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Uniqueness and representation theorems for

solutions of Kolmogorov-Fokker-Planck equations

SERGIO POLIDORO

RIASSUNTO: Si considerano operatori parabolici degeneri del tipo sequente
L = div(A(z,t)D) + (z, BD) — &,

ove B é una matrice costante, A(z) = AT(2) > 0. Adattando un metodo noto per
gli operatori parabolici classici, basato sostanzialmente su precise stime puntuali della
solizione fondamentale di L, si dimostra che se u é soluzione di Lu = 0 in ]RNX]O,T[
e u(z,0) = 0, allora una qualunque delle sequenti condizioni: |u(z,t)| si maggiora con
una funzione del tipo e°'”|2, oppure u > 0, implica u = 0.

Vengono inoltre forniti un risultato di rappresentazione ed un teorema di tipo Fatou
per le soluzioni non negative di Lu = 0 in R" x]0, T|.

ABSTRACT: We consider a class of ultraparabolic operators of the following type
L = div(A(x,t)D) + {z, BD) — 0,

where B is a constant matriz, A(z) = AT(z) > 0. We show that if u is a solution of
Lu = 0 on RV x]0, T[ and u(x,0) = 0, then each of the following conditions: [u(z,t)|
can be bounded (in some sense) by e°'”|2, oru > 0, implies u =0. We use a technique
which is well known in the classic parabolic case and which relies on some pointwise

estimates of the fundamental solution of L.
Next, we prove a representation theorem and a Fatou type theorem for non-negative

solutions of Lu = 0 in RN x]0,T[.
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1 — Introduction and main results

We consider a class of degenerate second order parabolic operators
of the following type

(1.1) L = div(A(z)D) + (z, BD) — &,

where z = (z,t) € R"*!, div(+), D = (84, .-, ) and (-, -) denote
the divergence, the gradient and the inner product in IR", respectively.
In (1.1), B = (b;;) denotes an N x N matrix with constant real entries
and A(z) = (a;(2)), ;- is @ non-negative symmetric matrix for any
2 e RN*L.

The interest for the equation (1.1) comes from the fact that it arises in
studying diffusion processes from a probabilistic point of view. Equations
like (1.1) also appear in describing the brownian motion of a particle in
a fluid (see [12]).

In this note we shall always assume that

HypoTHESIS H.1. For some basis in RY, A(z) and B can be writ-
ten as

0 B, 0 0
0 0 B, 0
A
(1.2) A(z)=( Oéz) é)) B=|: i i .o
’ 0 0 0 .. B,
0 0 0 ... 0,

where each B; is a pj—1 X p; block matriz of rank p;,j = 1,2,...,r, with
Po>p1 > ... 2P 21 and po +py+ ... + p, = N. Moreover, there exists
>0 such that

pHER < (Ao(2)€,€) < plél?
for every & € R and for every z € RNT1.

An important consequence of Hypothesis H.1 is that it ensures that
the “frozen” operator

(1.3) L;u = div(A(¢)Du) + (z, BDu) — d,u,
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is hypoelliptic, for every ¢ € R¥*! (as we will clarify in Section 2, Theo-
rem 2.1). Later on we will introduce further hypotheses on the operator L.

In this paper we prove some uniqueness results for the Cauchy prob-
lem related to L, that extend the classic parabolic ones (see [4], [1], [2],
[14]) and rely on some pointwise estimates of the fundamental solution I'
of L, recently proved in [8] and [9], under a few regularity conditions on
the coeflicients of A(z).

We recall that our method was already used by Scornazzani in ’82
[11] for the Kolmogorov operator in R*: L = 8, (a(z,y,t)8;) + 0y — &},
which is a prototype of the operators (1.1).

We emphasize that our uniqueness classes are the same classes Ty-
chonov found for the heat equation Au = u, (see [14]). Indeed, in Sec-
tion 3 we prove that if u is a solution of Lu = 0 in S; = R" x]0,T[ and
u(z,0) = 0, then each of the following conditions:

/|u(a:,t)|e'°|“”|2d:vdt < 00
Sr

(Theorem 3.1), or u > 0 (Theorem 3.2) implies u = 0.

Since our results apply to parabolic operators, the Tychonov example
[14] shows that the growth condition allowed in Theorem 3.1 cannot be
improved.

In Section 4 we show that, if u is a non-negative solution of (1.1) in
S;, then there exists a Borel measure p > 0 such that

(14) u(z,) = [ i, t€,0dp(e),

where I' denotes the fundamental solution of L. We denote by ¢(z)dz the
density of the absolutely continuous part of p with respect the Lebesgue
measure. Then, using a method introduced by Kato [4], we prove that

(1.5 lip u(e,t) = e(a),

for almost every z € IR". More precisely, we first prove a covering result
of Vitali type (Lemma 4.1), corresponding to a family of “boxes” suitably
related to the natural geometry of the operator L in (1.1). Then we show
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that (1.5) holds for every point in IRY which is a Lebesgue point for the
function ¢ with respect to the above family of boxes (see Theorem 4.1).

Finally, we obtain a further uniqueness result for non-negative so-
lutions of Lu = 0 in Sy such that tl_i)r&_ u(+,t) = p in the measure sense

(Corollary 4.1).
Now, we complete the list of the hypotheses on the operator L.

HypoTHESIS H.2.  There exists the fundamental solution I' of L,
with the following usual properties: '
i) For every function ¢ € Co(IRYN) we have

(1.6) tl—lg}l- / I(z,ty, s)e(y)dy = ¢(z) vz € RY,

RN

ii) if we denote by I'* the fundamental solution of the adjoint operator
L*, then

(1.7) I'*(z;w) = w; 2).

HypoTHESIS H.3. There ezists a positive constant A > 0 such that,
if we denote by I'" and I'", respectively, the fundamental solutions of

L+ = AAPO + (.T,BD) - 3,3,

and
L™ = )\‘IA,,O + (z, BD) — 0},

then for every T' > 0 there exist two positive constants ¢*,c” such that:
¢ T7(2,¢) <T(2,¢) < c'T7(2,()

< (z0)
\/t_—_”: Z,C

for every z,{ € RM*1,0<t—7<T and for anyi=1,...,po.

(1.8)

8:,T(2,0)| <
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REMARK 1.1. Hypotheses H.2 and H.3 are fulfilled if, for every
bounded interval I C IR, the coefficients a; ;(2) and their first derivatives
0z,a;5,1 < 1,7 < po satisfies on S; = RY x I a uniformly Hélder continu-
ity condition related to the geometry associated to the operator L. For
the precise statement of these results see [8], Theorem 1.1, Corollary 2.5,
Proposition 4.1, Lemma 2.2 and Main Theorem of [9].

REMARK 1.2. Here and in the sequel, when we say that “a func-
tion wu is a solution of Lu = 0”, we implicitly mean that each derivative
Op,u, 02 . u(l1 <1i,j <po),Yu= (x,BDu)— d,u exists and is a continu-

’ T4 Tj

ous function.

Estimates (1.8) are meaningful, since we can write explicitly the fun-
damental solutions I'" and I'~, as next section shows.

2 — Some known results

We first recall some results proved in [5] regarding operators (1.1)
with constant A = A(z).

THEOREM 2.1. Let A= A(z) in (1.1) be a constant matriz, and set

(2.1) E(t) = exp(—tBT)  C(t) = / E(s)AET (s)ds.

Then:
i) the operator L is invariant with respect to the left translations of the

group (IRN "'1,0), where “o” is defined as

(2.2) (z,8)0 (£,7) = + E()z, t+7), (z,1),(¢,7) € RV
In particular we have

(23)  T(z;¢)=T(('oz0) =T oz) Yz, R, z#(;

ii) Hypothesis H.1 implies the hypoellipticity of L, and the hypoellipticity
of L is equivalent to the following condition

(2.4) Ct)>0  for every t>0;
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iii) Hypothesis H.1 implies that the operator L commutes with the dilation
group (D(X),A?)) 5o, where

(2.5) D) = diag(ALyg, NIy, ... , A7 1L,).

Po»

The integers p; are the same as in Hypothesis H.1 (whence po > p1 2
>pr>landpo+pi+...+p.=N);
iv) the following identities hold
1

(26)  E(Nt) = DVE®X)D (X) .o 02) = DNCHDO),

for every t,A > 0;
v) the fundamental solution I" of L 1is

(27)  T(at) = ti% exp (—% <C'(1)D (2}7) z,D (%) z >) ,

where Q = po + 3p1 + ... + (27 + 1)p, is the homogeneous dimension
of RN with respect to D(X).

We end this section with some results which we only state, since the
proof is similar to the one in the classic parabolic case.

MAXIMUM PRINCIPLE. If Lu > 0 on S; = R" x]0,T[ and if

limsup u(z,t) <0 Yz, € RY,
(z,t)—v(z:o,O)

lim sup (sup u(z,t)) <0,

|z]—o00 tel

then u < 0 on S;.

A PRIORI INTERIOR ESTIMATES. Let Q) be an open subset of RN
Denote by 0 one of the following derivatives: azi,agi,m‘,y = (z,BD) -

0,,1 < 4,7 < po. Then, for every compact subset K of Q2 there ezists a
positive constant ¢ such that

(2.8) sup |0u| < csup |ul
K K

for every solution u of Lu =0 in Q.
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3 — Uniqueness results

The main purpose of this section is the proof of the following results
THEOREM 3.1. Let u € C(S}) be a solution of the Cauchy problem

Lu=0  in 8
(3.1) { u in St

u(-,0) = 0.

If there exists a positive constant ¢ such that

(3.2) /e"°|z|2|u(:1:,t)|dm dt < oo,

Sr

then u =0 in S;.

THEOREM 3.2. Let u € C(S}) be a solution of the Cauchy problem

Lu=0 m Sy,
(3.1) { U St

u(+,0) =0.
Ifu>0, thenu=0 inS|.
We start by proving the following

LEMMA 3.1. Let C be a N x N, symmetric, positive, constant
matriz, and let z = (z,t) be a point of RN, Then there ezist a positive
constant cy, depending only on the matrices B and C, and a positive
constant R = R(x) such that

(3.3)

for every (€,5) € By(2)x]0,1[= (R¥\Bg(z))x]0,1[, where Br(z) is the
(Euclidean) sphere of center z and radius R.
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PROOF. Put _
=ET(1)CE(1),
_ 1
1=D (z) (€= E(-s)a).
It follows from the first identity in (2.6) that
(Cnym) = (C7,7),

while (2.5) gives

(Ciryi) = clil’ 2 SJe —~ B(=s)al’ > (] - |B(=s)2])"
This proves Lemma 3.1, if we set co = ¢/4 and

R >2 sup |E(-s)z|.

0<s<1

PROOF OF THEOREM 3.1. Let ¢ a nonincreasing C*(IR) function
such that p(t) =0fort > 2, p(t) =1fort <1 FixT € R" and set, for
every R>0

(3.4 ha@) =0 ()
Note that

supp(a;hr) C B2r(Z)\Br(Z),

for every i = 1,..., N, thus [Yh r| < ¢, for every R > 0. As a consequence
L*hg is a bounded function, uniformly with respect to R > 1.

Next fix § €]0,T],6 < 1 and denote by S7 the set RY x]0, 6. Starting
from the Green’s identity, we obtain with standard arguments that

(3.5)  u(z) = ] ( / (FL*hR+2<A(§,T)Dr,DhR))u(g,T)dzg)dT,

By(2)
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for every z = (%,%) € S}, where By(Z) = RV\Bg(z). Using the upper
bounds in (1.8) and applying Lemma 3.1 to the matrix C*(1) associated
to the operator L*, and defined in (2.1), we deduce from the identity
(3.5) that

o < | ([ (+g=)rr@ene i )ar <

B, (z)
<c j( /_ -7 _%ﬂexp( 04(11&2 ))Iu §,T)|d§)d'r

for every R > R(Z). Now put § = min {f2,1} (where c is the constant ap-

_Qy1
pearing in (3.2)). Since the function (¢,7) — (£—7) # exp ( Co nglzT))
is bounded on By(Z) x I, uniformly in R > R(Z), we have

(3.6) u@l e [ ([ e lue nldg )ar

0 BR(2)

On the other hand condition (3.2) implies

t

(3.7) lim (/e“°|5|2|u(§,¢)|d§>d7=

R—o00
0 BL@)

then u(z) = 0 for every z € 5.
Theorem 3.1 follows by iterating the previous argument, since 6 de-
pends only on the constant ¢ in (3.2) and on the operator L.

As a simple consequence of Hypothesis H.3 and Theorem 3.1 we de-
rive the following

COROLLARY 3.1 - Reproduction property. If ' denotes the funda-
mental solution of L, then

I(z,t;§,7) = /F(rv,t;y,S)F(y,S;f,T)dy
]R.N

for every 7 < s < t and for every z,£ € R".
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LEMMA 3.2. Let u € C(S;) be a nonnegative solution of Lu = 0.
Then

(3.8) u@) 2 [ T(6 (e, i,
RN ,

for every z = (z,t) € St and for every T € I, 7 < t.

PRrROOF. Let 7 € I, 7 < t and define, for every n € IN, h,(§) = ¢ (15')

(see (3.4)), B
fa(&,7) = ha(§u(é, 7)

and
(39) Un(zir) = [ T(zi6m)fal6 7)d

Then LU,(-;7) = 0 in R x]7,T[ and

lim Uz, t;7) = fuly,7) < uly,7)

(z,t)—'(y,‘r)

for every y € IRY. On the other hand, using the upper bound (1.8) of T,
we get

0<Un(sir) St [ T(a6m)hale ).
RN
Then, since f, is a bounded function with compact support, we easily
obtain from the explicit expression of 't that

lim ( sup U,(z,t; T)) =0.

[z]—00 \ r<t<T
Hence, the maximum principle, gives
(3.10) 0 < Un(z,7) < ul(2)

for every z € IR" x|7, T[. Moreover, being the sequence (f,) increasing,
the function

(3.11) U(z,7) = lim U,(z,71),

n—o0
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is well defined and, by the monotone convergence theorem, U (z,7) <
u(z). This completes the proof of Lemma 3.2.

COROLLARY 3.2. Let u€ C(S;) be a nonnegative solution of Lu=0.
Then the following integral

[ a6, 0)ute, 0)d
RN

converges for every (z,t) € S;. Moreover

lim P(m,t,f,O)u(f,O)d& = U(I)O)

t—0+
RN

for every x € RY.

PROOF. The first assertion follows from (3.8). To study the second
one, we note that, for every z € RY , and for every n > |z| + 1, we have

Jim [ Do, t5€,0)f(&,0)de = fu(2,0) = u(a,0),
RN

where (f,) is the sequence introduced in the proof of the previous Lemma.
On the other hand

0< lim / T(x,;€,0) [u(€,0) — fa(&,0)]de <
RV

< lim / T(z, &, 0)u(€, 0)d¢ <

— t—0+
RN\B(0,n)

<ct lim / T (x, €, 0)u(€, 0)dE = 0,

- t—0+
RN\ B(0,n)

since, for every k > 0, there exists § = §(k) > 0 such that the integrating
2 . .
function in the last term is bounded by e*¢l"y (¢, 0) uniformly in ¢ €10, 4]
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and such a function is integrable on R" for k big enough. Indeed, for
every to €]0,T'[ there exist two positive constants ky, k2 such that

/ e—k1|£|2u(§,0)d§ < koc™ /r-(o,to;g,o)u(g,o)dg <
312) -
(by (1.8)) <k / T(0, to; €, 0)u(£, 0)dE < kyu(0, o),

RN
where last inequality follows from Lemma 3.2.

PROOF OF THEOREM 3.2. Let u be a nonnegative solution of (3.1).
Fix s,t € I such that ¢ > s and note that constants k; and k; appearing in
(3.12) depend continuously on t, €]0, T[. Hence, integrating with respect
to 7 €]0, 5[, we obtain

u(0,t) > %/s ( / e'clglzu(E,T)df)dT

0 RN

for some positive constants ¢y, c depending only on ¢t and s. Then the
proof of Theorem 3.2 follows from Theorem 3.1.

We will obtain a first representation result from the interior a priori
estimates stated in the introduction. First we prove a preliminary result

PROPOSITION 3.1.  Let (un), . be a monotone increasing and lo-
cally bounded sequence such that Lu, = 0 in Si, for every n € IN. Then
the function u := sup u, is a solution of Lu =0 in S.

ProOF. We start by showing that the sequence u,, is locally equicon-
tinuous. Let K be a compact subset of S;. Being the Lie algebra gen-
erated by Oz, Oy Y = (z,BD) — 0 equal to RN, we can find a
bounded open set 2 such that K C @ C Q C Sy, two constants ¢(K) > 0
and « €]0, 1] such that the following condition holds:

for every pair of points z,{ € K, there exist a positive constant

§ < t(K)|z — ¢|* and a continuous and piecewise differentiable path

v:[0,6] =@ (0) =2 (8)=¢
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such that
Zc, s)e; + co(s)(BTv(s) — ens1),

for any s € [0, 6] at which ' is defined. Here |¢;(s)] <1 for 0 < j < pp
and e; = (0,...,1,...,0),1 < j < N + 1 (for the above result see [6]).
J

Then, denoting by D the gradient in IRV and using the interior a
priori estimates (2.8), we get

2 u(r(s))ds

S

<

uz) — ()] =]

IA

> o\en O\O’

|(Du((s)),7'(s))|ds <

< [ (S 10, uto)] + Y uta(s))])ds <

<6¢(Q) sup |u| < sup |ulc(Q)e(K)|z - ¢|%
Q Q

for every z,{ € K. Hence the sequence u, is equicontinuous, and it
converges uniformly on compact subsets of S;.

Next, again using the interior a priori estimates (2.8), it is clear that
Lu = 0, and Proposition 3.1 is proved.

PROPOSITION 3.2.  Let u € C(S;) be a nonnegative solution of
Lu=0 1 S;. Then

(313) u(z) = [ D6, 0)ule,0)d¢

PROOF. The sequence U, defined in (3.9) satisfies the hypotheses of
Proposition 3.1, then the function U, defined in (3.11), solves Lu = 0 in
Sr. Moreover, from (3.10) it follows that the function u(z) — U(z;0) is
nonnegative and from Corollary 3.2 we get u(z,0) = U(z,0;0) for every
z € IRY. Hence Theorem 3.2 provides the claim.
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4 — Representation and Fatou type results

In this section we shall prove the following

THEOREM 4.1.
(i) Let u be a nonnegative solution of Lu = 0 on Sy (I =]0,T[). Then
there exists a nonnegative Borel measure p such that

(4.1) / e~ dp(z) < oo,

RN

for some positive constant ¢, and

(42) u(z) = [ Dlzi€,0dp6)

for every z € Sy.

(ii) For every nonnegative Borel measure p verifying (4.1), there ezists
an interval I =]0,T| such that the function u defined in (4.2) is a
solution of Lu =0 on SJ.

(iii) Denote by ¢ the density of the absolutely continuous part of p (with
respect to the Lebesgue measure). Then

(4.3) lim u(z,t) = ¢(z)

t—0+4+

for almost every z € RN,

(iv)

(4.4) lim u(-,¢) =p

t—0+

in the measure sense.
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REMARK 4.1. Here and in the sequel, the expression “almost every”
will always understood “with respect to the Lebesgue measure”, denoted
by m.

PRrROOF. (i) Let u be a nonnegative solution of Lu = 0 in S;. Then
Proposition 3.2 gives

1 1 1 1

U (m,t—}— —) = / r (m,t-{- —;E,—) U (5, —) d€

n non n
RN

for every n € IN. As a consequence, using the lower bound in (1.8) it is

clear that, for every t, € I, there exist two positive constants c, ¢’ which
do not depend on n, such that

1
u(o,to+ 3) > [ 1 (o,to+1;£, l)u (5, —) d >
n N n n n
R

>¢ / o—clél®y, (g, %) dé>0

RN

1

Tig" Therefore the sequence of measures

for every n >

_ oclel? 1)1
n = e~ (&, ) de,

is bounded, thus, by the Frostman’s Selection Theorem, there exists a
nonnegative Borel measure p such that, up to a subsequence,
w
M — [

n—oo

In order to prove (4.2) we first observe that, as a consequence of Lemma
3.1 and of the upper bound in (1.8), there exist two constants M > c and
Ty € I such that

1 1
(4.5) r (m,t + —; ¢, —) < c(a:,t)e_M!£|2

non
for every (z,t) € RN x]0,Ti[ and £ € IR",n € IN; hence

lim [ e’T (z,t¢,0) (dua(€) — du(€)) = 0.
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Moreover, the sequence p, is bounded and

1 1) RV
ecl’r (a:,t+ =3¢, E) — eI (2,4;¢,0),

then we conclude that

2 1 2
@6) tim [ T (2,64 2562 ) dun(e) = [ 6T (@,8:,0)due)

n—»oo]RN o
for every (z, tz) € R" x [0, Ty[. This proves (4.2) in the strip RY x [0, T3],
with p = e°¢l" . Note that p satisfies (4.1).

Consider now a point (z,t) € Sy, with ¢ > Ty. For every 7 €]0,Ti[
we obtain from Proposition 3.2 and Corollary 3.1 that

u(e,t) = [ T(o b6 7)u(é, 7)de =

RN ’
= [r@ten( [ T )de = [ o tin,00d0(m),
RV RN RN
then the first assertion of Theorem 4.1 is proved.
(i3). First note that, as a consequence of (4.5), there exists T > 0 such
that the function
u(@,t) = [ T(@,t:60)dn(e)
RN
is defined and continuous on S; = RN x]0,T[. In order to show that such
a function is a solution of Lu = 0 we consider, for any n € IN and for
every € €]0, T, the Cauchy problem

(47) { Lv=0 in R"x]e, T,

v(z,€) = hp(z)u(z,€),
where h,, is the function defined in (3.4). Since the initial condition is a

continuous function with compact support, the solution v, . of problem
(4.7) can be written as

vne(,1) = / (2, t;€, ) ha(£)u(é, €)de.

RNV
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On the other hand Corollary 3.1 yields

[ T t€ Mha(Oule, ) <

< [ T g epule,e)de =

whence, for every € > 0(vn),en 1S @ monotone increasing and locally
bounded sequence. Then Proposition 3.1 implies that v. = lim v,
n—oo

is a solution of Lu = 0 in R" x|e,T[. Moreover, from the monotone
convergence theorem, it follows that v, = u in RY x]e, T'[, hence, being €
arbitrary, we obtain assertion (ii).

In order to prove (4.3) and (4.4) we shall need some results from
the Real Analysis, that are classic for the Euclidean geometry (see e.g.
[3]). Here, we shall suitably adapt these results to the natural geometry
related to every operator L, and we will give, for reader convenience, a
self contained presentation of these in our setting.

For every v € R", we define

(4.8) p(v);max{|vjl;1§j§N}

and, for every n € NU {0}, (z,t) € RN*',¢ > 0, we set

(49)  Cu(z,t) = {g eRY:p (D (%) (e- E(—t4’")m)) < 1} ,

Then the following Vitali Covering Lemma holds

LEMMA 4.1. For every finite family {C,...,Cr} of “bozes” of the
type (4.9) there ezists a disjoint subfamily {Ciyyoey Cik} such that

(4.10) m( th Cj> <3V Zk:m (C) -
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The proof of Lemma 4.1 is standard and it will be omitted.

LEMMA 4.2. Let s be a nonnegative Borel measure on RY and let
A C IRY be a Borel set such that s(A) = 0. Then

(4.11) lim < sup M) =0

t=0+ \ nenu{oy m (Cn(z, 1))
for almost every x € A.

PrOOF. Let a be a fixed positive constant, and put

Baz{zeA:Iimsup< sup M)>a}.

t—0+ \neNU{o} M (Cn(z,1))

Note that, being the function (z,¢,n) — s(Cp(z,t)) lower semicontinu-
ous, B, is a Borel set. Choose r €]0,1[ and let K be a compact subset of
B,. Then, for every x € K there exist ¢ €]0,7[ and n € IN such that

(4.12) s (Cp(z,t)) > a m(Cy(z,t)).

Note that, for every t > 0 and n € INU{0}, each point z € IR" belongs to
the open set z—E(—t4"")z+C,(z,t). By compactness, K is then covered

by a finite family {:cj — E(—t;47")z; + Cp,(z5,t;),1 < j < h:xjty,n;
verifying (4.12)}, so that Lemma 4.1 gives

m(K) <m (U (iL'j — E(-—-tjll_”j)([:j + an (:cj,tj))) <
k
S 3N Zm ("Eiz — E(—t—,;l4_nil)$il + Cnil (xil’t";l)) =

=3V im (an.t (%atiz)) .

Using relation (4.12), we thus obtain

(4.13) m(K) < %Zf: (Cny (@i ta)) < 33£S(K ),
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where K, = {:n € RY : dist(z, K) < p} and p(r) = O(y/7). Indeed, if
z=u, € K,t=t; €0,7r[n=n; € NU {0}, then

€ —z| < | = B(—t4™™)a|+|(I - B(-t47))z| <
<kVNt + |I - E(—=t4™™)|||z|

for every £ € C,(z,t). Moreover, from the definition of E(s) it directly
follows that there exists a positive constant ¢ such that ||I—E(—t4™") | <
ct for every t €]0,r[ and for every n € INU{0}. As a consequence |E—z| <
c'v/% for every & € Cy(z,t), for some positive constant ¢’ depending only
on K and c.

Therefore, since })iE’I(l) s(K,) = s(K) = 0, from (4.13), it follows that

m(K) = 0 for every compact subset K of B,. Hence m(B,) = 0, and
Lemma 4.2 is proved.

Consider the Lebesgue decomposition of p:

p=p+ts,

(4.14)
pLm slm,

and let ¢ be the density of u:

@ € LY(IRY), dp = pdm.

PROPOSITION 4.1.

1
4.15) lim sup —————
( ) 0+ <n€NLI,){0} m (Cr(z,t))

/ (Iw(f)—w(w)ld@rds(ﬁ))) =0

Cn(z,t)
for almost every x € R".

PROOF. We start by proving that

1
4.16) lim sup —————=
( ) t—0+ (nGNL?{D} m (Cn (CB, t))

/ ((90(5)—(P(w))d§+ds(§)>) =0

Cn(z,t)
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for almost every = € IR".
First consider the measure s. Being s | m, there exists a set B ¢ RV
such that s(B) = 0 and m(B’) = 0. Then Lemma 3.2 yields

. 8 (Cp(z,t)) \ _
(4.17) Jim <nesl$){o} — Oy (Cn(m,t))> = 0

for almost every z € B, and so, since m(B’) = 0, for almost every z € R".
Now consider the Lebesgue integral in (4.16). For every a € IR and
for every Borel set E C IR", we define a nonnegative measure A by setting

ME) = / (¢ — a)dm.
Bn{p>a}

Applying Lemma 3.2 to A = {¢ < a} we then get

hm sup M = 0
t—0+ neNu{o} M (Cn (fL’, t))
for almost every z € A. Hence, noting that

1 (Cn(z, ) A (Cr(z,1))

s <a+t
m (Cn(z,1)) m (Cu(,1))’
we have lim sup( sup :T%%) < a for almost every z € A. Then,
t—0+ neNu{o} s _
by setting

Eaz{a:EIRN:go(m)<a<limsup< sup M)},

t—0+ neNu{o} M (Cﬂ (:E? t))
we get m(E,) = 0, thus

. o G
i eup (nmﬁo} m(Cn(z,t))) < ¢le)

for almost every z € IR".
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Using —u instead of u and proceeding as above, we finally obtain

liminf( sup M) > p(z)

t—0+ neNuU{0} (Cn(w) t))

for almost every z € IR". Hence

(4.18) lim ( sup M) = ()

t—0+ neNu{o} ™M (Cn(a:) t))

for almost every z € IR". Equations (4.17) and (4.18) implie (4.16),
from which, with a standard argument, Lemma 4.2 follows (see Stein
[13], page 11).

PROOF OF THEOREM 4.1 - (iii) Let  be a point of IR" satisfying
Proposition 4.1. Then, for every € > 0 there exists § > 0 such that

1
(419) 0 S mcnzl,t) dl/(g) <e

for every t €]0,§[ and for every n € IN U {0}, where

dv(€) = |@(€) — p(z)|d¢ + ds(€).

Equation (4.2) gives immediately
u(z,t) — p(z) = / I'(z,t;¢,0) ((90(5) — p(z))d¢ + ds(f))-

Using estimates (1.8) and the explicit expression of ['* we can show that
there exist two positive constants c;, k such that

[(z,t€,0) < ctTH(x,t;€,0) < clt‘%e_kpz (D(ﬁ)(e—E(—t)z))

therefore

(4.20) \u(w,t) - (p(z)‘ < o / e—kpz (D(ﬁ) (f—E(—t)m))dV(g),
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Fix now t €]0,6[ and put k; = max {n eINU{0}:4™t < 5}. Then
(4.21)

/ 1 ko (€) < ( /+Z / + / >C1 k2 dy (£) =
N t2 {p<1} 77 {21 1<p<2-7}{p>\/_
=I+1I+1II

Since {p < 1} = Cy(z,t) and m(Co(z,t)) = 2V¢% | from (4.19) it follows
that

(4.22) I S 2NC15

for any t €]0, 6].
Consider now one of the terms of the sum II:

[ Geae s g [ag=ge [ ae)

{2i-p<2i} {p<2i} {p<27}

Note that, from the definition of D()), we see that p(D(n)v) > np(v)
and D(A\p) = D(A\)D(p) for every A, n > 0,n € IN,v € R". We can then
write, setting s = 47t,

{p (D (%) (€ - E(—t)w)) < 2j} C Cj(z,s).

Moreover, since j < k; we have s €]0,6[ and m(Cj;(z,s)) = 2Vs?T =
9N+i@4% . Then (4.19) yields

c c 2N+jQ . ) )

—ée‘kz’zdv(f) < —zl—Qe_MJ dv(€) < ecs29e
t7 IN+iQt T

{2i-1<p<2i} Cj(z,s8)

for every t €]0, 6[, therefore

ke .
(4.23) IT < ecy ZZQje_M] < ecy,

j=1
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uniformly in ¢ €]0, §[, being convergent the series Y. 297 ekt
j=1

In order to evaluate 111 we first note that

Q.—kp? $
t_%e_%pz _Pe i <¢s (é)

th% 0
on the set {p > \/—} thus

IIT <5—§ / e—%PZdu(E)Sfé—w(x) / e 87 de4

(4.24) {=vE} .
+;_§e-% / (<p(5)d§ + ds(g)) = II1, + IIL,.

RN

Then, since

lim e_lzgp2 (D(%) (E_E(_t)$)> =0

t—0

for almost every ¢ € IR", there exists 6, €]0, 8[ such that
(4.25) 0L I, 11, <¢

for every t €]0, 6. :
Hence, substituting inequalities (4.22), (4.23) and (4.25) in (4.20),
we obtain

lim u(a,t) = ¢(2)

for every z € IR™ verifying Proposition 4.1, then for almost every = € IR
(). To prove equality (4.4) we need to show that

(4.26) lim / w(z, t)x(z)dz = / x(@)dp(z).

t—

RN RN

for every function x € Co(IR"). Relation (4.2) gives

w2y [uix@ds= [ ([ Tatie0x@ds)dp),

RN RN RN
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and, as a consequence of Hypothesis H.2,

Jim / I(z,1;€,0)x(z)dz = x(£)-
RN

In order to prove (4.26) it is then sufficient to show that we can carry the
limit under the integral sign in the right hand side of (4.27). To this end
we first show that there exist Ty €]0,T[ and M > 0 such that

(428) | [ Tt 0)x(a)da| < pee”
IR.N

for every t €]0, T, and for every £ € IRY, where c is the constant appear-
ing in (4.1), then we apply the Lebesgue theorem.

It follows from estimates (1.8) and from Lemma 3.1 that there exist
two positive constants: ¢y, depending only on the operator L, and ko,
which may also depend on the (bounded) set supp(x), such that

['(z,t€,0) < 7f—;exp (—%(C”n,m) <
< 2 exp (~g(0tnm ) exp (~ 51"
1=D () (e~ E@)

for every z, € supp(x) and t € I. Hence, setting To = 22, we have

1
< kosup|xle~” [ ¥ oxp (~5(Ctnm)) e,

RN

‘ / I'(z,t;&,0)x(z)dx

then (4.28) holds, with

M = kosup |x| /e"(c+y’y)dy.

RN

This completes the proof of Theorem 4.1.
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From (4.4) we immediately derive the following

COROLLARY 4.1. Let u be a nonnegative solution of Lu = 0 in S;.

If

| u(-, 1) o 0,
then w =0 in S;.
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