt + Cnc;
(i) PWAs + WSInt + Cng;
(iii) PWAs + RMon + Cnc;
(iv) Cons + PWAs + WCCn.

THEOREM 3.5. The following statements are equivalent:
(i) Cons + PWAs + CCn;
(i) Cons + PSInd + PBet + CCn.

The next theorem gives a sufficient condition for the partial ratio
consistency property to hold. In our setting, this theorem is analogous to
Lemma 3 in [3] (the proof can be obtained along the same lines as in [3]).

THEOREM 3.6. The following statement holds: Cons + PWAs +
WCCn = PRCons.
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The next corollary follows immediately from the previous theorem.

COROLLARY 3.7. Assume Cons + PWAs + WCCn. Let 1,11 € S
such that ||p1]] = |lv1]l and m(p,) = m(vy). Then there is one and only
one h > 0 such that

_ p
m(ynBp) = m(v: h(1=0) + ﬁ“> ’
for any p € S and for any B # 0, 1.
Finally, by induction, we get the following corollary.

COROLLARY 3.8. Assume Cons + PWAs + WCCn. Let p;,v; € S
such that ||ps|| = vl end m(u;) = m(v;) (i = 1,... ,n). Moreover, let
h; > 0 such that

m(ufp) = m(wh—i(l——ﬂﬂ)mu) )

for any p € S and for any B# 0,1 (i =1,...,n). Then, given By,... , Bn
such that . Bi=1and B; >0 (i=1,...,n), we have
i=1

- : hif3; § Bi
m(;ﬁim) - m<; st: h;B; +j§+1 B; B +¢'=Z”;fl ng h;B; + i B; P‘i)’

j=1 j=s+1

for any s < n.

4 — Axiomatic treatment of (o, p)-means on S

In this section, by some collections of basic properties, we give min-
imal axiomatic systems characterizing the (a,()-means in the simple
masses setting.

The next Theorem 4.3 states that a partially weakly associative
real functional on simple masses, that satisfies the properties of partial
omo-invariance and shift continuity, is a (a, p)-mean whenever it satis-
fies “weak internality (strict or not) and connection” or “redistribution
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monotonicity and connection”. Moreover, partial omo-invariant means
are (o, @)-means whenever they satisfy “partial weak associativity, weak
conditioned continuity and shift continuity” or “partial weak associativ-
ity and conditioned continuity” or “partial substitution independence,
partial betweenness and conditioned continuity”. Consequently, in this
context, these collections of basic properties are equivalent.

We note that the last two characterizations are analogous to the ones
in HOLZER [9] and CHEW [3], respectively. Indeed, if M was the set of
simple masses with support included in some given compact interval, the
equivalence of (i) and (vii) would follow from Theorem 2 in [3]. However,
since M in Theorem 4.3 is the set of all simple masses on F, it should
be apparent that this equivalence can not be deduced from the above
mentioned theorem. To see why it is not even a consequence of Theorem 3
in [3], observe that the (o, ¢)-means on S do not necessarily verify the
continuity axiom (for a counterexample see [8] p. 6).

Before stating Theorem 4.3, we recall that the integral representation
of an (a, ¢)-mean is unique up to suitable transformations of the functions
o and ¢ (see Theorems 2 and 3 in [3]). Since in the proof of step 2 of the
theorem we exploit a specific version of this result, we state this particular
version here in Theorem 4.1.

THEOREM 4.1.  Let o, a* be nonvanishing continuous real func-
tions on J and @, @* be continuous strictly monotone real functions on
J. Moreover, let I C J, with I = [a,b] or I =J.

(i) If my, = Mg+ 0N {1m_ﬂ_1y| z,y € I,B € [0,1]}, then there

are p,q,T, s, t, with qt # rs and p # 0, such that ¢*(z) = Mx)_+7:’
sp(z) +t
a*(z) = p(sp(z) + t)a(z) for any z € I.

(ii) If there are p,q,,s,t, with qt # rs and p # 0, such that p*(z) =
gp(z) +r
sp(z) +t’
M+ o+ (@) for any p € My, such that Supp(p)NJ C I.

o*(z) = p(sp(z) + t)a(z) for any z € I, then m,,(p) =

To proof the main theorem of this section we need one more result
that may be obtained by suitably adapting the proof of Lemma 6.2 in [7].

LEMMA 4.2. Let M' C MyN M,,. Then the (o, p)-mean on M’
verify SInt.
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Now, we give the characterization theorem.

THEOREM 4.3. Let M = S and m a real functional on M. Then
the following statements are equivalent:

(1)

(i)
(iif)
(iv)
(v)
(vi)

There are two continuous real functions a and ¢ on J, «a
nonvanishing and ¢ strictly monotone, such that m = m, .
Moreover, if a*,p* are such that m = mg« ,~ on M, then

there are p,q,r,s,t, with qt # rs and p # 0, such that ¢* =
gp+r
sp+t

POInv + PWAs + WiInt + Cnc + SCn;

and o* = p(sp + t)a;

POInv + PWAs + WSInt + Cnc + SCnjy
POInv + PWAs + RMon + Cnc + SCn;
Cons + POInv + PWAs + WCCn + SCn;
Cons + POInv + PWAs + CCn;,

(vii) Cons + POInv + PSInd + PBet + CCn.

Moreover, PMMon + Int + SInt + TCn + Place follows from any
one of the previous collections of basic properties.

ProOF. Plainly, by 3.4, the statements (ii) + (v) are pairwise equiv-
alent. The equivalence (vi) <=> (vii) and the implication (vi) =
(v) follow from 3.5 and 3.2 (ix), (xiii), respectively. Therefore, we prove
(v) = (i) and (i) = (vi).

(v) = (i) The proof is carried out in the following steps.

1° Let a,b € J, a < b. Following the proof of Theorem 2 in [3],
by 3.3, we have that the function ¢’ = <I>1‘al’1b : [a,b] —[0,1] is con-
tinuous and strictly increasing. Moreover, by 3.7 and 3.8, the function
o : [a,b) — IR* defined by o/'(a) = o/(b) =1 and o/(z) such that

m(16v) = m((Lg ()L a’(x)(lﬂ— A5
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for any v € S and B # 0,1, if z € ]a, b], is continuous and nonvanishing.
Finally,

m

® m(p) = w"l(iz

Bic (z:)¢' ()
i ) ,
izzl Bic! ()

for any simple probability u (||u|| = 1) with Supp(u) C [a, b].

Let a, ¢ be continuous extensions of o’ and ¢ to J, respectively, with
o strictly increasing and o nonvanishing. Then, by (1), m(u) = m,, (1)
for any simple probability y with support included in [a, b].

2° Let p be an arbitrary simple probability. Now, let a, | jo, bn T 41
and a, < b, for all n.

We claim that there is a sequence (a, ©%)nen, With oy, ¢}, defined
and continuous on [a,,b,], o nonvanishing, ¢}, strictly monotone, such
that (a;-q-la (p:+1) |[an,bn] = (Oé:;,(/);) and m(V) = mafl,zp;(y)(z) for any
simple probability v with support included in [an, bn].

If we consider the interval [a,, bs], by step 1°, we get two continuous
functions on [an, by], o, positive with o, (an) = ar,(bn) = 1 and ¢, strictly
increasing with ¢/,(a,) = 0, ¢, (b,) = 1 such that m(v) = my, 4 (v) for
any simple probability v with support included in [a,, b,). Now, let C™
@ tr

’ y Q1 =
spy+t
p(sy, +t)a,, with p # 0 and gt # rs (referred, for short and only in this
proof, as to rational transforms of (a},})), such that there is a rational
transform of (', ¢l,), say (a,¢}), for which (a3, ¢7) I[a1,b1l = (af,¥?).
We prove that Npen C™ # ¢. First, we show that C™ can be identified
with a subset of IR?. In fact, each element of C™ can be obtained by
fixing a quintuple (p/,¢', 7, s',t') with p’ # 0, ¢'t' # r's’ and s'¢], + 1’ #0
on [an, by], related to a rational transform of (ay,, ¢y ), and determining
(p,q,7,8,t) with p # 0, gt # rs and sp} +1 # 0 on (a1, b1] such that

be the set of transforms of (af,¢}) of the type p] =

@) datr_dent .

— : C Skl talzls/i_-'_i_t/a/
sol +t s+t .;-.I.)( #1+) b plsen ) "

®f (o, ¢’) is a pair of continuous functions defined on [a,b] C J, & nonvanishing, @’
strictly monotone and Supp(v) C [a,b], by my () we denote the (o, ¢)-mean of v
with respect to any continuous extension (a,y) of (o/,¢") to J, with o nonvanishing
and ¢ strictly monotone. - . .
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on [ay,b;]. Moreover, if (p',¢’,7’, s',t') determines a rational transform of
1
(o, ), then (;p’ ,Yq  yr!, s’ ,'yt’) determines the same transform for

any v # 0. So that we can restrict our attention to quintuples of the type

(p',q',7',s',1) and the constraints reduce to p’ # 0, ¢’ # r's’ and s’ > —1.
It is easy to show that if we impose (2) for the reals a; and b; only,

a solution of the problem related to (p/,q’,7’,s’,1) must be of the type

1
p= ;P’(Slﬁpﬁ(al) + Doy, (a;)

¢ (an(b1) ¢ (b1) — ap(a1)) (a1)) + (o (by) — o7, (a1))
s'ay (a1)pr,(a1) + o, (a1)

g="
(3) — AR
s'pp(a1) +1
1 1, ! b !
s— ( +S/907( 1) a,n(bl) B 1)
1+s (Pn(al) an(a‘l)

t=r

with vy # 0. Consequently, if a solution exists, it is determinate by (3).
In order to verify that a solution exists for any feasible (p’,¢’,7’,s’,1),
let (a,¢%) be a rational transform of (al,¢!). By 4.1 (ii), we get
mgx ox (V) = my o (v) for any simple probability v with support in-
cluded in [an,bs| and hence m(v) = Mgy 3 (v) = My o (v) for any sim-
ple probability v with support included in [a;, b;]. Then, by 4.1 (i), there
is a rational transform (af,¢}) of (af,y}) such that (aX,e?) |[a,1,b1] =
(o, 1)

Since the quintuple (p,q,r,s,t) in (3) determines the same transform
of (o, p}) for any v # 0, we can conclude that, given a rational trans-
form of (o, ¢.,) determined by (p',¢’,7',s',1), we find a unique rational
transform of (&}, ¢}) such that (2) holds and this transform is determined
by (3) with ¢t = v = 1. It follows that C™ can be identified with the set
fn({(p’,q’,'r’,s’) € ]R4|p’ #0,¢ #r's', s > —1}) where f,, is the vector
function whose components p,, g,, T, S, are given by the first four ex-
pressions of (3), with vy = 1. It is easy to verify that the image considered
above is the set (IR — {0}) x R x R X |s,,, 5,[ N {(p, g, 7, 5) € R*|q # rs},
where

Sn= lim Sn(pl,ql’rl,sl) — 1- (p;z(bl) aiz(bl) -1
o'==1 1 -y (a1) o (a1)
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and

r.(b (b
5, = lim s,(p,q,7',8') = ('D,"( ) af( )y,
s/ =oo h(a1) op(an)

Consequently, in order to prove that N,eny C™ # ¢, we have to show
that Npen S, 8n[ # ¢. This can be achieved by following the argument
outlined in [3] p. 1074, observing that the symbols h ,,, h,, in [3] are related
t0 8n, 8, via s, =h,—1and 5, = h, — 1.

Now, let (af,¢}) € Nuen C™. By 4.1 (i), m(v) = my  (v) =
mg: .+ (v) for any simple probability v with support included in la1, by].
Moreover, since (af,¢}) € C®, there is a rational transform (a3},¢3)
of (og,5) such that (a3, @5)|,, 0y = (af, 1) and, by 4.1 (ii), we
have m(v) = m,, Y%(V) = Mgy 42 (v) for any simple probability v with
support included in [ag,b]. With respect to the next interval, since
(af,t) € C¥, there is a rational transform (3, ¢3) of (a4, ¢4) such that
(ax,¥%) |[a1’b1] = (a}, ). On the other hand, for any simple probability v
with support included in [a, bo], we have m(v) = Moy s () = My, o (V).
Then, by 4.1 (i), there is a rational trasnform of (af,¢}) l[az,b2]’
say (of, %) '[az,bz]’ such that (af, %) |[a2‘b2]’: (a3,¢3) and hence
(03, ¥3) |[a1_b1] = (af, ¢4) |[a1,b1]' It follows that the two transforms are

equal. Consequently, (a3, ©}) |[a2’b2] = (a3,3) and m(v) = myy 4 (V) =
m,: ,x (v) for any simple probability » with support included in [a3, b3).
The claim remains now proved by induction.

In this way, we get two continuous functions on J, o nonvanishing
and ¢ strictly monotone, such that « |[an,bn] = o) and ¢ |[an,bn] = ¢}, for
all n.

Since p is an arbitrary simple probability, then Supp(u) C [ay, by] for
some n and hence

o) = 7 (LEE0) — gt (122 ) = e 1) = ml).

3° Let u be an arbitrary simple mass. By POlnv, we get m(y) =
m(ﬁ) and hence, by the previous step (/||| is a simple probability),
!

m(p) = My, (/|| pll) = Ma ().
Consequently, we obtain (i), on noting that, by 4.1 (i), « and ¢ are

unique up to suitable transformations.
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(i) == (vi) Plainly, the statement Cons + POInv holds. Let
pi,vy € 8, with ||l = [l and mg o (11) = mge(v1). Moreover,
let h = L2
fadl/]_

_ B o
get My, (H1p) = May (V1mu) for any p € S; hence PWAs

Given 8 # 0,1, by straightforward calculation, we

holds. Let (u,) be a sequence of simple masses such that u, —4p and
Supp(ps) C |a, b] for all n and for some a,b € J. Since  and oy are con-
tinuous real functions, by Theorem AP.1 of [7], we have [ adp, — [adp
Jopdun _ Japdu By the
cdpy, Jadu
continuity of ¢!, we get Mg (@) — Ma (1) and hence CCn holds.
Finally, we prove the last statement of the theorem. By 3.3, we get
PMMon. By 4.2, we get SInt and hence, by 3.2 (vii), the property Int.
Consequently, by 3.2 (iv), the property Place holds. Easily, we obtain
TCn. a

and [ apdu, — [ apdu. Consequently,

5 — Axiomatic treatment of («, p)-means on M,

In this section, by some collections of basic properties, we give min-
imal axiomatic systems characterizing the (o, ¢)-means in the compact
support masses setting.

The next theorem states that a real functional on compact support
masses that satisfy the property of partial omo-invariance is a (o, p)-mean
whenever it satisfy “partial weak associativity, conditioned continuity and
weak internality (strict or not)”. Moreover, partial omo-invariant means
on compact support masses are (o, )-means whenever they satisfy “par-
tial weak associativity and conditioned continuity” or “partial substitu-
tion independence, partial betweenness and conditioned continuity”. We
note that we must add the conditioned continuity property in (ii) + (vii)
of 4.3, in order to get collections of basic properties assuring the integral
representation of means in the compact support masses setting.

THEOREM 5.1. Let M = M, and m a real functional on M. Then
the following statements are equivalent:

(i) There are two continuous real functions o and ¢ on J, o
nonvanishing and @ strictly monotone, such that m = mg .
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Moreover, if a*,¢* are such that m = Mg~ ,« on M, then

there are p,q,T,s,t, with qt # rs and p # 0 such that p* =
qgp+r

s+t
(i) POInv + PWAs + WiInt + CCn;
(iii) POInv + PWAs + WSInt + CCn;
(iv) Cons + POInv + PWAs + CCn;
(v) Cons + POInv + PSInd + PBet + CCn.
Moreover, RMon + PMMon + Int + SInt + Cnc + WCCn +
TCn + Place holds whenever any one of the previous collections of basic
properties holds.

and o* = p(sp + t)o;

PROOF. By 3.2 (v), (ix), (iii), (vi) and 3.4, easily follows that (ii) +
(iv) are pairwise equivalent. Moreover, by 3.5, (iv) <= (v). Therefore,
we prove that (iv) <= (i).

(iv) = (i) Let m’ = m|s. Then, by 4.3, there are two continuous
real functions a and ¢ on J, a nonvanishing and ¢ strictly monotone,
such that m’ = m,, on S. Now, we verify that m = m, , on M.. Given
€ M., let a,b € J such that Supp(p) C [a,b]. Then there is a sequence
(14,,) of simple masses with Supp(u,,) C [a, b] for all n, such that p, —q p
(see Theorem 4.22 in [5]). By CCn, we have m(p,) = mq,,(pn) — m(p).
On the other hand, since @ and ay are continuous functions, we have
that [adu, — [adp and [ apdu, — [apdy (see Theorem AP.1 in
[7]) and hence, by the continuity of ¢~ 1,

Therefore, m(u) = m, ,(p). Consequently, we obtain (i), on noting
that, by 4.1 (i), @ and ¢ are unique up to suitable transformations.

(i) = (iv) The statement Cons + POInv + PWAs follows from
4.3. The property CCn follows from the continuity of «, ayp and ¢t if
we apply, as above, Theorem AP.1 in [7].

Now, we prove the last statement of the theorem. By 3.3, we have
RMon + PMMon. By 4.2, we have SInt and hence, by 3.2 (vii), (ix), we
get Int + WCCn. Consequently, by 3.2 (iii), (iv), the statement Cnc +
Place holds. Finally, the proof of T'Cn is obvious. O
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6 — Axiomatic treatment of (o, ¢)-means on M D M,

In this section, by some collections of basic properties, we give mini-
mal axiomatic systems characterizing the (a, ¢)-means on a set of masses
M such that M, C M.

First, we show that if M, C M and m is a real functional on M
verifying TCn + Place such that m|y, is an (, p)-mean, then, in general,
the integral representation may be extended only to a suitable proper
subset of M. For this, given a continuous real function ¢ on J, we denote
by M, the set of masses p with |[ulla # 0 such that « is improperly
S-integrable with respect to p.

THEOREM 6.1. Let M, C M and m a real functional on M. In
the following, (i) + (v) are pairwise equivalent; moreover, we get (i)
whenever one of the statements (ii) + (v) holds.

(i) There are two continuous real functions a and ¢ on J, o
nonvanishing and @ strictly monotone, such that m = mq,,
on M N M,. Moreover, if a*,p* are such that m = Mg+ o
on M O M,«, then there are p,q,T,s,t, with gt # 78 and

p # 0, such that ¢* = ZZ;::, a* = p(sp + t)a and further
MNM,=MNMu;

(ii) POInv + PWAs + Wint + CCn + TCn + Place;

(iii) POInv + PWAs + WSInt + CCn + TCn + Place;

(iv) Cons + POInv + PWAs + CCn + TCn + Place;

(v) Cons + POInv + PSInd + PBet + CCn + TCn + Place.

PROOF. Since the collections of basic properties (i) + (v) with-
out TCn + Place are related with the functional in the compact sup-
port masses setting, by 5.1, they are pairwise equivalent. Consequently,
(ii) + (v) are equivalent as well. Therefore, we prove (iv) = (i). Since
M, C M, by 5.1, there are two continuous real functions a and cp onJ, o
nonvanishing and ¢ strictly monotone, such that m = m, , on M.. Now,
we verify that m = m,, on M NM,. Let p € M N M,. Since pl*¥ € M,



[17] On the axiomatic treatment of the (a, p)-mean 527

for any z < y, by TCn, we get

m(,u[z,y]) — im ma'¢(M[x’y]) = m(»u’) .

(z,y)—(j0,41) (z,y)—(d0,91)

Consequently, by Place and the continuity of ¢, we have

fasodu[zay]
1 Japdp®™ |
(z’y)_l’lgodl) fadl[,[zvy] SO(rrl('u‘))

On nothing that

(4) Japdued S iy opdpt™ 5 fuy opdp
[adyl=yl — Sf[w,y]adu[-'”ryl - Sf[z,y]adu

(the former equality follows from Theorem 3.13 in [5] and the latter one
easily follows by the definition of S-integral), we get

S f[w] apdp
lim _— =
(@)= God1) S [y dp

(5) p(m(p)) .

Since u € M, « is improperly S-integrable with respect to p, i.e.

(mvy)_'(jOyjl

lim )S/adu:/adyyéo.
[’y]

Consequently, by (5), the limit

S / apdy

[z,y]

1m
(z,y)—(Jo,d1)

exists and is finite. Therefore, a is improperly S-integrable with respect
to p and, by (5), we get

S feyopde  [apdp
li [z,9] — — olm .
(w,y)i’r(r}o,jl) S f[z’y] adyp fOld/_L CP( (IJ‘))

- Consequently, m(p) = m,,(#) and hence we have the first part
of the thesis. To get the second part, it suffices to note that M. C
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M N M, N M,. Then, by 4.1 (i), there are p,q,7,s,t, with gt # rs and
+r

p # 0, such that p* = Z(:; o and o = p(sp + t)a. Now, we prove that

MNM, = MNMg. Let p € MNM,. Since m = m,,, on MNM,, & and

aup are improperly S-integrable with respect to p and hence p € MNMg,

on nothing that o* is a linear combination of a and ayp. The converse

inclusion follows by a similar argument. Hence, we obtain (i). g

The previous theorem shows that the collections of basic properties
(ii) + (v) are not sufficient to get the integral representation for means
defined on an arbitrary set of masses including M,. In order to prove that
it is sufficient to replace CCn by Cn to get the desired representation, we
start with the following lemma.

LEMMA 6.2. Let M, C M and m a real functional on M such
that Cn holds. Moreover, let a and ¢ be continuous functions on J, o
nonvanishing and ¢ strictly monotone, such that m = m, , on M,. Then
a and ap are bounded functions.

PROOF. By reductio ad absurdum, assume that o is unbounded. For
instance, let sup aljjo,s) = 00 for all . Then there is a sequence (zn)
such that a(z,) > 2" for all n and =, — jo. Given a € J, consider the
following sequence of simple masses:

fy = (1— ;11-)1a+ %1%.

Plainly, g, —41, and hence, by Cn, m(u,)— m(1,). Since
n, 1, € M., we have:

(1 - %)a(a)go(a) + %a(xn)(p(wn))

m(p,) = mg ,(pn) = (P—l
g ( (1- %)a(a) + %a(xn)

m(1,) = mg,(ld) =a.

Consequently, by the continuity of ¢, p(m(u,)) — ¢(a). On the

o(2n) > % and hence 2% _, oo, It follows
n

other hand, we have
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that

 (1-2)ela)ela) + aledpl@)
wla) = n}—lg-loo 7(1 1 5 = lim ¢(z,).

1- —ﬁ)a(a) + %a(zn) noree

Therefore, nli’g_lwtp(m(un)) = mli_r'leo o(z) € o(J) and this is a contra-
diction, since ¢ is strictly monotone. A similar argument works in the
other cases. This proves that « is bounded.

Now, we prove that ay is bounded. By reductio ad absurdum, as-
sume that ay is unbounded. For instance, let sup(ay)|(s,j;[ = +oo for all
z. Then there is a sequence (z,) such that a(z,)p(z,) > 2" for all n and
z, — j;. If we consider u, as above, by Cn, we get p(m(u,)) — ¢(a).

1
On the other hand, since « is bounded and ;a(xn)go(acn) — 400, we get

(1= D al@el@ + ~alz)p()
v(a) = lim I 1 =00

n=+oco 1 1
* (1 - g)a(ab) + ~a(z,)

and this is a contradiction. A similar argument works in the other cases.
This proves the thesis. O
Now, we give a sufficient condition for improper S-integrability. In

y
what follows, we denote by RS [ f dF,, the Riemann-Stieltjes integral of
f with respect to F,, over [z,y].

~ LEMMA 6.3. Let f be a continuous nonvanishing real function on
J. Then the following two statements are equivalent:

(i)  the smproper S-integral [ f du exists;
Yy
(i) the limit  lim RS [ fdF, ezists and is finite.

(I)y)'_’(j():jl)
Moreover, whenever any one of the previous statements holds, we

have

Y
/fdu=( lim )RS/deu.
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PROOF. Since f is continuous nonvanishing, f has constant sign on
J. Now, we may follow the proof of Theorem AP.3 in 7. O

LEMMA 6.4. Let f be a bounded continuous monvanishing real
function on J. Then f is improperly S-integrable with respect to any
mass ph.

PROOF. Given a mass p, let G = F, — F,(j¢). Since G is a distribu-
tion function, there is a tight mass pg such that the distribution function
corresponding to pg is G (see Theorem 3.3 in [6]). Since f is bounded
continuous and pg is tight, by Corollary 3.17 in [5], f is improperly S-
integrable with respect to pg. Consequently, by 6.3, the limit

(zvy)—’(j())jl)

y
lim RS/fdG

Yy Yy
exists and is finite. Now, since RS [ fdF, = RS [ f dG for any z,Y, by
6.3, f is improperly S-integrable with respect to ; a

The next theorem is the characterization theorem for (a,)-means
on a set of masses including all compact support masses. It states that, in
this context, a real functional that satisfy the properties of partial omo-
invariance, continuity, truncation continuity and placement is an (o, p)-
mean whenever it satisfy “partial weak associativity and weak internality
(strict or not)” or “consistency and partial weak associativity” or “con-
sistency, partial substitution independence and partial betweenness”. We
point out that we must add the properties of continuity, truncation conti-
nuity and placement in (ii) + (v) of 5.1, in order to get collections of basic
properties assuring the integral representation of means in this setting.

THEOREM 6.5. Let M, C M and m a real functional on M. Then
the following statements are equivalent:

(i) There are two continuous real functions o and ¢ on J, a
nonwvanishing and @ strictly monotone, such that o and ayp
are bounded and m = m, ,. Moreover, if &*,¢™ are such that
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m = Mgy« ,+ on M, then there are p,q,r,s,t, with gt # rs

and p # 0, such that p* = ZSO i;

(ii) POInv + PWAs + WInt + Cn + TCn + Place;
(i) POInv + PWAs + WSInt + Cn + TCn + Place;
(iv) Cons + POInv + PWAs + Cn + TCn + Place;

(v) Cons + POInv + PSInd + PBet + Cn + TCn + Place.
Moreover, RMon + PMMon + Int + Cnc + CCn 4+ WCCn follows
from any one of the previous collections of basic properties.

and o* = p(sp + t)a;

PROOF. First, we observe that the collections of basic properties
(ii) + (v), with CCn and without Cn + TCn + Place, are related with
the functional in the compact support masses setting and hence, by 5.1,
they are equivalent. Consequently (ii) + (v) are equivalent, as well, on
nothing that, by 3.2 (xii), Cn = CCn holds. Therefore, we prove
(iv) <= (i).

(iv) = (i) Since M, C M and Cn = CCn, by 5.1, there
are two continuous real functions « and ¢ on J, a nonvanishing and ¢
strictly monotone, such that m = m,, on M,. Now, we verify that
m=m,, on M. Let p € M. If we follow the first part of the proof of
the corresponding implication in 6.1, we get

S f[z‘,y] ap d'UJ

lim — olm ‘
(z,9)— (Jo,1) Sf[m,y]ad“ p(m(p))

(6)

Since, by 6.2, « is bounded, by 6.4, « is improperly S-integrable with
respect to u. Consequently, by (6), ay is improperly S-integrable and we
get

Sfeyordr  [apdy
lim [=.y] = =o(m .
(z,y)—(j0,51) Sf[:z:,y] (07 d'U/ fad,Uo (p( (,J,))

Consequently, m(p) = m, (1) and hence we obtain (i), on noting
that, by 4.1 (i), @ and ¢ are unique up to suitable transformations.

(i) = (iv) By definition, m,,(p) € J and hence Place holds.
By 4.3, we have Cons + POInv + PWAs. We verify that Cn holds.
Let pp, —qp, pu, € S for all n, p € M,. Plainly, we have [apdy, =
S [apdp, and [ady, = S [ ady, for all n. Since p is a tight mass
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and a, ap are bounded continuous functions, o and o are S-integrable
and improperly S-integrable, moreover [apdy =S [apdupand [ady =
S [ ady (see Corollary 3.17 in [5]). Now, the implication follows on noting
that, for tight masses, convergence in distribution and weak convergence
are equivalent notions (see Corollary 4.13 in [6]). Finally, we get TCn

i dpE
on noting that, for any u € M, the equality = lim Japdu _
(@) —God) [ adulvl

d

———ffaf 7 £ follows from (4) and the existence of the improper S-integrals of
"

a and ap. d

We complete the proof verifying the last statement of the theorem.
By 3.3, we have RMon + PMMon. By 3.2 (xii) we have CCn and hence,
by 3.2 (ix), WCCn. Moreover, by 3.2 (iii), we get Cnc. Finally, Int holds
(see Corollary 3 in [3]). a

REMARK. If M, C M C M,, m is a real functional on M and we
assume any one of the previous collections of basic properties, then, by
4.2, we have Slnt.

We conclude observing that the properties of weak associativity, sub-
stitution independence, betweenness and continuity, stated for simple
masses in the axiomatic systems, hold for any mass in M. Thus it is
sufficient to require these properties to hold for simple masses in order
for them to hold on M.
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