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Detaching Maps Between Spaces of Continuous Functions

E. BECKENSTEIN - L. NARICI

R1ASSUNTO: Siano C(S) e C(T') gli spazi delle funzioni continue, reali o complesse,
definite su due spazi di Tihonov S e T'. Un operatore additivo H : C(T) — C(S) é detto
sepamnte se, perz,z € C(T), zz=0 comporta HzHz = 0. In [3] e [4] si dimostra che,
se H é bzsepamnte (cioé se sia H sia H™" sono separanti), allora le compattificazioni
reali di S e di T' sono omeomorfe. Si riconosce inoltre che, se H é lineare ed S e T
sono compatti, allora H & continuo.

In questo lavoro si stabiliscono condizioni, pit deboli della biseparazione, tali pero
da assicurare che un operatore separante H sia continuo; si dimostra in particolare che,
se S e vT sono localmente compatti, S é connesso, H é iniettiva e “distaccante”, allora
H ¢ un omomorfismo debole, ed é continuo se T a compatto.

ABSTRACT: Let C(S) and C(T) denote the spaces of real or complex-valued con-
tinuous functions on the Tihonov spaces S and T, respectively. An additive operator
H : C(T) — C(S) 1is separating if, for T,z € C’(T) Tz = 0 = HzHz = 0. In [3] it
is shown that if H is a biseparating map (both H and H™" are separating) then the
realcompactifications of S and T are homeomorphic. If H is linear and S and T are
realcompact then H is continuous [4].

We investigate weaker conditions on a separating map H than biseparating which
imply that H is continuous. For instance, it is shown in theorem 4.2 that if S and vT
are locally compact, S connected, H injective and “detaching”, then H is a “weighted
homomorphism”; such a map is continuous if T is realcompact.

1 — Background

Maps H with the property that zy = 0 = HzHy = 0 are of interest
in several areas of mathematics and go by several names. For example,
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let u be a measure on some measure space. Linear maps H : L,[u] —
Lylu], 1 < p < oo, with the property that zy = 0, u -a.e. implies
HxHy = 0, p-a.e. were considered by BANACH ([9], p. 175) when he
proved that all isometries of L,[0, 1], p # 2, onto itself were of this type.
LAMPERTI [16] extended Banach’s result to the o-finite case and ARENDT
(6] subsequently called such maps Lamperti operators. Researchers in
vector lattice theory ([17], 18] and [2], for example) call maps H : E — F,
where E and F are vector lattices, such that |z| A |y| = 0 = |Hz| A
|Hy| = 0 disjointness-preserving operators or d-homomorphisms. There
is an extensive literature about linear disjointness preserving operators
in normed lattices. Another avenue evolved in the theory of rings of
continuous functions. In [10], in the context of developing a Banach-
Stone theorem for spaces C'(T) and C(S) of continuous functions on
compact O-dimensional spaces T' and S into a non-Archimedean valued
field, linear maps H : C(T') — C(S) such that zy = 0 = HzHy = 0
were said to have the disjoint cozero set property. For real-, complex- and
vector-valued spaces of continuous functions on Tihonov spaces, Banach-
Stone type theorems have been developed ([12], [13]) using what are called
separating maps: For real- or complex-valued continuous functions, and
a subalgebra W of C(T'), an additive map H : W — C(S) is called
separating if zy = 0 implies HxHy = 0; H is called biseparating if H is
bijective and H~! is separating. (For continuous functions taking values
in a Banach space F, only maps H defined on C(T', E) were considered.)
Biseparating maps play a crucial role in the following generalization of the
Gelfand-Kolmogorov-Hewitt theorem about ring isomorphisms of rings of
continuous functions:

e ([3], Prop. 2) If there is a biseparating map H : C(T) — C(S) then

the realcompactification vT" is homeomorphic to vS.

Separating maps — under their various aliases — are explored in
most of the references in the bibliography (among other places). Exam-
ples of separating maps include differentiation, ring homomorphism and
weighted composition. Integration is not separating since it maps tri-
angles into eventually constant functions. Continuous linear separating
maps must be weighted composition maps but as JAROSz showed in [14]
(see also [12], Ex. 3.6), there are plenty of discontinuous separating lin-
ear maps between spaces of continuous functions. Separating maps serve
as a general utensil for investigating rings of continuous functions and
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automatic continuity results between them. Their utility stems princi-
pally from the fact that a separating map H : C(T) — C(S) induces the
continuous support map h : S — BT (Definition 2.3) where 8T denotes
the Stone-Cech compactification of T. The properties of the support map
are developed in theorems 2.2 and 2.4. Weighted composition maps, maps
H: C(T) — C(S) of the form: z — w(z o h) for some weight function w
in C(S) and continuous h : § — T, are separating. They are not homo-
morphisms unless w is identically 1, so these are a genuinely wider class
of maps than the homomorphisms. If G = wH where H : C(T) — C(S)
is a homomorphism, G is called a weighted homomorphism where w is
the weight. As weighted composition maps are continuous and there are
virtually always discontinuous separating maps between C (T) and C(S)
([14], [12]), there are abundantly many separating maps which are not
weighted compositions. As illustrated in sec. 5 there are also plenty of
separating maps which are not biseparating. Our main concern here is
with the detaching map: a separating map H such that for s;,s; in 3,
there exist z,z € C(T) such that z and z have cozero sets with disjoint
closures in BT and Hz(s1)Hz(sz) # 0. The reason for interest in detach-
ing maps is that (theorem 2.4(f)) the support map h induced by H is
injective if and only if H is detaching.
We adhere to the following notation throughout.

e C(T) and C(S) denote the spaces of real- or complex-valued continu-
ous functions on the Tihonov spaces T and S, respectively, endowed
with their respective compact-open topologies.

e The identity map of C(T") or C(S), i.e., the function which assumes
the value 1 on S or T is denoted by e.

e H:C(T)— C(S) denotes at least a separating map.
e For any function z, coz(z) denotes the cozero set of .

¢ D = J{coz(Hz):z € C(T)} = S except in Sec. 2. We note that
D = S if He never vanishes.

¢ For any ¢ € T', t" denotes the evaluation map C (T') — K, z + z(t).

e If z € C(T') or C(S), then vz and Bz denote the continuous exten-
sions of z to vT" and BT or vS and S, respectively.
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2 — Preliminary Results

For a continuous linear functional f (or a measure) there is a well-
known (see, for example [11], pp. 92 and 132) notion suppf of support
of f. It can be used to represent f(-) as [, (-) du for some measure
u. Arhangel’skii [6] developed a notion of support supps C T of a point
s € S with respect to a linear map H : C(T) — C(S) between spaces
of real-valued continuous functions. He then considered the support map
s + supp s of S into P (T'), the power set of T'. The support map is of
fundamental importance in the theory of £ -equivalence and C,-theory
([8], [7]). In the vector lattice context, ABRAMOVICH ([1], Prop. 3.1)
independently showed that a disjointness-preserving map has a support
map associated with it and developed a special case of Arhangel’skii’s
support map. (These results are extended in [15], Lemma 2.3.). An as-
sociated support map h for separating maps H : C (T) — C(S5), was
developed independently in [4], Th. 2.4, with no assumptions of com-
pactness which generalized an earlier version ([12], Prop. 2.1) for the
compact case. Some basic properties of separating maps are collected in
theorem 2.4. The proofs are similar to those in [12] and [14] for compact
T and S. We need not assume that D = S in this section.

DEFINITION 2.1. An open subset U of BT is called a vanishing set
for s"o H if, when z € C(T) and coz(z) C U, then Hz (s) =0 . The
complement in BT of the union of the vanishing sets for s o H is called
the support of s"o H, denoted supps”o H.

THEOREM 2.2 [12]. For any s € D, supp s"o H is a singleton.

PROOF. Let s € D and {U; : i € I} be the family of vanishing
sets for s "o H. If supps "o H = { then U,c; U; covers fT' . Thus,
finitely many of these sets {U;, : j = 1,...,n} cover BT. Let {z; : j =
1,..,n} denote the continuous decomposition of the identity e € C(6T)
associated with the sets {U;, : j = 1,...,n}. It then follows that for all
z € C(T),H=z(s) = ¥j_, Hzz;(s) = 0 which contradicts the fact that
s € D. Thus, supps”o H # 0.

To show that supp s "o H is a singleton, suppose that ¢;,?, € supps’o
H. Let U and V denote disjoint neighborhoods in BT of t;and t,, re-
spectively. Since vanishing sets of s "o H are disjoint from supps "o H,
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neither U nor V' is a vanishing set of s"o H. Thus, there exist z, 2 € C(T)
such that coz(z) C U,coz(z) C V, with Hx(s), Hz(s) # 0 . But this
contradicts the separating property of H. 0

DEFINITION 2.3. The map h: D — (T, s — supps o H is called
the support map of H and we reserve the notation h for it. To avoid
trivialities, we assume throughout that S and h(S) are infinite sets.

THEOREM 2.4 ([3], [4], [12]).  The properties of the support map

h:D — BX of a separating map H : C (T) — C(8S) include:

(a) h is continuous.

(b) For any z € C(T) and any open subset U of X, if =0 on UN X,
then Hx = 0 on h™'(U). Consequently, if z,w € C(T) with z = w
on U, then Hz = Hw on h=1(U).

(c) For any z in C(T), h(coz (Hz)) C clgx (coz (x)).

(d) For all s € D, h(s) = Moccos(z) Clor c0Z(T).

(e) clgr h(D) # BT if and only if there exists a nonempty open subset U
of BT such that for all x in C (T),with coz (x) C U , it follows that
Hz = 0. Thus, if H is injective, then h(D) is dense in BT. If, in
addition, D = S and S is compact, then h is surjective.

(f) h is injective if and only if H is detaching.

(8) If s"o H is continuous, then h(s) € T. Let S, = {s € S : s"o H is
continuous} and Sy = {s € S: 5”0 H 1s discontinuous}.

(h) If H is linear and h(S) C T, then S, is closed, and for each s € S,,
Hax(s) = a(s)z(h(s)). Also, H is continuous if and only if Sy = 0 and
H is a weighted composition map of the form Hz(s) = a(s)z(h(s))
forallz € C(T') and s € S.

(i) If L is a compact subset of S, and h(L) C T then LN S, is closed
and h(L N Sy) is a finite subset of T.

PRrROOF. We prove only (g), (h), and (i) as the remaining parts can
essentially be found in [14] and [12].

(g) We show that if h(s) ¢ T, then s oH is not continuous. If h(s) ¢ T
then, for any compact set K C T', there exists an open neighborhood Ux
C BT of h(s) which is disjoint from K. It can easily be shown that U
is not a vanishing set of s"o H. Thus, there exists zx € C(T') such that
coz(zk) C Uk and Hzk(s) # 0. By choosing a sufficiently large integer n,
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we can multiply zx by n and therefore assume that |Hzy (s)| > 1. Order
the family K of compact subsets of T by set inclusion. Then the net
{zx : K € K} — 0. Since Hzg(s) »0, the map s"o H is discontinuous.

(h) The form of s "o H for continuous s "o H follows exactly as
in [12]. Thus, if a net s, of points of S, converges to s € S, then
by the continuity of Hz, a, and z, and because h(s) € T, it follows
that Hz(s,) = a(sa)z(h(54)) = Hz(s) = a(s)z(h(s)). Thus, s € S..

(i) Suppose H is linear, h(S) C T, L is a compact subset of S,
and h(L N S;) is an infinite subset of T. Then, as in [14], there is a
sequence h(sy) € h(L N Sqy such that h(sy) € U, C BT where the open
sets Uy, have pairwise disjoint closures. Continuing as in [14], there exist
zy € C(T) with coz(zy) C Uy which can be chosen such that the functions
zy converge uniformly to 0 while Hzy(s;) — oo. This is true because
h(sg) € T and s, € Sq. But of course, Y32,z € C(T'). Because H is
separating and the functions z, have disjoint cozero sets, H(} 1o, zx) is
unbounded on the compact set K which is a contradiction. 0

3 — Topological Preliminaries

LEMMA 3.1. (a) Let (U,) be a sequence of open subsets of T with
clpUpyr C Uy and MNpenUn = 0. Let z, € C(T) with clpcoz(z,) C
U, —clpUpi1. Then 3, cnzn € C(T).

(b) If S is pseudocompact and g : S — T is any continuous map then
Clyr(9(S)) € oT.

PROOF. (a) Suppose that ¢t € T. Since N,en Un = 0 and clg Upyq C
U, for all n, t ¢ clp Uy for some k. Since coz(z,) C Uy for n > k, there
exists a neighborhood U of ¢ which fails to meet coz(z,) for all n > k.
From the continuity of Zﬁzl Tn , it follows that ) .y % is continuous
at t: if t, is a net of points converging to ¢, we may assume that t, € U
for all t, 50 (e Zn)(ta) = Sh_ 2, (t,) for all t, and (¥, cn Zn) (ta) =
S Za(te) = SF_ 2 (t) = (Z,en Za)(t). Continuity of 3, o Zn at ¢
for all t € T follows.

(b) Suppose that there exists u € clgr g(S) such that v € T — vT.
Then there exists a descending sequence of neighborhoods U, of u such
that clgr Upy1 C Uy, and (N,,en Un) NT = 0. Because u is a limit point of
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g(S) C T, we may assume that, for each n, there exists s,, € S such that
9(sn) € U,— clgr U,y By the Tietze extension theorem, there exists
T, € C(T) such that clgr coz(z,) C Up— clgr Uny1 with z,(g(sn)) =
n. By (a), Soen@n € O(T). But (Spon 2)(9(50)) = Za(9(sn) = n
and (3,cn2Zn) ©g € C(S) is unbounded on S. This contradicts the
pseudocompactness of S. 0

LeEMMA 3.2.  As usual, let h be the support map of H : C(T) —
C(S). Then
(a) if S is pseudocompact and for all s € S, h(s) is a limit point of h(S),
or
(b) if S 1s Fréchet and H is detaching,
then h(S) C vT.

PROOF. (a) If there exists s € S such that h(s) € BT — vT then
there exists a descending sequence of neighborhoods U, of h (s) such that
clgr Upyy C U, and (N,en Un) NT = 0. Because h (s) is a limit point of
h(S) we may assume that, for each k, there exists s € S such that h(s;) €
Uk— clgr Ukt1. Then there exist zx € C(T') such that clgr coz(zg) C Up—
clgr Ugyy with |Hzy (h(sg))| > k. By Lemma 3.1 (a), 3 ,en Zn € C(T).
But |H ((Spen 2) (s = |H (s4((s))] > E and H (Ser 7)€
C(S) is unbounded on S which is a contradiction.

(b) Suppose that for some s € S, h(s) € BT — vT. Then there exists
a descending sequence of neighborhoods U, of h(s) such that clgr U,4+1 C
U, and (NpenU,) NT = 0. Because S is Fréchet and H is detaching,
if s, € S with s, — s, the points h(s,) are distinct points by theo-
rem 2.4(f). Therefore, we may assume that h(s,) € U,— clgr Unyr .
Let 2z, € C(T) be such that Hz,(s,) = n. By the Tietze extension the-
orem, there exist y, € C(T) such that clgr coz(y,) C Un— clgr Unsr
with y, = 1. on a neighborhood V' of h(s,) with V' C U,— clgr Up41.
Letting y,z, = z,, by theorem 2.4(c) it follows that Hz,(s,) = n. By
Lemma 3.1(a), S .cn2n € C(T). But H(Y2, x,)(sk) = Hzp(sk) = k
— H(3> 02, z,)(s) which is a contradiction. a0

LEMMA 3.3. Let h be the support map of H : C(T) — C(S). If
(a) S is connected, or
(b) S has no isolated points and H is detaching,
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then for any s € S, h(s) is a limit point of h(S).

PROOF. Recall that both S and h(S) are infinite.

(a) Since S is connected, the complement C (h~'{h(s)}) is neither
empty nor closed. Thus, suppose that s’ is a boundary point of
C(h™*{h(s)}) andlet U be any neighborhood of h(s). Let W be a
neighborhood of s’ chosen such that A(W) C U (h is continuous and
h(s) = h(s")). Because W N Ch~'{h(s)} # 0, there exists s* € W N
Ch~'{h(s)}. Consequently h(s*) # h(s) € U and h(s) is a limit point of
h(S).

(b) This is trivial, as h is injective when H is detaching (theorem
2.4(f)). 0

4 — Main Results

Our main results theorems 4.1 and 4.2. are of circumstances under
which a separating map H is continuous. In theorem 4.1 we hypothesize
that a certain topological space S be covered by a family K ={K; : 7 € I}
of compact sets where each K, is a nonsingleton with no isolated points
in its relative topology. We mention that these conditions are satisfied in
any Hausdorfl topological vector space. Another situation in which the
hypothesis is satisfied is the following: Let i be the family of open subsets
with compact closure of a locally compact space S without isolated points.
Then the collection K ={clsU : U € U} is such a family.)

THEOREM 4.1. Let H : C(T) — C(S) be linear and detaching.
Let S be covered by a family K ={K, : i € I} of compact sets where each
K; is a nonsingleton with no isolated points in its relative topology.

(a) If S is pseudocompact or

(b) S is Fréchet
then H is a weighted homomorphism. If, in addition, T is realcompact
then H is continuous.

PRrROOF. We note first that the general function in C(vT') is v for
z € C(T). Consider the map G : C(vT) — C(T) — C(S) where
Guvz = Hz. Since T = [uT it follows by theorem 2.2 and theorem
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2.4(d) that the separating map G has the property that its support map
g is the same support map h associated with H. In fact,

{h(s)} = () dpreoz(z)C [ cpreoz(vz)={g(s)}

s€coz Hx s€coz Hr

Since {h(s)} and {g(s)} are singletons, h(s) = g(s).

S, and Sy denote the continuity and discontinuity points in S of the
maps s o G. Since H is detaching, each point h(s) = g(s) is a limit point
of h(S) = ¢(S). By Lemma 3.2, in either (a) or (b), g(S) = h(S) C vT.
Consider any compact subset K € K of S. Since g(K) = h(K) C vT, by
theorem 2.4(i) it follows that g(K N.S,) is finite. But as g = h is injective
[theorema 2.4(f)], by theorem 2.4(h,i) and the fact that K € K, it follows
that KNS; = 0 for all K. Hence S; = @) and therefore G is a weighted
composition map or H is a weighted homomorphism. If T' is realcompact,
then H = G. a

THEOREM 4.2. Let H : C(T) — C(S) be linear and detaching, vT
be locally compact and S be locally compact without isolated points. Then

(a) H* : C(T) — C(h™'(vT)) , z — Hz |p-14u1), 15 @ weighted
homomorphism.

(b) Suppose He = a never vanishes. If S is connected and S, # 0,
then H is a weighted homomorphism. If T 1is realcompact, then H is a
wetghted composition map.

(c) If H 1s injective, He = a never vanishes and S is connected, then
h=Y(vT) = g=™WT is a dense nonempty subset of S, and H is a weighted
homomorphism. If T is realcompact, then H is continuous.

PROOF. (a) As in the previous theorem, let G : C(vT) — C(T) —
C(S) where Guz = Hz for all z € C(T). Once again, g is the support
map of G, S, and S; denote the sets of continuity and discontinuity
points in S of the map s"o G, and g = h.

Generally, a locally compact dense subspace of a compact Hausdorft
space is open. Therefore, as vT is locally compact, vT is open in 81" =
B (vT) . Therefore h='(vT) = g~ *(vT') is open in S. As in the previous
theorem, consider any compact neighborhood K, C h=*(vT') = g~} (vT).
Since g(K,) = h(K,) C vT, by theorem 2.4(i) it follows that g(K, N Sy)
is finite. But as g = h is injective [theorem 2.4(f)], by theorem 2.4(h)},(i)
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as well as the hypothesis on K, it follows that K, N S; = @ for all K.
Thus h~'(vT') contains no points in the set S;. Hence, by theorem 2(h),
Guz(s) = a(s)vz(h(s)) forall z € C(T) and all s € ™! (vT) = g~ (vT).
Thus, part (a) follows.

(b) Suppose that S is connected. By hypothesis, He = a never van-
ishes. Consequently, we may replace H by the separating map (1/a)H
and assume that He =e. If S, # 0, A1 (vT) = (g) "' (vT) is a nonempty
open subset of S. As S is connected, if S; # ), there must exist
So € (clg ™1 (vT)) N Sy. Thus, there exists a net s, € h='(vT) = S, where
sy — S, € Sy. Since Guz € C(S), Guz(sy) = vz(h(sy)) — Guz(s,).
Since s, ¢ S. = h™'(vT), h(s,) ¢ vT. But it is well known that if
h(sy) — h(s,) ¢ vT, there exists vz € C(vT) such that vz(h(sy)) —
oo and we have arrived at a contradiction. Thus, h~!(vT) = § and G is
continuous from which it follows that H is a weighted homomorphism. If
T is realcompact, then G = H.

(c) Since H is injective, by theorem 2.4(d), h(S) is dense in BT As
we are assuming that S contains no isolated points and h is injective,
the continuity of h leads to the conclusion that each point h(s) € h(S)
is a limit point of A(S). Since vT is open and dense in BT, the fact that
h(S) = g(S) is dense in BT leads to the conclusion that h(S) NvT # @
and therefore that S, # ) (recalling once again that as in (b), the set S,
applies to G). Now we simply apply (b). a

We observe that the previous proofs are valid for any complete non-
trivially valued non-Archimedean field. There are a few places where it is
necessary to assume that the integers in the field are nontrivially valued
because H is only taken to be additive and integers of arbitrarily large
valuation are critical to the argument (e.g. theorem 2.4(g)). We deal
with that by taking H to be linear in such results. It is not a serious loss,
as the main results are for H linear. As observed, a separating continuous
map is a weighted composition map. So far as the authors know, the form
of a continuous additive separating map has not yet been determined.

5 — Examples
5.1 - Discontinuous Separating Linear Functional

For t € BT, let € C(T) be such that Sz(t) = 0 with Bz not locally
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equal to 0 at ¢. Let I' be an ultrafilter containing the neighborhoods of ¢.
Let N = {w € C(T) : w = az on GNT, some G € I, some scalar a}. N is
a subspace of C(T). Let M be a complementary subspace to N in C(T).
Thus C(T) = N + M where NN M = 0. If z € C(T), then z = w +m
for unique w € N, m € M. The linear functional f(z) = f(w) = a is
separating and discontinuous from the properties of I' as shown in ([12],
Example 3.6).

Now let S = {s} and define H : C(T") — C(S) by taking Hz(s) =
f(z) for any z € C(T). Clearly h(s) = t. Thus, it is possible for the
support map h to take values at any point in BT for which there exists a
function which is 0 at the point but is not locally constant. a

5.2 - H discontinuous and detaching, S finite

Suppose {t1,...,tn} C BT. Associated with each ¢; is a function
z; € C(T) such that Bz;(t;) = 0 and Bz; is not locally 0 at ¢;. Construct
discontinuous separating linear functionals {fi, ..., f»} as in Example 5.1.
For the discrete space S = {s1, ..., 8o} the map H : C(T) — C(S), defined
by taking Hz(s;) = fi(z) for all < and any z € C(T) is separating.
Moreover, h(s;) = t; for all 1. As s;"0 H = f; is discontinuous for all ¢, H
is detaching and discontinuous. a

5.3— H continuous and detaching, S finite

Let {t1,...,t,} be a subset of T and let S = {t,,...,t,}. Define H :
C(T) — C(S), x > z |s. The support map h of H clearly satisfies
h(t;) = t; for each . Also, the linear functionals s; "o H are clearly
continuous. 0

5.4 — H discontinuous separating surjective homomorphism

Let T not be realcompact and H : C(T) — C(vT), z > vz. The
support map h on S = vT is then s — s. For s € vT' =T, s”0 H is not
continuous. For all other s, s”o H is continuous. O
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5.5— H discontinuous, not detaching

Let T = [0,1] and S = [0,2]. Let f be a discontinuous separating
linear functional constructed using a function z € C(T') such that z(1) =
0 as in Example 5.1. For x € C(T), define H as follows: )

z(s), 0<s<1

Hz(s) = { _
Fl@)+(2—s)(2(1) = f(z)), s=1

It follows that h(s) = s for 0 < s < 1, and h(s) =1 for s > 1. The linear

functionals s "o H are continuous for s < 1 and discontinuous for s > 1.

S is Fréchet and connected, but H is not detaching. 0

5.6 — H continuous, not surjective

Let T = R and S = R — {r,} where r, is any point in R. Let
H : C(T) — C(S) where Hz = z |s . The support map is the map
s — s. In this example h and H are continuous and injective, but
neither is surjective. In fact, there is a function z € C(S) which is un-
bounded in any punctured neighborhood of 7, and therefore cannot be
continuously extended to T'= R. If z,z € C(T) then zz = 0 if and only
if HzHz = 0. Thus, the continuous operator H would be biseparating,
if it were surjective. The authors know of no bijective separating oper-
ator which is not biseparating, and have shown in a number of cases (S
connected or pseudocompact, T ultraregular) that a bijective operator is
biseparating. 0

6 — Conjecture

If the realcompactification of a locally compact connected space T’ is
locally compact, then T' is realcompact.
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