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The Stein randomization procedure

M. WEBER

RIASSUNTO: Questo articolo ha origine da alcuni lavori di E. M. STEIN [23] sul
principio di continuitd. Si studia il ruolo di certe nozioni di compattezza gaussiana
negli spazi di Hilbert (insiemi GB e GC, introdotti recentemente da J. BOURGAIN [{]
nella teoria ergodica). Si esamina la proprietd di compattezza relativa di certi vettori
aleatori, introdotti da E. M. Stein, e si riconosce che ¢ questa proprietd é fortemente
legata la possibilita di ottenere nuovi criteri di tipo gaussiano per la convergenza di
famiglie di operatori continui, agenti su spazi funzionali. Si ottengono delle estensioni
del criterio entropico di Bourgain, con le quali si possono costruire nuove classi di
insiemi GC nell’ambito della teoria ergodica. Si ottiene anche qualche risultato sui
metodi di somma matriciale nei sistemi dinamici topologici minimali.

ABSTRACT: This work originates from previous works by E. M. STEIN [23] on the
continuity principle. We investigate the role of fine Gaussian concepts of compacity
in Hilbert space (GB or GC sets recently introduced by J. BOURGAIN [4] in ergodic
theory). We study the tightness of the laws of particular random elements introduced
by E. M. Stein. We show that this property is particularly suitable when inquiring about
the ezistence of some natural extensions of Bourgain’s entropy criteria. The extensions
we obtain, allow to produce new classes of GC sets arising from ergodic theory. We also
examine the almost sure properties of matriz summation methods on minimal systems.

1 — Introduction

Let (X, A, i) be a probability space with a P-complete sigma-algebra
A. In 1961, E.M. Stein introduced in the study of the continuity principle
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on LP(p) with 1 < p < 2, some particular random elements of LP(u)
that are defined as follows. Assume for simplicity that T is an ergodic
measure-preserving transformation. Let {¢,,n € IN} be a Rademacher
sequence defined on another probability space (2, B, P). To each element
f € LP(p) is associated the following LP(j)-valued random sequence:

(1.1) VJ>1, Y(w,z) €A x X, Fjs(w,z) = Ze](w

_7<J

where we set T; = T7 for any j > 1. These elements play a determining

role in the proof of the continuity principle that we briefly recall as a

matter of introduction. Let {S,,n € IN} be a sequence of p-continuous

operators on LP(u) that are commuting with T: S,(f oT) = Sp(f) o T.
Assume that the following property is satisfied:

(By) Vi€ L(u), p{sup|Su(f)l <oo}=1.

Then, there exists a constant K such that
(12) VP, | swlSuf @) lpoorn < Kllfllpms

This is the Continuity Principle. The proof of that result is essentially
based on a randomization technic involving the random elements defined
above. We also recall that counterexamples to an extension for p > 2
exist. And so, it is an optimal result. However, Sawyer observed that
Stein’ s Continuity Principle remains valid when p > 2 in the case that
the operators are assumed to be positive: f >0 p—a.e. = S, f > 0, for
each n. If 1 < p < oo and moreover {S,,n > 1} are positive, then (1.2)
still holds.

More recently, J. BOURGAIN ([4], Propositions 1 and 2) introduced in
that problem, a Gaussian randomization of the same type. By exchang-
ing the Rademacher sequence {¢,,n € IN} with an isonormal sequence
{gn,n € IN} and applying the theory of Gaussian processes, he obtained
the following remarquable result completing in some sense the Continuity
Principle.

THEOREM 1.1. Let {S,,n € IN} be a sequence of L*(u)-contractions.
Assume that S,(f) € L®(u) for all n > 1, whenever f € L>(u), and
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there exists a sequence of positive invertible L2(u)- isometries {Tj,j > 1},
preserving 1, and satisfying the mean ergodic theorem in L'(u):

13 vier'w, im|3Sns- [fdu =0,
i<Jd

such that the S, s are commuting with the T;’ s: S,T; = T;S,.
Let 2 < p < 00. Then the property (B,) implies:

(1.4) Vf € LP(u), the sets C; = {Sp(f),n > 1}, are GB sets of L*(u).
Moreover,

(1.5) Vf € L (n), B{sup Z(Sa(f))} < Cll S llz,pe»

where 0 < C < oo is independent of f in LP(u) and Z is the isonormal
process on L*(u).

Recall, according to [8], that a non-empty subset K of an Hilbert
space H is a GB (resp. GC) set, if the isonormal process on H, that is the
centered Gaussian process indexed by H, with covariance function given
by the scalar product, has a version which is sample bounded (resp. norm-
continuous) on K. These properties have been characterized in terms of
the existence of majorizing measures analysing the local scattering of the
subset K of H; and we refer to [24] for a description and proof of that
beautiful characterization.

Bourgain’ s original statement concerns contractions satisfying

(C,) VfeLP(u),{S.(f),n>1}, is p— almost surely convergent.

But the proof can easily be adapted and shortened ([22]) to get the above
extension. Bourgain’ s original assumptions are weaker since it is not
assumed that the S,’ s are mapping L (u) to itself. However, it can be
checked that they are not sufficient to prove the result. Applications of
that result are in [4], [6], [1], [18], [26] ...

Before going further let us just point out that condition (1.3) implies
that these isometries are in fact, multiplicative on L (u) (see [31], Chap.
IV, Lemma 1.1):

(1.6) Vfgel>w), Vix1l, Ti(fg)=T()Ti(g)n—ae
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Following this line of work, a similar result can be obtained for the values
1 < p < 2, by randomizing this time with a sequence {f,,n € IN} of
independent identically distributed symmetric p-stable real r.v’s random
variables of parameter 1. But the proof is more delicate, because of
the more complicated structure of the p-stable random functions. We
obtained in [27] the following extension of Bourgain’s result to the LP(u)
spaces with 1 < p < 2

THEOREM 1.2. Let 1 < p < 2 and {S,,n > 1} be a sequence
of linear operators from LP(u) to LP(u), that are u-continuous. Assume
there is some ergodic endomorphism T on (X, A, 1), commuting with the
sequence {S,,n > 1}. If, for some 0 < r < p the property (B,) is satisfied,
then for all f € LP(u)

(L7) sup{e{log N} (€)}7} < C(r, 9} f I

where - +1 =1, N{(e) denotes the minimal number of L?-balls of radius
e enough to cover C; (see (1.4)), and 0 < C(r,p) < oo is a constant
dependent of r and p, and tending to infinity as r approaches p.

In all what follows we will concentrate on the case 2 < p < o0
although the other cases are of comparable interest. It is relatively sur-
prising that the Gaussian concept of GB set plays a role in the control
of the property B,. The present work tries to analyse more that fact.

Let {T},j > 1} be a sequence of positive L?(u)-isometries, preserving
1 and satisfying the mean ergodic Theorem in L'(u) (see (1.3)). In the
case 2 < p < 00, to each element f of LP(u) is the following vector-valued
Gaussian sequence associated

(1.1) VJ>1, V(w,z) € Qx X, Frs(w,z) = ZgJ (z),

]<J

that we will call simply the Stein’s elements of f. In order to relieve the
text, we will adopt some definition

DEFINITION 1.3. a) We say that f € LP(u)) is p-tight if the laws
of the associated sequence of Stein’s elements are relatively compact in

LP(p)..
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b) Assume that X is a compact metrizable space. We say that f €
Cr(X) is C-tight if the laws of the associated sequence of Stein’s elements
are relatively compact in Cr(X)

According to Prohorov’s property, in order that f € LP(u) (resp.
C(X)) be p-tight (resp. C(X)-tight), it suffices to find for any € > 0 a
compact subset K of LP(u) (resp. C(X)) such that

‘IJIZIIEP{(U ‘ F.],f(u.),.) GK} > 1—e

We will see in sections 2.2 and 2.4 that this notion applies well to standard
examples of dynamical systems like irrational rotations on the torus X =
IR/Z, i = Lebesgue measure. If 7 is such a rotation, and T} defined by
T;f = ford, j > 1, then any element of L?(X, u) (resp. C(X)) be p-tight
(resp. C(X)-tight).

By Proposition 2.1 below, to any p-tight element f of LP(u) can be
thus an LP-valued Gaussian random vector gy associated. When the Tj’s
are generated by a single measure-preserving transformation 7, the law
of this Gaussian vector is uniquely determined. This Gaussian vector will
be called the spectral process of f. The same holds in the continuous case.
The spectral properties of that process are studied.

Further let S, : LP(u) — LP(u), n € IN be a sequence of continuous
operators commuting with 7. It will be shown that {Sn(zf),n € IN } is
again an L?(u)-valued Gaussian sequence. With the help of this property,
we will study the property C, via the GC set concept. We will present in
section III a necessary condition to the property C, showing that the sets
C; are GC sets whenever f is p-tight. Conversely, to each p-tight element
of LP(pu) such that C; is a GC set is attached a subspace of L?(u), call it
Hy, of which any element h satisfy that p{{Sn(h),n € IN} converges} =
1. An abstract characterization of the property that Hy is dense in LP(u)
is given. Analogue results concerning the continuous case are presented
in section IV.

A new maximal type inequality is also proved. In the continuous
case, the special case of matrix summation methods on minimal systems
is considered in section 1V-3.
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2 — Relative compacity of the Stein’ elements

In this subsection, we are considering the relative compacity proper-
ties of the Stein’s elements defined in (1.1') in LP-spaces and also in C(X),
the space of real valued continuous functions defined on X, assuming in
that case that X is a compact metrizable space.

We will use the following convenient criterion (see [11]) for relatively
compact sequences of Gaussian measures in separable Banach spaces,
that we recall here for the convenience of the reader

PRrROPOSITION 2.1.  Let {g,,n € IN} be a sequence of Gaussian
measures on an arbitrary separable Banach space B. We assume that
{gn,n € IN} is converging to go in the narrow topology. There ezists a
Gaussian 7.v. X = {z,,n € IN} with values in BY, such that

(2.1) T, — Zo, as n — oo, in every L"(B), r >0,

(2.2) VN € NN, the law of x, is gn.

2.1 — Relative compacity in LP-spaces 2 < p < 00

We prove the following

PROPOSITION 2.2. (2<p< o0)
Let f € LP(u) be p—tight. There is a Gaussian . v. ry, with values
in LP(u), a partial index J; such that

(23) Vo, h€ L), B{eno)ep )} = lim = ST, o) (Tf,h),

JTg3J—00 J <7

where £ + X = 1. Moreover, for any sequence {Sn,n > 1} of continuous
operators from LP(p) to LP(u) commuting with the T;’ s, the sequence
{Sn(zxs),n > 1} is a Gaussian centered sequence with values in LP(u).

If the sequence {T;,7 > 1} is defined by T;f = f o 79, where T is some
ergodic endomorphism on (X, A, ), then the correlation function of the
spectral process t; and the one of the Gaussian sequence {Sn(zs),n > 1}
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can be explicited. More precisely, we have for all g,h € L(u),

(24) E{G,9) 5,0} = (E{f X f|Frer}, 9 X B)(uom)
(2.5) E{(Sn(rs), 9)(Sm(zs), 9)} = (E{Sn(f) X Sm(f)
(2.6) E{[(Sn(rs) — Sm(zs), 9%} =

= (E{[Sn(f) = Sm ()] X [Sn(f) = Sm(£)]

fTXT})Q X g)(ﬂ@u);

frxv'}ag X g>(ﬂ®/t)7

where F,., 15 the o-algebra generated by the T X T-invariant measurable
sets.

NoTE 1. It will be worthy for the sequel to describe the reproducing
kernel Hilbert space (7.k.h.s.) H; linked to r;. Refering for instance to
[9] p. 34, H; is characterized by

Hy={h e L(n)/3g € L'(w/h@) = [[BU x flFrer}a o) du).

PROOF. STEP 1. There exists a partial index J, such that the
laws of the r.vs. Fj; converge in the narrow topology to a probability
law go on LP(u). From Proposition 2.1, there exists a Gaussian r.v.

X ={rs,2s5,J € J;} with values in (L"(u))N, such that,
(2.7) 155 — 14, as J — oo, along Jy, in every L"(LF(u)), r >0,
(2.8) VJ € J;, the law of r;; is the same as those of Fj ;.
First, we prove (2.3). Let g, h € L%(p), then
E{(rs,9)(er, 1)} = B (0,4, 9) (e0s, W)} + Ry

On the one hand,

B{ (0, 9){ess W) = 5 ST, 9T, )

i<J
and on the other hand,

|Rs| <TEB{|(xs — 201> 9) s, I} + E{&r — 205, M0 9}
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Since by Holder’s inequality

E{|(xs — 25,5, 9) & I} < || Mler = 2 llpws g Ngllael] Negllpus 1o N1Rllgw

we deduce

(2.9) |Rs| < 2” lles _FJ,f”p,u ||2 ” “Ff”p,ﬂ Hz { 1Allg, + “9”q,u }2-

Hence, by Proposition 2.1 R; — 0 as J tends to infinity along J;, and
(2.3) is proved. Examine now the sequence {S,(r),n > 1}. We prove
that it is a Gaussian LP(u)-valued sequence. According to the theory, it
is necessary and sufficient to show ([10], 2.1.1, p. 316) that the family

{(Sn(xf)ag>7n 2 179 € Lq(,u‘)}

is a Gaussian family of real r.vs. Therefore, it suffices to show, for all
positive integers k > 1, for all ny, -+, my, for all Ay, - -+, A € L(p), that

D (S (x5)s A

1<k

is a centered Gaussian r.v.
Having fixed 71, -+ ,n%, positive integers, and Ar,- -+, Ay € L7(p), con-
sider for J € J ‘

Gy = (Sn(5ss) \)-

<k

Since the law of z; is the same as F;;, we have

GJ 2 Z<SHL(FJ,J°)? /\l>a

1<k

and, because of the commutation assumption

.GJ— ZZQ; 3[Sn, (F)]s M),

]<J 1<k

and so it is Gaussian. We prove that

S= Z(Sm (If)a >‘l>

i<k
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has also a Gaussian law. To see this, it is necessary and sufficient to show
that S is a limit in (every) L"-spaces of a sequence of Gaussian r.vs. But,

“S - GJ”T’P = ” Z(Snl(PJ,f - If)’ /\l>”7‘>P <

i<k

<D USn, (o —£5)s A Iy

1<k

and by Holder’s inequality again

< Z ”/\l”q,ull 1S, (2as = 25) o Hr,P <

i<k

< Z”’\l”qusuP”Snz” 1 Gas =2 lp e

i<k

Therefore, because of the convergence property (2.1) of Proposition 2.1,

(2.10) vr20, lim |IS=Gill.p=0

From that calculation, we deduce that the sequence {S,(zf),n > 1}, is
an LP(u)-valued Gaussian sequence.

STEP 2. Now we consider the case where the sequence {7},5 > 1} is
defined by T} f = (U,)?, where U, f = f o T is the isometry associated to
some ergodic endomorphism 7 on (X, A, u) such that 7 X 7 is not ergodic.
Let g € L(u). Consider the real valued Gaussian sequence

X9 = {Xﬁ = (Sn(}'f)ag>)n > 1},

as well as the auxiliary sequence indexed by J; of real valued Gaussian

sequences
X9 = {X57 = (Suess),9),m 2 1}

Since 1, has same law than F) ¢, the correlation function of X9/ satisfies
127 = X8 la,p = ( z[ (T3(50 — Sm) () =

(A SO0~ S % [5n — SN (D) % o)

i<J
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By Riesz-Yoshida's Theorem, ([17], p. 73)

% S U2, (S = S () X (S — S} (),

i<J
is converging strongly to

E{(Sn — Sm)(f) x (Sn = Sm)(f)

'7:1‘)(7'}’

as J tends to infinity. It is thus also converging weakly. Hence

}i_)nolo”Xg,J_Xrgn’J”ZP = 1<1E{(Sn_sm)(f) X (Sn_Sm)(f) frx-r}a ng) (#®H)|%

for all g € L(p). Similarly,

Jim B{XZY X8} = B{S(F) X (S) ()| Frxch,

for all g € LI(p).
We compute the correlation function of XJ. We have

E{(Sa(ts), 9)(Sm (1), 90} = B{(X27, X57)} + Ry,
with,
RJ = E{<Sn(xf)7g><sm(;f), g>} - ]E{<Sn(FJ,f),g)(‘gm(FJ,f)’g)}'
Again,

|Rs| < E{[(Sn(2r): 9 {Sm(xs)s 9) — (Sm(z.1), 9} +
AHE{[(Sm(t2.1), 9)HI{Sn(tr), 9) — (Sn(zss) 91}

By applying Holder’s inequality,
[(Sn(zs)y )l < 1Sn G lpwllgllan < NesllpullSnll Ngllgw

and,
(Sm(xs) = Sm(ts,5)s D < Sm(es — 22, lpullgllgns

< lles = 24 llpullSmll lgllas-
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Hence,

2
|Rs] <3|l les — 2o sllpe N2 Il lepllo Nlz,p (1Smll + 1Sl “gll2 .-

for large values of J. We obtain,

(2.11) lim Ry = 0.

J—o0
JeTg

Therefore, IB{(Sn(xf), 9)(Sm (), 9)} = B{Sn(f) X (Sm)(f)|Frxr}, and

(B{U(Snt1), ) — (Smep), 9)})F =
= <]E{[(Sn - Sm)(f)] X [(Sn - Sm)(f)”}_'rxr}79 X g>u®“.

2.2 - Examples

Let S' = IR/Z, be the one dimensional torus provided with the Haar
measure 4, and consider an irrational rotation 7(z) = z + 8 (mod(1))
where 6 is some fixed irrational number. Letting then T;(f) = for?, j > 1
in (1.1’), we will prove that any element f € L%(S?, u) is 2-tight. Recall
that a family F = {f = {fn,n € IN}} in [ is relatively compact in Iy if
and only if,

: 2
Jm s 2 1l =0
For g € L?(S!, u), we denote by {a,(g),n € IN} the sequence of its Fourier
coefficients. Therefore, a subset F of L%(u) is relatively compact in L? (1)
if, and only if,
tim sup 3 lan(I =0,
N

N=co ferx n>

or equivalently, if, and only if,

lim sup Y la.(f)> =0,

N3N—oo fer n>N

for some partial index N. Let f € L?*(u) be fixed, we will show that f is
2-tight. For, it is enough to prove that

Ve >0, 3K C L*(u), compact | inf;s1P{F;; € K} >1—e.
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An easy calculation first provides

BIFus IR, =B [ 1T 2= S a2 dulz) =

kGN ]<J
=E) “k(fﬂﬁ > e g2 = an(f)*
kEN i<J kEN

Similarly, IE|Ry(Fss)ll3, = X ax(f)?, where Ry is the operator on
k>N
L?(S, 1) defined by Ry(g)(z)=Y ax(g)e™. Let 0 < € < 1 be fixed. Set
k>N

1
Vn > 1Le,=(2 ax(f)®)*, and VN > 1, Ky = {h € L*(p) | | Rn(R)ll2, <
k>n
en}. By Tchebycheff’s inequality

E||Ry(F 2
P{Fy, ¢ Ky} = PUR(Fslla > e} < el _ o)
N

Let us choose N so that Y ey <e.
NeN

'Letting then K, = (| Ky, leadsto P{F;; € K.} >1— ) ex2>1-e
B NeN NeN
Since K. is a compact subset of L?(11), the latter inequality clearly shows

that f is 2-tight.
More generally, let (G, d) be a compact metric space and a continuous
transformation 7 : G — G verifying

(2.12) (G, 1) is a minimal system,
(2.13) Yu,v € G, d(Tu,7v) = d(u,v)

Let 4 be a Borel probability measure on G preserved by 7: 7 = p. By
(2.12) and (2.13) we have that u(Ve(z)) = p(Ve(0)), where Vi(z) = {u €
G : d(u,z) < €} for each z. Let 1 < p < oo, for any f € LP(u) and any

e > 0 we set o o 1
Vo€, )= s [ Twdutw).

Let also Cr(G,d) be the Banach space of real-valued d-continuous func-
tions defined on G and denote ||f|| = sup,cq [f(9)]-

Let F be a subset of LP(u) or Cr(G,d). The following criterion is a
simple reformulation of KOLMOGOROV’s theorem in [16] p. 148.
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PROPOSITION 2.3. a) For F to be compact in LP(u), it is necessary
and sufficient that the two following conditions hold:

(2.14) there is a constant K such that sup| f|rr < K,
feF

(2.15) for any 6 >0, there exist € >0 such that sup ”f—f(e)”LP(#) <6é.
feF

b) For F to be compact in Cr(G,d), it is necessary and sufficient that
(2.14) and (2.15) hold with the sup norm ||| in place of ||.||Lr(u)-

The next Proposition will be just a corollary of the above criterion.
In the statement we use the following notation

YO< M < oo, VJ>1V(w,z) € 2 x X,

(1.17) Fiim(w,z) = I Zgj )’/\M

J<J

PROPOSITION 2.4. (2<p < o0)

a) Any element f € LP(u) is p-tight.

b) For any f € Cr(G,d) and any 0 < M < oo, the associated trun-
cated sequence of Stein’s elements is relatively compact in Cr(G,d).

PROOF. a) It suffices to prove the following two properties

(2.16) there is a constant K such that supIE||FJf||p <K,

(2.17) for any 6 >0, there exists e >0 such that sup]E||FJf—FJf||p#<6.
For all J, B[|Fyfllpu < v/PIIfllp,. which gives (2.16). Further,

IE|F ¢ —F} = / IE‘—\/l7 Zgj(f‘o - (fo'rj)(e))’pdu <
J<d
1 . L en2|®
P = fo Jj_ fo 3y(e) d S
)/|JZ<J( P (o))
/ Slfor = (for) I du.

J<J
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Since 7 is preserving d and p

o)z :—1 Iy u) =
(o) @ = Sy . Frwdu)

1

w)dp(u) = fO(rz).

Hence,

BlFs; - Fl, < WP [ 5 30157) - fO(ra) P du(z) =

]<J

= (V’Ilf - FOlI5,

which tends to zero with e.
b) Similarly to the above case, it suffices to prove

(2.16')  there is a constant K such that .?IL;;l)]E||FJ,f,M| <K,

(2.17")  for any 6 > 0, there exists € > 0 such that
Sup || Fy .0 — Fifg pqll < 6.
J>1

(2.16') is quite obvious. So we have just to check (2.17'). But

E|Fj s — FS ol

1
< IEsu /
ves! p(V(0) Jvwmy T

1
< IEsup
T€G (V (O)) Ve(z)

<M sup |foT;(z)— foTj(u)l.

z€G,j<J

Zg;foT ‘/\M—’—Zg]fOT {/\Mdu )‘

Zgg[foT = foTy(w)]| A M du(u) |

2.3 - Relative compacity in C(X)

We consider an ergodic topological dynamical system (X,.A4,u,7)
where (X,.A) is a compact metrizable space, u a probability on (%,.A)
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and 7 : X — X a p-preserving ergodic continuous transformation. We set
T; = (U.)?, j > 1 where U, is defined by U,.(f) = for.

PROPOSITION 2.5. Let f € C(X) be C-tight. There ezists a par-
tial index Jy such that the correlation function of the spectral process rs
satisfies:

(2.18a) Vs, t € X, E[(zf,0:)(rs,65)] = I EE‘loo J Zf (r78)f(r72)

(2.18b) E[(zs,6:) (x5, 05)] = E[f x f|Frxr)(s,1), s,t U® u— a.e.

where F,«,, denotes the o-field of T X T invariant elements of A ® A.
Moreover, for any sequence of continuous operators S, : C(X) —
C(%),n > 1 commuting with T, the sequence {S,(rs),n > 1} is a centered
C(%)-valued Gaussian sequence.
Let 9 be the Banach space of signed measures on X. Let Mp be the
subspace of all finite linear combinations of Dirac measures. Let finally
Mg(rxr), be the subspace of M defined by the measures v such that v @ v
is a generic measure on X X X, with respect to T X T and to the algebra
C(%X). Then,

(2.18¢) IE[(Sn(t7), 66) (Sm (), 66)] = (Sn(f), SmlfN(wy» st p—a. e,

Assume that T is not weakly mizing. Then for any v € Mg(rxr)

(2'18d) IE[(SH(H))VMSm(Pf)aV)] = <Sn(f)11>(M)<Sm(f))1)(u)'

NoTE 2. (2.18d) shows that the correlation function varies consid-
erably with m € 9.

NOTE 3. The restriction of t; to any cycle {7"u,n > 1} is a centered
stationary continuous Gaussian process. This simply follows from the
fact that 1
Hm :_]_ Z [f ° Tj+k+hf o 7.J+l+h],

JsJ
does not depend on h. This property has some consequences: if f € C(X)
is C-tight, then its spectral process is sample continuous and thus sample
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bounded too. By the spectral Lemma ([16], p. 95), for p-a.e. tin X we
have

vm,n €N, m 2 n, Bl (rt)ey (7)) = (f o 7™, f) =

(2.19) _ / exp{2i (m — n)u} dvs(u),

where vy is the spectral measure of f.

If v; has no atom or equivalently by the Koopmann-Von Neumanns’
theorem ([16], p. 96), (foT™, f) converges in density to 0, then the Gaus-
sian sequence {r;(7"t),n € IN} is ergodic. This follows from Maruyama’s
theorem. Therefore this sequence has infinite oscillation near the infinity
almost surely. And this contradict the fact that r is sample bounded on
X. By arguing a little bit more if necessary we obtain the following result
that seems to be new at least to us:

LEMMA 2.6.  Let (X, A,u,7) be an ergodic topological dynamical
system. Let f € C(X) be C-tight. Then, the spectral measure vy of f is
purely atomic.

NOTE 4. Since [rs(t) du(t) is a Gaussian r.v., P{f}:f(t) du(t) =
0} =1, if and only if, [fIE[f X f|F,«,] du(s)du(t) =0, or equivalently
if and only if, [ f du = 0. Therefore

LEMMA 2.7.  Let (X, A,u,7) be an ergodic topological dynamical
system. Let f € C(X) be C-tight. Then, the associated Gaussian r.v. gy
satisfies

(2.20) P{ /;f(t) du(t) =0 } =1, if and only if /f dp = 0.
NOTE 5. The associated reproducing kernel Hilbert space (r.k.h.s.)

of r; is characterized by

(2.21) H; = {h € C(x) / AM < oo : V Radon measure m,

|/h dm|? < M2//IE[f>< F|Frxr] dm®m}
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We refer to [9], p. 32. Here also, when d(7(u), 7(u)) < d(u,v) on %, and
if f € Lip(d), then $y C Lip(d). We close these observations, by proving
the following Lemma: ,

LEMMA 2.8. Let g€ Hy and b= (b,,n > 1) € 14.
Then, G =32, 5, bngo ™" € Hy.

The proof is easy. It suffices to prove that, for all measures of the
form 32, fib:,,

/4 P
IS HGE) S CLY fifiR(tty)]2,
i=1 ij=1
where we set R(s,t) = IE[f X f|F,xs](s,t) and C depends on G only.
Since g € Hy,

I3 A6 = X0 3 )] < b)Y falrn

n>1 i=1 n>1

g E’}_{f Z‘b |M Z f’Lf] tut Z'b |M[Z fzfj tzat

n>1 4,7=1 n>1 2,5=1

And the Lemma is proved.

PRrROOF OF PROPOSITION 2.5. Since the proof of Proposition 2.5 is
quite similar the one of Proposition 2.2, in order to avoid repetitions, we
will just sketch the proof of (2.18a) and (2.18b). The other computations
are indeed obtained in a similar way. By Proposition 2.1, there exists
some partial index J = J; such that the laws of the r.vs. F;; converges
along J in the narrow topology to a probability law g; on C(X). From
Proposition 2.1 again, there exists an C(¥)N-valued Gaussian vector X; =
{tf,255,J € T} such that

a) s has same law than Fj;, J € J,
b) 15— 15, as J — oo, along J;, in every L"(C(%)), r > 0.

Then, IE{(x;,8,)(zs,6:)} = IE{(zsf,0s)(tss,6:)} + Rs. In the one hand
E{(rs,05){(ts,0:)} = % S (T;f,65){(T;f,06:), which by Birkhoff’s theo-

isJ

rem, tends to E[f x f|F,«-|(s,t) s,t 4 ® p — a.e. And on the other,
|Ry| <TE{|(es — 20,5, 65) (x5, 8} + E{|(xs — 20,5, 8e) kg, 65)} -
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Then, IE{KH—FJJ»‘Ss}(Ffa&tH} < H “Ff_FJ’f”oo ”2 H ”?f”oo Hz we deduce
|Rs| < 3|| les = xaslloo |2 || lzflloo |5, for large values of J.

Hence, by Proposition 2.1 R; — 0 as J tends to infinity along J.
This gives (2.18a) and (2.18b).

2.4 — Examples

Let d be some continuous pseudo-metric on X. We shall assume
there exists a probability measure w on X, such that

9.92 I / 1 —0.
(222) 0 ex \/Og (y - d(zy)<u) du=10

Let us also associate to any f € C(X%), the following pseudo-metric:

i<J

Vr,2' € X, Dy(z,z')= sup\l Z{f oTi(z) — fori(z)}2
J>1

PROPOSITION 2.9.  Under the above assumption (2.22), any f €
C(%) such that

(2.23) Vz,y € X, Dys(z,y) < d(z,y),
is C-tight. In particular, if T is such that d(t(u),7(v)) < d(u,v) on %2,
then every f € Lip(d) is C(X)-tight.

PROOF. It is enough to prove the tightness of the laws of the r.vs.
F;; in C(%X). The criterion of tightness of Gaussian measures is well
known and based on Ascoli-Arzela theorem and the majorizing measure
method. We refer to [14], theorem 1, p. 272, for such a criterion.

A stronger (but more easier to apply) sufficient condition that (2.22)
is given by the Dudley’s entropy criterion below

diam(X,d)
(2.24) / \/log N(%,d,u) du < o0,
0

where N(%, d, u) is the smallest number of d-open balls of radius u enough
to cover X. It is easy to check that (2.24) is fulfilled when X = R/Z =
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[0, 1] and d is the usual metric on [0,1[. Let 7 be an irrational rotation on
it. then (%, A4, u,7) is ergodic and d(7(u),7(v)) = d(u,v). Hence, from
the above Proposition we infer that every f € Lip(d) is C(X)-tight.

It is easy to compute the correlation function of the spectral process
ts of f. In the simplest case where f(z) = cos2mz, it is easy to show that

Vs,t€ (0,1 Eles(s)e;(8)] = Bf x f|Foer}(5,8) = %cos27r(s—t),

if 7(z) = = + 6. This allows to compute the correlation function of r; by
means of the Fourier coefficients of f.

3 — Almost sure convergence in LP-spaces
3.1 - A Necessary condition

We shall prove the following

THEOREM 3.1. (2 <p < o0)
Let (X, A, u,7) be an ergodic dynamical system such that T is not weakly
mizing. Let {S,,n > 1}, be any sequence of continuous operators from
LP(u) to LP(u), commuting with 7. Assume that C, is satisfied. Then,
for any p-tight element f € LP(p), the set C; is a GC set of L*(u).
Moreover, the sequence {S,(f),n > 1} is converging in L?>(u) to some

S(f) € L*(w).

PrOOF. By Proposition 2.1, to f can be associated a partial in-
dex J and a Gaussian LP(u)®N-valued random variable such that X =

{t5r005,J € T}
(3.1a) ts; has same law than F;;, J € J
(3-1b) i gy =g, in every I'(L7(), 72 0.

We shall prove that S} = {(Sa(zf),6:),n > 1}, is, for p-a.a. t, a real-
valued Gaussian sequence. Let us consider the following r.v.

RJ—R Zaz Snl(?f 5t Zaz ny F.If 5t>

i<k i<k
1
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for given not null reals a4, -+, 0y, and integers ny,--- ,ng, k > 1, and
j € J. Fix also some n > 0.

Then, p® P{Ry 2 n} < 5= p® P{I(Su(es — 22,801 > 7},
and by Tchebychefl’s inequality, < lgc[]—;ll—l]‘PIE{HSm (rr —rsp)lIB .} thus,

-P
<3 [I_;]z_l] [|Sn, ITE{lles — 24,4115 .} Passing to the limit in J along 7,
i<k
we deduce from (3.1b)
(3.2) Sdim pu® P{R, >n} =0.

Letting n € {277,p > 1}, we can find a partial index J* = {J;,] > 1}
such that,

(3.3) Vi>1, p® P{Ry(t) > 27"} <27\

And, by the Beppo Levi’s lemma

(3.4) ZP{R;, (t) >27} < oo, t u—ae..
1>1
Therefore, there is a measurable set X(ay, -+ ,ax,n1, - ,ng) of t's

of full measure, on which, Y o(Sy,(xs),6:) is P-almost surely con-
i<k
verging along J* to Y a;(S,,(zs),6:) >. And consequently on this set,
<k

> (S, (z5), 6:) is a real valued Gaussian r.v. Let now
i<k

X = m X(ala"'aakjnl)"'ank)-

S RIRERT- TS FERR 78
oy, €, ny,nE€EN,
k>1

Then, u{X} = 1. And for each t € X, for all oy, -, € Q, for all
ny, -, € N, and k > 1, 3 04(S,,(x), 6:), is a real valued Gaussian
i<k
r.v. Let now @y, - ,ax € R. Then, on X, > ;(Sn,(zs),6:), is a contin-
i<k

uous limit of real Gaussian r.v. It is therefore a real Gaussian r.v. too.
Summarizing, what we have proved, is that S} = {{Sn(xf),6:),n > 1} is
a real Gaussian sequence for p-almost all ¢.

A similar argumentation will also provide

(3.5) IE{{Sm(x7), 6¢)(Sn(zs), 6e)} = (Sm(f), Ga(f)w
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for all integers n,m on a measurable set of ¢’s of full measure. Indeed,

writing IE{(Sn(z7), 8:)(Sm(xs), 6:)} as IE{(Sn(2s,1), 6:){Sm (2s5), 6:) } + Ry,
we observe that |Ry| < IE{|( Sn(rs),6: ) || { Smlrr —255),0: )|} +

+HIE{[(Sn(zr — £5.4), 60 1{Sm(r05), 62) |}
Let n > 0O be fixed. Then, by what is preceeding, and the Tchebycheff’s

inequality, next by using Holder’s inequality (with 2 + ¢ = 1),

N‘®P{RJ > 77} < 77"1/ IE{l Sn(?f >5t>”<‘s’m(3f —FJ.f)’(St)I}d:u‘)'i'

7 [ B{I(Smer), 8 (Sl = 521), ) }) <

< B{[1Sn () a1 Sm (& — 2a8) o} +

+ 07" B{Sm ) ol Saler — 210 llpu} <
<207 ISl 1S E{lleslloulles — vosllpu} <
< 207" [1Sall 1Smll B{llesllpuller — 2osllpnts

since p > 2. It follows that

(3.6) Sim p®P{R;2n}=0

This is now a routine calculation. By letting n € {277,p > 1}, we can
manufacture a partial index J* = {J;,l > 1} such that,

> u®P{R; >27} < 1.

1>1

By Beppo Levi’s lemma,

(3.7) [ PRy 2 2 e <1

>1

Hence, R;, — 0, 4 —a.e. P —a.s. as | tends to infinity. Now,

E{(Sm (zuf) 6¢)(Sn (m) b)) = E{(S (Fu) 6¢) (S (FJf)a5t)} =
ZT ) T;[Sm(F)I() = ZT F)Sm(HIE) —

]<J J<J

_*( n( )7Sm(f)>(#)’ H—ace.,

which, in turn, allows to conclude to (3.5).
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Further, ¢ belong to LP(u). So, we can apply C, on it. Hence
(3.8) p ® P{S} is converging} = 1

And then, p-almost surely, the Gaussian sequence S} is P-a.s. converging.
By, (3.5), we conclude that C; is a GC set. That the sequence {S,(f),n >
1} is converging in L?(u) to some S(f) € L*(u), easily follows from the
fact that, if the Gaussian process S} is almost surely convergent, it is
therefore convergent in the L?(u) sense. Then, (3.5) provides the result.

3.2 — Sufficient conditions

The result is the following

THEOREM 3.2. (2 <p < 00)
Let (X, A, u,7) be an ergodic dynamical system. Assume there exists an
f € LP(u) that is p-tight. Let {Sn,n > 1}, be any sequence of continuous
operators from LP(p) to LP(p), that are commuting with T and such that
the sequence {Sn(f),n > 1} is converging in L*(u) to some S(f) € L*(u).
Then,

(3.9) Cs ={Sn(f),n > 1} is a GC set

implies
(3.10) there is an he LP(u) such that, {S,(h),n>1} is convergent p—a.e.
Moreover, the set

F., = {h € LP(u) such that, {Sn(h),n > 1} is convergent y — a.e.}
satisfies

(311) Hf C fcva

where,

(3.12) Hy ={h € LP(u) / 3IM < oo [ Vg € L*(p),
(n9)? < * [[B{f x 1|Frxr}a x g du® )
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Finally, if the covariance function IE{f x f ].FTX,.}, s nondegenerated in

the following sense,
(3.13)

Vg € Li(u), [[ B{f x f|Frxr}g x g dp@ >0, if and only if g #0,
then,

A GENERAL FACT: If we do not assume that the sequence {S,(f),n >
1} is converging in L2(u) to some S(f) € L*(p), then (3.9) implies that
the set F, = {h € LP(u) such that, {S,(h),n > 1} is L?(u)-continuous
@ — a.e.}, satisfies

(3.11') M, C F.

PROOF. By assumption (3.1), Proposition 2.3 and (2.14), the covari-
ance function of the spectral process gy is given by

Vg € Lq(,u,),‘v’h € Lq(ﬂ‘)a IE{(IfahMFf’g)} = <IE{f X f f'rxr},h X g>(u®p.)

Let u; be the image law of 17 as well as H; its reproducing kernel Hilbert
space. From the proof of Theorem 3.1, we know that

(3.15) Xp = {(Sn(zs),6:),mn 2 1}

is, for p-a.a. t, a centered Gaussian sequence with covariance function
given by

(316) ]E{(Sn(xf)’ 6t> (Sm(xf)a 6t)} = <Sn(f)v Sm(f))(#) ‘
By assumption (3.9), we have that
(3.17) pi{y € LP(p) : {Sn(y),n > 1} converges p —a.s.} = 1.

Then, ps{F.,} = 1. By [2], Corollary 2.2 and the Note 1: F., D H;.
Hence (3.11) is obtained. If, in addition (3.13) is satisfied, then Hy is
everywhere dense in LP(u), which implies (3.14).
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4 — Almost sure convergence in the space C(%)

4.1 — Criterions

THEOREM 4.1. Let (%X, A, u,7) be a topological dynamical system,
where we assume that T is ergodic. Assume there exists a C-tight element
f € C(%) and let Rs(s,t) = IExs(s)zs(t) be the correlation function of the
associated spectral process.

Consider a sequence {Sp,n > 1} of continuous operators from C(%)
to C(%), that is commuting with 7. If,

(4.1) Vg € C(%X), {Sn(g),n > 1} is convergent, p—a.e. ,
then,
(4.2) the set C; is a GC set of L*(p).

Moreover, the sequence {S,(f),n > 1} is converging in L*(u) to some
S(f) € L*(w).

Conversely, if the S, s are uniformly norm-bounded and the sequence
{S.(f),n > 1} is converging in L*(u) to some S(f) € L*(w). Then, (4.2)
implies for any h € $y,

(4.3) the sequence {S,(h),n > 1} is convergent, p—a.e. ,

where,

Hy =clery{h € C(X) / IM < oo : V Radon measure m,

4.4
(44) |/h dm|* < M2f Rs(s,t) dm(s)dm(t)}
Finally 1f the covariance function Ry (s,t) is non degenerated

V' Radon measure m, // R;(s,t) dm(s)dm(t)m >0,
if and only if m # 0,

(4.5)

then

(4.6) Dy = C(x)
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REMARK. Assume

(4.7 T 10 (Fllzs = 0.
Then,
(48) Tim [1S0(s7)llae =0,

and therefore (4.2) will imply
(4.9) P{ lim S,(z)(t)=0, p—ae } =1

In the case where the operators S,,” s are generated by matrix summation
methods: :

Nnp,
vn > 1,8,(f) = Zan,kf oT*k,
k=1

Nn
where N, are positive integers, and lim Y a,, = 1, then (4.7) necessar-
n—oo k=1

ily implies that [ f du = 0. This simply follows from

[ $u(8) dusl = 13 anal | £ ] < ISPl < IS0l

Thus, by Lemma 2.7, P{ Jrs(t) du(t) =0 } = 1. And, for any h € Hy,
J h dpe = 0. Therefore (4.3) is strenghtened in this case, as follows

(Identification of the limit) Yh € %y, Jim. Sn(h) = /h dup = 0.

We note 1;; the one-dimensional subspace of L'(u) consisting of the func-
tions f € L'(u) such that [ f du = 0. If the covariance function Ry(s,t) is
a definite positive symmetric bilinear form on the dual space of C(X)N 17,
then

(4.6) Vh e C(x), lim S,(h) = / b dp.
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Since ( C(X) N1y ) = (C(%x)) ® (1;), (4.6') holds if,
V Radon measure m, VA € R,
(45)  [[ Relst) dmis)dmi(t) d(m+ An)(s)d(m + a)(t) >0,
if and only if m+ A # 0,
As a direct consequence of Theorem 4.1, we have

COROLLARY 4.2. Let (X, A, u,7) be a topological dynamical system,
where we assume that T is ergodic. Assume that (2.22) is satisfied for
some continuous pseudo-metric d on X, and that,

(4.10) Yu,v € %, d(r(u),7(v)) < d(u,v).

for all u,v € . Consider a sequence {Sn,n > 1} of continuous operators
from C(%) to C(X), that are commuting with 7. If,

(4.11) Vf e C(%), {Su(f),n > 1} is convergent, p—a.e.,
then, -
(4.7) for any f € Lip(d), the set Cy is a GC set of L*(u).

And the sequence {S,(f),n > 1} is converging in L*(n) to some S(f) €
L*(n) Conversely, if the Sp” s are uniformly norm-bounded and the se-
quence {Sn(f),n > 1} is converging in L*(u) to some S(f) € L*(n); then
(4.2) implies (4.3). When IE[f X f|F,.] satisfies (4.5), then (4.6) holds.

As a Corollary on the d-dimensional torus, we have

COROLLARY 4.3. Let I = [0,1[% be the d-dimensional torus
with the Haar measure Ay and let 79 = (Ty,,- -+ ,Tp,) be a rotation such
that @ = (61, -+ ,0a4) has rationaly independent coordinates. Let also
{S.(f),n > 1} be a sequence of continuous operators mapping C(11,) to
C(Ily) and commuting with the normal operator associated to Tp. Assume
that (4.1) with X = I1¢ is satisfied. Then,

(4.12) for any f € Lip(I1%), the set C; is a GC set of L*(\q).

And the sequence {Sn(f),n > 1} is converging in L*(u) to some S(f) €
L*(p).
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PROOF OF THEOREM 4.1. STEP 1. (Necessity)
By Proposition 2.5, for each t € %,

St = {(Sn(f),6e),n > 1},

is a real-valued Gaussian sequence with correlation function given by
alinea (2.18¢c). By assumption, for p-almost all t € X, S} is convergent
almost surely. In other words, invoking (2.18¢), Cy is GC subset of L?(u),
and we refer to the proof of Theorem 3.1 for the L?(u)-convergence of

{Sn(f),n > 1}-

STEP2: (Sufficiency)
From Proposition 2.5,

is a centered Gaussian sequence, with covariance function given by

IE{(Sn(zs), 6:)(Sm(xf), 6:)} = (Sn(f)s Sm(F)) (s

for p-a.e. t in X. Since C; is GC subset of L*(u), for p-almost all ¢ € X,
S} is convergent almost surely. By Fubini’s Theorem

P{w : S} is convergent, t p—a.e. } = 1.

Let pf be the image law of ¢ as well as H; its reproducing kernel Hilbert
space. Then, u; is a centered Gaussian Radon measure. And from the
Note following the Proposition 2.5,

H;={heC(x)/3IM < oo : V Radon measure m,
|/h dm? < M? //IE[f X f|Foxr] dm @ m}.
Since the operators are uniformly norm-bounded, the set
Feo ={y € C(%) : {Su(y),n > 1} converges},

is closed in C(X%). From [2], Corollary 2.2, we deduce F., 2 Hy, hence,
Few 2 Hy, and the assertion (4.3) is proved.
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When (4.5) is satisfied, then H; is everywhere dense in C(X). Thus,
9 =C(X%), and (4.5") simply follows.

PrOOF OF COROLLARY 4.2. This now is easily deduced by combin-
~ ing Proposition 2.4 and Theorem 4.1.

PROOF OF COROLLARY 4.3. It is a routine calculation to check that
Dudley’s sufficient condition is realized when taking the torus provided
with the Riemannian metric. Hence condition (2.22) is satisfied. It re-
mains to apply Corollary 4.2 for obtaining the conclusion.

4.2 — Maximal inequalities on H;

In the previous subsection, we showed the a.s. convergence of
{S,.(h),n > 1} on the r.k.h.s. H; when f is C-tight. We prove a maximal
inequality relatively to this space in the continuous case as well in the
LP?(p)-case.

THEOREM 4.4. Let f € C(X) (resp. LP(u) with 2 < p < 00)

be p-tight (resp. C-tight). Assume also that C; is a GB subset of
L?(n). Let {S,,n € IN} be a sequence of continuous operators from C(%)
to C(%), (resp. LP(p) to LP(p)) commuting with 7. Then, there exists a
K < o0, such that for any h € H;

(@14) | supISu(h)] o < K 3, (S [l

where, ¥U(z) = e — 1, ||.|lw,. is the Orlicz norm on (%, A, 1) associated
to the function ¥, ||.||., the Hilbertian norm on Hy, and

(4.15)
sup [|Sn(f)ll2
>1

. = 1
3(f, (Sa)nz1) = inf sup 0/ \/log m(m: [(Sn = Sm) ()2 < v) a

where the infimum is taken over all probability measures on IN, and is
finite.
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NoOTE 6. From the Banach’s principle, follows the fact that the
space F., N H; is closed for the Hilbert space topology on $;.

PROOF. The main ingredient in that proof consists with the fact that
the sequence {S,(z),n > 1}, viewed as a random sequence with basic
probability space (2 X X,B ® A, P ® u), remains a centered Gaussian
sequence. Consider the characteristic function of a linear combination of
the type 3°7_, fiSn,(zs). By the Proposition 2.5 for the case C(X), and by
(3.5) for the LP(u) case,

/exp{iu i fiSn, (xf)}d,udP :/exp {— %uz Zp: fifi{Sn, (f), Snj(f)>}dl~‘

Qxx = X b=
- 2
= exp { = 5u?ll 3 £iSn (£}

i=1

It is therefore a centered Gaussian sequence. Since Cy is a GB subset of
L?(u), by TALAGRAND’s characterization of the regularity of Gaussian
processes [24], we have for some universal constant C,

(4.16) I Sgll) lSn(Ff)' o, pon < ci(f, (Sn)n>1)s

where 0 < C' < oo is a numerical constant and J(f, (S,)n>1) is finite.
Therefore,

(4.17) E[ || igIﬂSn(If)l v 1 < C3(f, (Sn)nz1)-

Thus for some positive real R,

(418) P 5up[Su(es)| luw S R 3> 0.

Let O, = {h € H; : ||h]ls, < 1}. From [2], Corollary 2.1, the measur-
able set

(4.19) E={he C(x): “ ngl’lsn(h)l “\I/,u <R},

satisfies

(4.20) §0,, CE-E,
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for some 6 > 0. By homogeneity, for any z € H;,

(4.21) I ngl)'Sn(h)' o, < 2R/S,

which achieves the proof.

4.3 — Minimal systems

We shall consider matrix summation methods on minimal systems.
Let A = {ank,n,k > 1} be an infinite matrix of real numbers satisfying
the regularity assumptions defined by:

i) 1Al = sup [lanlly < oo,
n>1
o0
1) Jim ) ans =1,

where a, = {ank,k > 1}, n > 1. Let (X, B, u,7) be a topological dynam-
ical system (see section 2.3). We set

(4.22) Vn > 1, Vf € C(%), S;(f)zian,kaTk.
k=1

These operators are thus well defined.

Assume there exists a C(¥)-tight element f € C(%X). Our first goal
will be to collect some elementary facts on the r.k.h.s. H(X) of the
spectral process ty and to prove directly for any h € H; that the sequence
{S.(h),n > 1} is converging everywhere, under the additionnal assump-
tion that the system (X, B, u, 7) is minimal (each orbit {7"(z),n > 1} is
everywhere dense in X).

PROPOSITION 4.5. Let (X,B,u,7) be a topological dynamical sys-
tem, and assume that T is ergodic but not weakly mizing. Assume there
exists a C(X)-tight element f € C(%)

a) There exists a partial index J; such that the correlation function
of the spectral process Ry(s,t) = IEx;(s)rs(t) satisfies:

Vs,t € X%, Rf(S,t) = lim :]_]'_.Z f(TjS)f('Tjt),
i<J

Jg3J—00
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and
(4.23) p{t, € x | Vn,m € IN, Rs(7"(t,),7™(to)) = (for™, for™} = 1.

b) Let us define for any t, € X

(4.24)  HMeyp={h() = Rs(.,7(to)), (o);cs €RT J > 1}

i<J

When the system (%,B,p,T) ts minimal, H; is the closure of H;, ¢ for
the prehilbertian topology defined on H,, ¢.
Moreover, in that case, for any h € Hy

(4.25) [Plloo < £ ll2 11]4,
and,
- (4.26) Vm > 1 ||S5(R)llee < ISm(F)l2 [[A]],-

PROOF. a) By definition of Ry(.,.), (see Proposition 2.5 al. (2.18-a))
there exists a partial index J; such that

Vs,t € X, Rg(s,t)= _lim %Zf(TjS)f(Tjt)
isJ

J_fBJ—POO

Letting s = 7*t,, t = 7't, and applying Birkhoff’s Theorem to F(u) =
f(r*u) f(r'u), leads to

pito | By(r¥to, 7't,)= lim % > F(rt,) =/ Fdp=(for* for)} =1,
j<J

which gives (4.23).
b) We know that H; is the closure of
G={h()=> o;Rs(,s;), (a;)ics €R’ (s;);cs € X, J 21},
i<J

the closure beeing taken for the prehilbertian topology of G, which is the
same as the one of Hy, .
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We recall that it is defined by the scalar product

h = Zaij('>sj)’ k= Zﬂij('aSj) = <h) k) = Z ail@ij(shsj)

i<J J<J i,j<J

In order to prove that Hy = H,, ;, it is enough to prove that H;, s is
everywhere dense in G. Let g = 3. ; B;Rs(.,s;) and € > 0 be fixed. By

minimality, there exist integers ny,--- ,ns such that

€
4.27 sup |lre(85) — (Tt < —m———.
(427 29 ler(s9) = (00l S o

This is easily deduced from the fact that {7"(¢,),n > 1} is everywhere
dense in X and that the spectral process r; taking by definition values in
C(%) is d-continuous almost surely, thus d-continuous in L? -norm.

Set h=>B;Rs(.,"1,).
i<J
Then, lg = hlla < 3 1B IRs (. 85) = Ry, 78|
1<j<J
But, 1Rs (- 85) — Ry(, 7™to) || = lles(s5) — 2 (77920) | 2-
Hence lg —h|l. < e

Since € can be arbitrarily small, we therefore proved that H; = H,, ;.
Let

(4.28) h() =D a;Re(8) =Brp (D ajes(s;)]

isJ JsJ
By applying Cauchy-Schwarz inequality we get |h(u)| < Ry(u,u)2||h|,.

Therefore, by (4.23) sup |h(7™)| < || fll2]|]l2,
neN

which implies ||h]loo < ||f|l2]|%|l2, assuming the dynamical system is min-

imal. Hence (4.24) follows since H;, ; is dense in H;.
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Let us take s; = 77¢,, 1 < j < J in (4.28) and let y = 7™t,. We know
from (4.23), we can choose t, so that h(y) can be rewritten as follows

y) = a;{for™ fori).

i<J
We therefore have Sn(h)(y Z a;f o, Z an i f o™tk
i<J

which by using Cauchy-Schwarz inequality, implies

1Sn(R) ()l < N1 Y- eif ol Zazv kf o 7™l = [[Allu SN (H)l2-

i<J

Hence ||Sy (A)lleo < ||AllullSN (£)]l2, for all b € He,s-

Using the fact that H,, ; is dense in H; allows to conclude to (4.26).

COROLLARY 4.6. Let (X,B,u,7) be a minimal dynamical system,
and assume that T is ergodic but not weakly mizing. Let f € L*(p) with
[ f du = 0 satisfying

Jim 157() a0 = 0.

Then,

n—o0

(429)  Vhes;, /h dp =0 lim S7(h) = /h du = 0.

PROOF. This is nothing but a straightforward consequence of (4.26)
and (4.29).

In the above corollary, there is no assumption concerning the set
C;. In particular, we do not assume that this set is a GB or a GC set.
However, we can prove

THEOREM 4.7. Let (%, A,u,T) be a topological dynamical system,
where we assume that T is an ergodic automorphism. Assume there exists
an f € C(X) be C-tight. Consider a sequence {S,,n > 1} of continuous
operators from H; to Hy, that is commuting with 7. If,

(4.30) Vh € H;, {Sn(h),n > 1} is convergent, p—a.e. ,
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then,

(4.31) the set Cy is a GB set of L*(u).

PROOF. Since the arguments are similar to those given in the proof
of Theorem 3.1 in [31, Chap. IV, Theorem 1.2], we will just sketch the
proof.

Let h = Ry(.,t,) where t, € X will be fixed later on. Let us also
introduce, accordingly with (1.1°)

Fys(s) = —= 3 g, Ry (rs, 1,).
Vai

i<J

Since 7 is an ergodic automorphism, it is not difficult to see that (4.23)
extends to Z, namely

(4.23') p{to € X | Yn,m € Z, Rs(t"(L,), 7™ (to)) = (for™, for™)} =

The interesting fact to be derived from that property and the minimality
of the system is:

(4.32) p{toex | VjeIN,Vse X, Ri(r's,t,) = Re(s,77t,)} = 1.

Indeed: if s = 7™1,, then R;(77s,t,) = R;(19T™t,,t,) = (fo7it™ f) =
(for™, foT™7) = Rp(s,777t,). Hence Rs(77s,t,) = R;(s,77t,) on a set
of s which is everywhere dense in (¥,d). Since Ry is d-continuous, the
last equality occurs everywhere. This easily implies (4.32).

1
Therefore, ¢, can be chosen so that F;(s) = 77 ZQJRf (s, 777t )

i<Jd -
and thus “FJf”i Z 9:ig; R (77, 777t,).
5,j<J
So, by appealing (4.23’)
(4.33) E(||Fnlli) ZR o, 7t0) = || fII3,-

J<J

By Tchebycheff’s inequality P{||F4ll, > ||fll2,./€} <€, forall J > 1 and
e > 0. By the Banach’s principle, a non-increasing unbounded function
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C(€) can be defined, so that

@38 Wo<e<g Voer, u{swlSial> @l } <e

Combining these two properties and letting 0 < € < i, easily leads to
p{tex : P{ iglflsn(FJ,h)(t)I SCENfllaw } 21-2Ve} 2 1=/

for all J > 1. By applying the following evaluation valid for any Gaussian
vector G and any measurable semi-norm N (see [12])

P{N(@)<s}>0 — E{N(G)}< P{Nés)SS},
8C( £l
(4.35) IE[ igllﬂsn(FJ,h)(t)l < NES NGk

holds on a set X, of t’s of measure greater than 1 — /e.

Let A={1,2,...,N}. By Birkhoff’s Theorem and the commutation
assumption, we can find a measurable set Y, of measure greater than
1 — /€ such that on this set:

(436)  Vn,me A, |[[Sn— Snl(Fin)l2rp 2 %II[Sn = Sl ()2,

for all J large enough. Let Z be the isonormal process on L*(u). By
applying Slepian’s Lemma (see [9]) on the intersection of X, with Y,
leads to

16C ()| £l
(4.37) IE] :‘égz(sn(f)) ] < Vel —2/e)

The proof is achieved by letting N tend to infinity.
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