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PRESENTAZIONE: Con questo articolo si prosegue nella politica editoriale di pub-
blicare anche lavori di rassegna ed orientamento alla ricerca su argomenti di attualita
scientifica.

L’articolo ¢ tratto dal testo di una conferenza che I’Autore ha tenuto nella “Gior-
nata di Geometria Reale e Complessa” organizzata presso I'Universita “La Sapienza”
di Roma il 14 ottobre 1994.

Una varietd riemanniana a quattro dimensioni dotata di una struttura quasi com-
plessa J, compatibile con la metrica g, & una superficie Kihaleriana se e solo se J &
parallela nella connessione di Levi-Civita.

Un problema centrale della geometria delle superficie complesse ¢ quello di de-
terminare quali superficie complesse compatte possano essere dotate, nel modo appena
descritto, di una metrica Kihleriana per la quale la traccia del tensore di curvatura
di Ricci si annulli (scalar flat Kdhler surfaces, SFK ). Dal punto di vista geometrico
questa proprietd puo essere espressa come il fatto che il volume delle sfere geodetiche
in M cresce come quello delle sfere euclidee, fino al secondo ordine, proprio lo stesso
ordine con cui la metrica Kéhleriana approssima quella euclidea.

L’importanza di tale studio é adeguatamente giustificata da diverse proprietd in-
teressanti delle superficie SFK:

- le metriche SFK sono metriche critiche nel senso di Calabi, ed in particolare sono
minimi assoluti della norma L? della curvatura scalare

- le metriche SFK sono minimi assoluti del funzionale riemanniano classico (energia
totale associata al tensore di curvatura di Riemann) e del funzionale conforme classico
(associato al tensore di curvatura di Weyl).

- le metriche SFK danno soluzioni delle equazioni di Einstein-Mazwell

— le superficie SFK sono caratierizzate da una proprietd olomorfa del loro spazio twisto-
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riale. Una superficie complessa compatta che ammette una metrica SFK ¢ necessaria-
mente una superficie rigata.

In questo articolo vengono posti in rassegna i risultati concernenti tre questioni di base
che devono essere considerate preliminarmente se si vuole affrontare il problema della
determinazione delle superficie complesse compatte suscettibili di essere dotate di una
metrica SEK dal punto di vista degli spazi twistoriali:

- determinare condizioni sufficienti affinché lo scoppiamento di un punto in una super-
ficie SFK sia SFK,

- (CPy x Sy)#CP; ¢ SFK? (qui # denota la somma connessa, CPs il piano proiettivo
complesso con l'orientazione opposta a quella naturale ed S, é una superficie di Rie-
mann compatta di genere v > T5.

— Una superficie rigata di genere y <1 & SFK?

Il risultato principale che viene presentato in questo lavoro é stato ottenuto in
collaborazione con Kim e LeBrun e stabilisce che metriche SFK esistono su opportuni
scoppiamenti di una qualsiasi superficie rigata. La dimostrazione é basata su metodi
twistoriali e sulla teoria delle deformazioni di coppie di spazi con singolaritd a incroci
normali

ABSTRACT: A compact complex surface with non-trivial canonical bundle and a
Kahler metric of zero scalar curvature must be a ruled surface. It is also known that
not every ruled surface can admit such extremal Kdhler metrics.

In this paper we review recent joint work with Kim and LeBrun in which deforma-
tion theory of pairs of .ging_ular complex spaces it is used to show that any ruled surface
(M, J) has blow-ups (M, J) which admit Kihler metrics of zero scalar curvature.

1 — Preliminaries

We would like to report on some recent progress made by the author,
Jongsu Kim and Claude LeBrun about the following:

MAIN QUESTION.  Which compact complex surfaces admit Kdhler
metrics of zero scalar curvature?

The object of our study is then a compact four-dimensional man-
ifold (M,g,J) equipped with a riemannian metric g and a compatible
almost complex structure J - i.e. an endomorphism of the tangent bun-
dle J : TM — TM satisfying J> = —id. and J*g = ¢ - such that J
is parallel with respect to the Levi-Civita connection of g: VJ = 0. It
is well known that this condition forces J to be a complex structure on
M so that there are complex coordinates z;, z; with respect to which J

KEY WORDS AND PHRASES: Kdhler metric — Twistor space.
A.M.S. CLASSIFICATION: 53C55 — 32125
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w(X,Y) = g(X,JY) is also parallel and therefore closed. In this way
(M, g,J) becomes a compact Kihler surface and from now on we will fix
on M the orientation defined by the complex structure J.

becomes multiplication by 4 on <

Finally, we require that the scalar curvature of the metric g - i.e
the trace of the Ricci-curvature - vanishes identically: s = Scal(g) =
gklRiﬂ = 0. Geometrically, this means that up to order 2, the volume of
geodesics balls in M grows like the volume of geodesic balls in flat-space.
A scalar-flat Kahler surface is then a complex surface which admits a
metric with the above properties.

1.1 - Motivations

We will take the point of view that one of the goals of riemannian
geometry is to look for metrics with some “nice” property and then try
to equip a given manifold with such a “canonical” metric. For example
it 1s often very useful to know that a Riemann surface admits constant-
curvature metrics or that a K3 surface admits a Ricci-Flat Kahler metric.

In order to motivate our work, let us now point out some nice prop-
erties of scalar-flat Kéhler metrics on compact 4-manifolds:

1.1.1. Scalar-flat Kihler metrics are critical metrics in the sense of Calabi
[6] because of course they are absolute minima of the L2-norm of the scalar
curvature. ‘

Furthermore any Ricci-flat Kéhler metric is certainly scalar-flat so that we
can also consider the classification problem of scalar-flat Kahler surfaces
as a generalization of the following problem due to Calabi and which
was completely solved by Yau: in each Kahler class of a compact Kahler
manifold M there exists a unique Ricci-flat Kahler metric if and only if the
first Chern class vanishes in real cohomology: cF(M) = 0; if and only if ,
in the case of surfaces, M is a complex torus, a K3 surface or one of their
finite quotients: hyperelliptic surfaces and Enriques surfaces. In light of
this result we will only consider compact scalar-flat Kahler surfaces with
¢l = 0 and use the following terminology, see also Remark 2.6.
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NoTATION 1.1.2.  From now on a SFK surface M will denote a

compact complez surface admitting Kdhler metrics of zero-scalar curva-
ture which are not Ricci-flat - i.e. with ¢;(M) # 0 € H*(M,IR).

1.1.3. Let M be a compact 4-manifold and consider the space of Rieman-
nian metrics on M modulo homothety then:

scalar-flat Kdhler metrics are absolute minima of the following rieman-
nian L2-functionals.

The total energy functional

(1) /M | R|[2dvol

and the conformal energy functional

2) /M W |2dvol

where R and W are respectively the Riemann and the Weyl curvature
tensor of the metric. The above is a consequence of the Gauss-Bonnet
formulas — given below — which relate the Euler characteristic x and the
topological signature 7 of the four-manifold M with the decomposition -
also given below - of the curvature tensor R into irreducible components
under the action of SO(4)), see [19] for all the details.

This curvature decomposition stems from the fact that so(4) is not a
simple Lie algebra: on any oriented riemannian four-manifold (M, g, or.)
the bundle of 2-forms splits into two subbundles

where A2 denotes the +l-eigenspace of the Hodge-star operator % :
A*M — A?M since x* = id.; sections of A% are called (anti-)self-dual
2-forms.

The famous gauge theory of Donaldson and the very recent one of
Seiberg-Witten [36] show that the above decomposition has very strong
consequences on the differential geometry and topology of four-manifolds
coming from the fact that the curvature of a connection is a bundle-valued
2-form.
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In a similar way one can consider the curvature operator of a rieman-
nian manifold as a symmetric endomorphism of 2-forms R : A> — A? and
in the four-dimensional case use the decomposition A% = A2 @ A? to split
R into four blocks of 3 x 3 matrices:

W,+5I R,
(4) R=
'Ry  W_+=I

here s is the scalar curvature, R, the trace-free part of the Ricci tensor and
W =W, 4+ W_ is the Weyl tensor of the metric.
We can now write the Gauss-Bonnet formula in four-dimension:

_ 1 2 2

(5 (M) = g5 [ WP = W
(© (M) = o [ WP 4171 4 5~ SR
X = 8w Jy ST Tl

1.1.4. Further motivation comes from Gravitational Physics because sca-
lar-flat Kdhler metrics give solutions of the Eienstein-Mazwell equations,
[19], [20].

1.1.5. But for us the main technical motivation which was the key ingre-
dient of the new constructions of SFK surfaces we wish to present here
comes from the twistor theory of PENROSE [27] which we briefly describe
now:

DEFINITION 1.1.6. A riemannian metric g on a four-manifold M is said
to be anti-self-dual if W, = 0.

These metrics are of interest not only because they minimize the con-
formal energy functional (2) but also because they provide a strong link
between four-dimensional riemannian geometry and three-dimensional
complex geometry. This is achieved thanks to the twistor theory of PEN-
ROSE [27] and the following basic result of Atyiah-Hitchin-Singer.

THEOREM 1.1.7.  [1] The twistor space (Z,]) of the oriented rie-
mannian 4-manifold (M, g,or.) is a complez 3-manifold if and only if the
metric g is anti-self-dual.
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At this point we should say that the twistor space (Z,J) is a S?—bun-
dle over (M*, g, or.) which can be defined as follows. As a smooth mani-
fold Z is the bundle of almost complex structures on M which are com-
patible with the given metric and orientation

(1) Z=2Z(M,g,or.):={J e SO(TM)|J? = —id.} = SO(TM)/U(2)

and we will denote by ¢t : Z — M the ‘twistor fibration’.

The ‘tautological’ almost complex structure J of Z is constructed in
the following way: the Levi-Civita connection of g gives a splitting of each
tangent space of Z = SO(T'M)/U(2) into horizontal and vertical part. If
z € Z with t(z) = p we then write T,Z = H @ V; here V is the tangent
space to the fiber t7'(p) & CP; and therefore comes equipped with a
natural complex structure J,, while the horizontal space H is identified
to T,M via t, and we let J; be the complex structure on T,M = H
defined by the point z itself. Finally we set J = J;, @ J, and call it the
. ‘tautological’ twistor complex structure on Z; theorem 1.1.7 says that the
Nijenhuis tensor of J vanishes identically if and only if g is anti-self-dual.

Finally, the link between anti-self-dual - and therefore twistor theory
- and SFK metrics is provided by the following result of Gauduchon.

ProposITION 1.1.8.  [10] A Kahler surface (M,g,J) is anti-self-
dual, with respect to the complex orientation, if and only if the scalar
curvature of g is identically zero.

As a consequence the twistor space of a SFK surface is a complex 3-
fold and in fact our constructions are heavily based on Proposition 1.1.12
which characterizes SFK surfaces, compact or not, by means of a holomor-
phic property of their twistor spaces; first we need the following simple
observation.

If we think of a compatible hermitian structure of (M,g,or.) as a
section of the twistor space Z it can be shown [4] that the image ¥ :=
J(M) is a complex hypersurface of Z; similarly let ¥ := —J(M) be
the image of the complex structure —J. Then we consider the effective
divisor X = £+ of Z and let X also denote the associated holomorphic
line bundle. Using the facts that X meets every fiber of the smooth
fibration t : Z — M - notice that ¢ is never holomorphic - in exactly
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2 points and that Z is always a spin manifold, one can show [32] that
a(X) = —%CI(K z) where as usual K; denotes the canonical bundle
of holomorphic 3-forms on Z and has a square root because Z is spin.
Finally we have:

1
THEOREM 1.1.9. [32] X and —= K5 are isomorphic as holomorphic

line bundles on Z if and only if the metric g is conformal to a SFK
metric.

The strength of the twistor construction is that Theorems 1.1.7 and
1.1.9 have a converse. More precisely let us pose the following definition,
see [12]

DEFINITION 1.1.10. A complex 3-manifold Z is called a twistor
space if the following conditions hold:
(i) there ezists a fized-point free anti-holomorphic involution o : Z — Z.
(ii) Z s foliated by o-invariant CPy’s with normal bundle v = o) @
o).

The reason is that starting from Z we can reconstruct the 4-manifold
M, its orientation and conformal class [g] as follows: the CP;’s above
form a smooth complex 4-dimensional family M of submanifolds of Z
by Kodaira’s theory [13] and if we restrict our attention to those fibers
which are invariant under o we obtain a real 4-manifold M together
with a smooth projection ¢ : Z — M. Finally, the conformal class [g]
of the anti-self-dual metric and the orientation of M come again from
Kodaira’s theory by identifying the tangent space of T, M with the real
part of H°(CP;,0(1) ® O(1)) = C*. More precisely the anti-self-dual
conformal metric [g] is completely determined by the requirement that a
complez tangent vector v € C® TM = TM is null i.e. g(v,v) =0 if and
only if the corresponding section in H°(CP;, O(1) & O(1)) has a zero.

Putting this discussion together with Proposition 1.1.8 and Theorem
1.1.9 we have that

ProprosITION 1.1.11. Constructing o SFK surface (M,g,J) is
equivalent to construct a twistor space Z, that is a complex 3-fold as in
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1.1.10, togljether with a reducible hypersurface X which is linearly equiva-
lent to —§K Z.

This proposition lies at the heart of our constructions which will be
described in the last section.

REMARK 1.1.12. We have insisted that SFK does not include the
Ricci-flat Kahler case. However proposition 1.1.12 certainly holds for
Kahler metrics with vanishing Ricci tensor as well. To distinguish be-
tween SFK and Ricci-flat metrics one has to look at the algebraic di-
mension a(Z) of the twistor space. The result is that a(Z) = 0 for SFK
surfaces while a(Z) = 1 in the Ricci-flat case [32], [28].

1.2 — Spin and Spin.-structures

It is also useful to describe the twistor space of (M*, g,or.) in terms
of spin bundles. The first observation, see also 1.1.3, is that the double
covering of SO(4) splits as Spin(4) = SU(2) & SU(2) and the associated
two irreducible representations of SU(2) on IR* = H are given by left and
right multiplication by unit quaternions - the unit sphere SU(2) = S® C H
- and we indicate them by SU4(2).

Assume for a moment that M is spin - i.e. there is a principal
Spin(4)-bundle Spin(M) which is a double covering of SO(M) - this is a
topological condition equivalent to the vanishing of the first two Stiefel-
Withney classes w; (M) = w3 (M) = 0, then the spin bundle also splits as
a fiber product over M:

Spin(M) = SU# (M) x SUy (M)

where SUF (M) are the principal bundles associated to the above repre-
sentations of SU(2) on IR* = C2 = H. Now for the twistor space of M we
have

Z = SO(M)/U(2) = Spin(M)/U(1) x SU(2)
= SU; (M) x SU; (M)/U(1) x SU(2) = SU; (M)/U(1) = P(S,)

This shows that Z can also be thought of as the projectivization of the +%-
spin bundle S, which is defined to be the rank-2 complex vector bundle
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on M associated to the principal bundle SU; (M). When M is oriented
but not spin - i.e. w;(M) =0 and w.(M) # 0 - the transition functions
of S; are defined only up to sign but its projectivization P(S,) = Z is
always globally defined on M. A similar discussion holds for S_.

When M is not spin one would still like to have spin bundles in order
to be able to define a Dirac operator. This can be done for every oriented
4-manifold by considering the more general notion of Spin.-structure.
Such a structure on M* can be thought of as a complex rank-2 vector
bundle V, whose projectivization satisfies P(V,) = P(S,) [36].

Since we will soon specialize to complex surfaces let us introduce the
canonical Sping-structure of a hermitian manifold (M,g,J). In general
this is given by considering forms of type (0,q). In the case of surfaces
we have:

(8) V, =A@ A%?  while V_ =A%

This result follows by considering the interplay between spinors and the
two decompositions of 2-forms given by the riemannian and the complex
structures:

A>=A%®A’ andalso C®A*(M)=A"?a@ A" @A™

Finally, the Dirac operator of the canonical Spin-structure (8) can
be identified with
9+9 A @A™ — A
where 8" is the adjoint of 0 with respect to the hermitian metric g. The
index of this operator is the Todd genus of M ([17], p.400).

REMARK 1.2.1. A useful observation is that the above discussion gi-
ves an alternative description of the twistor space Z = P(V,) = P(A*° @
A%2) as the projectivization of a holomorphic bundle so that when
(M, g,J) is a SFK surface Z also carries a complex structure I # J which
makes the twistor projection t : (Z,I) — (M, J) into a holomorphic CP;-
bundle.

We then have the following result:

PROPOSITION 1.2.2.  [30] The twistor space of any SFK surface
is an example of a smooth 6-manifold Z which carries both a projective
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algebraic structure I and a non-kdhlerian complex structure J of algebraic
dimension zero.

As it was first observed by KATO [13] these examples provide an
answer to a problem posed by CATANESE [7].

2 — Ruled Surfaces

We now go back to the Main Question and try to understand the
complex structure of (M,J). Since we are looking for compact SFK
surfaces the following vanishing theorem of Yau applies:

THEOREM 2.1.. [37], [38] Let M be a compact Kdhler manifold of
non-negative total scalar curvature

/ sdvol >0
M

then one and only one of the following properties applies:

(i) (M) =0¢€ H*(M,IR) and M admits Ricci-flat Kdhler metrics.

(ii) H°(M,K™) = 0 for all n € N. That is all plurigenera of M vanish
or in other words the Kodaira dimension Kod(M) = —co.

Since we are looking for scalar-flat Kahler surfaces M with c®(M) #0
- SFK surfaces - we can exclude possibility (i) and conclude that our
surfaces must have Kodaira dimension —oo. At this point, the Enriques-
Kodaira classification of surfaces ([2], p.188) tell us that (M, J) is either
CP, or it can be obtained by blowing up a geometrically ruled surface.
However, the topological signature 7(CP;) = 1 and therefore CP, cannot
admit any anti-self-dual metric with respect to the complex orientation
by (5); notice that the Fubini-Study metric is self-dual indeed. We can
then conclude that:

PROPOSITION 2.2. A SFK surface (M, J) is obtained by blowing up
a geometrically ruled surface N of genus +.
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Let us recall here that a geometrically ruled surface is nothing else
than the projectivization of a holomorphic rank-2 vector bundle E over
a Riemann surface S, of genus + [2]. That is N = P(E) — S, and then
N is said to have genus . More generally, a ruled surface of genus 7 is
the blow up of a geometrically ruled surface of the same genus.

We can also give a lower bound on the number of points to be blown
up in terms of the genus . In fact the Chern number ¢? of an almost
complex 4-manifold is a topological invariant: c? = 2y + 37 and from the
Chern-Weil formulas (5) and (6) we deduce that

1 1 1
2 _ W2 2 2
(9) Cl - 47[_2 /2|| +|| + 245 - 5”R0”
and therefore:

ProprosITioN 2.3. [3] If (M, J) is a SFK surface then c2(M) < 0.
As a consequence M is obtained by blowing up m points on a geometrically
ruled surface N of genus v where m > 9 if y =0 while m > 1 if y = 1.

PROOF. Since M is SFK we have s = 0 but Ry # 0, while W, =0
by 1.1.8 and therefore c2(M) < 0. On the other hand ¢i(N) = 2x(N) =
4(2 — 2v) and blowing up a point is topologically equivalent to perform
the connected sum with CP; - by which we mean CP; equipped with the
opposite orientation - therefore c2(M) = 8(1 — ) — m. 0

Notice that there is no constrain on m if v > 2. In fact a complete
lis/t of existence results which where known before [14], [15] is:

EXAMPLES 2.4.

(i) Let S, be a compact Riemann surface of genus v > 2 and on M =
S, x CP; consider the product of the F1-constant curvature metrics.
It is not hard to show that the scalar curvature vanishes identically
and therefore M is a SFK surface.

(ii) The twisted version of the above example is the following: if £ — S,
is either a split or a stable rank-2 vector bundle of degree zero over
a compact Riemann surface of genus v > 2 then M = P(E) can be
equipped with a metric which is locally a product as above and is
therefore SFK, [26], [5].
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(iii) LEBRUN [18] constructed explicit examples of SFK metrics on the
blow up of CP; x S5, with v > 2, at m > 2 points placed in special
position.

(iv) LEBRUN and SINGER [20] have shown that any versal family of de-
formations of the complex structure of a SFK surface of genus v > 2
contains an open set of SFK surfaces.

REMARK 2.5. In relation with example (iii) above we should no-
tice that the complex surface obtained by blowing up CP; X S, v > 2
at only one point cannot admit Kéhler metrics of constant-scalar curva-
ture because its Lie algebra of holomorphic vector fields is not reductive,

[23], [24].

Taking this remark into account and in light of the fact that the
examples of (ii) are all diffeomorphic to CP; x S, one is lead to wonder
about:

QUESTION 1. Find sufficient conditions for the 1-point blow up of
a SFK surface to admit SFK metrics.

QUESTION 2. Does the smooth manifold (CPy x S. )#(C]P’Q support
SFK (or even just anti-self-dual) metrics, for v > 2%

Perhaps, however a more compelling problem which is left open by
the above list of examples is the following:

QUESTION 3. Can a ruled surface of genus v < 1 admit SFK
metrics?

REMARK 2.6. A consequence of Theorem 2.1 is that the blow up
M of a Ricci-flat Kahler surface M cannot admit Kahler metrics of zero
scalar curvature. The reason is that on the one hand if m is the number
of blown up points then cl(M) =ci(M)—m = —m - ie ¢ (M) # 0;
but on the other hand Kod(M) = Kod(M) = 0 because the Kodaira
dimension is a bimeromorphic invariant. This shows that Question 1 is
not interesting without the restriction of 1.1.2.
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3 — Main Results

In the joint work with Kim [14] we give a satisfactory answer to
Question 1, i.e. we find a weak sufficient condition, see Theorem 3.1
below. This condition is in fact necessary in the sense of Remark 3.2,
and it also provides a positive answer to Question 2.

Question 3 receives a positive answer in [15], see Theorem 3.5 below.
Furthermore the combination of Theorems 3.1 and 3.5 yields a powerful
existence result & la Taubes which was conjectured to be true in [20], see
Theorem 3.6 and 4.1.3.

Our answer to Question 1 is provided by the following result, let us
explain the notation of the statement. With H°(©,;) we denote the Lie
algebra of holomorphic vector fields on M. By ‘any blow up’ we mean
the blow up at any number m > 0 of points, placed in any arbitrary
position and possibly with multiplicity. Finally we point out that it is
not important the order in which the (possibly trivial) deformation and
the blow up occur.

THEOREM 3.1.[14] Let M be a compact SFK surface with cR(M) # 0
then any blow up of M and any of its small deformation admits SFK
metrics or else M satisfies one of the following equivalent conditions:

(i) M is a minimal ruled surface of genus v > 2 with non-trivial holo-

morphic vector fields: H°(©yr) # 0.

(ii) M 1is the projectivization of a split rank-2 vector bundle of 0-degree

over a Riemann surface of genusy > 2 - t.e. M =P(L® O) — S,

with deg L =0 and v > 2.

REMARKS 3.2. (i) The sufficient condition of theorem 3.1 is pretty

weak because it holds, for examples, for any non-minimal SFK surface; in
particular for any ruled surface of genus v < 1 (at the moment however
no such example was available).
(ii) The above condition is also necessary in the following weak sense:
suppose M = P(L @ O) — S, is SFK and (therefore necessarily) satisfies
condition (ii) of Theorem 3.1; take any number of points on the zero-
section of L and blow them up. The resulting surface M cannot admit
SFK metrics because H°(0,;) = C is generated by the Euler vector field
E and the Futaki invariant F(Z, [w]) # 0 for any admissible Kahler class
[w], ([20], Corollary 3.4 (b)).
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We are now ready to answer Question 2:

COROLLARY 3.3. For any n > 0 there exist SFK metrics on the
smooth 4-manifold (CP; X S, )#CP,.

PROOF. Observe that the only open question was for n = 1. Take
M as in Example 2.4 (ii) with E stable, then H°(©,;) = 0 so that the
conclusion follows from Theorem 3.1. il

The examples mentioned in the proof above lead to the following
result which says that SFK surfaces are ‘generic’ among non-minimal
ruled surfaces of genus v > 2.

COROLLARY 3.4. In any versal family of deformations of compact
non-minimal ruled surfaces of genus v > 2 there ezists an open and dense
subset of SFK surfaces.

PROOF. Any non-minimal ruled surface M can be obtained by bow-
ing up a geometrically ruled surface N = P(F) with the property that
deg E = 0. (For example the blow up of the Hirzebruch surface ¥; is
also the blow up of CP; x CP; [2]. The result then follows from Exam-
ple 2.4 (ii), Theorem 3.1 and the fact that stable bundles are open and
dense among vector bundles of fixed degree over a given Riemann surface

[25]. 0

An ‘ad hoc’ geometric construction which first appeared in [21] gives
a positive answer to Question 3. The result is the following:

THEOREM 3.5. [15] There exist SFK metrics on the following sur-
faces:
(i) CP; x CP; blown up at 13 suitably chosen points,
(ii) E x CP; blown up at 6 suitably chosen points, where E is any elliptic
curve.

Although the above result only concerns two examples its proof in-
volves several general theorems and together with Theorem 3.1 produces
a simple proof of the following remarkable result which was conjectured
by LEBRUN-SINGER [20]. It is the exact Kahler analogue of the pow-
erful existence theorem 4.1.3 of TAUBES on anti-self-dual metrics on
4-manifolds [35].
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THEOREM 3.6. [15] Let M be any ruled surface - i.e. a compact
surface with a holomorphic map onto a compact Riemann surface with
generic fiber CP, - then there exists a blow up M of M at sufficiently
many points with the property that any blow up of M admits SFK metrics.

PROOF. Any two ruled surfaces M and N over the same curve S,y
are bimeromorphic to each other [2] i.e. there exists a ruled surface M
which is a blow up of both M and N. If the genus is v > 2 we can let
N be the projectivization of a stable rank-2 vector bundle, see Example
2.4 (ii). Otherwise v < 1 and we let N be the corresponding example
in Theorem 3.5. Now, in all these cases Theorem 3.1 applies to N and
we conclude that any blow up of N and in particular of M admits SFK
metrics. {

An argument of LEBRUN-SIMANCA [22] based on a inverse function
theorem also gives:

COROLLARY 3.7. [15] Let M be a compact complex surface which
admits a Kdhler metric of positive total scalar curvature. Then M has a
blow up M such that any blow up of M admits Kihler metrics of constant
positive scalar curvature.

PROOF. By Theorem 2.1 and the classification of surfaces M is a
ruled surface and therefore by Theorem 3.6 there is a blow up M with the
property that any blow up of M is SFK; the result of LEBRUN-SIMANCA
[22] implies that there is also a Kihler metric of constant positive scalar
curvature.

4 — Idea of the proofs

In this section we would like to sketch the proof of theorems 3.1
and 3.5. In both cases we have to generalize some techniques introduced
by DONALDSON-FRIEDMAN [8] who where investigating the existence of
anti-self-dual metrics on the connected sum M;# M, of two anti-self-dual
4-manifolds.
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4.1 — The Donaldson-Friedman Construction

Because the Penrose construction is invertible it is enough to con-
struct the twistor space - in the sense of 1.1.10 - of the desired metric on
M #M,;. This is done in two steps which will be called ‘geometric con-
struction’ and ‘deformation theory’. Let ¢; : Z; — M; denote the twistor
fibration for i =1, 2.

THE GEOMETRIC CONSTRUCTION. We build a singular complex 3-fold Z,
which will be called the ‘singular twistor space’ of M1# M, in the following
way. First blow up Z;, ¢ = 1,2 along a fiber of the twistor fibration
and then identify the resulting two exceptional divisors, a quadric @; =
CP; x CP; in each Z; with normal bundle v = O(1, —1), by switching the
factors in such a way that the resulting complex space

ZO = Zl UQ Zg

is a singular 3-fold with only normal crossing singularities along @ satis-
fying the d-semistable condition [8].

It is known that this condition is necessary in order for Z, to admit
smooth deformations and the key result (8] is that if Z, admits smooth
deformations then it is possible to find small deformations Z; of Z, which
are smooth 3-folds satisfying Definition 1.1.10 - i.e. they are twistor
spaces - and it is not too difficult to see that the underlying 4-manifold is
diffeomorphic to M;# M, which therefore admits anti-self-dual metrics,
in this case.

DEFORMATION THEORY. Because of what we just said it is enough to un-
derstand when the singular twistor space Z, admits smoothings. Using
the deformation theory of complex spaces with normal crossings satis-
fying the d-semistable condition Donaldson-Friedman find that the ob-
struction to smooth out Z, lies in H?(73 ) the second cohomology group
of the sheaf of derivations of Z,. Then there is a natural ‘normalization’
exact sequence relating the cohomology of the tangent bundles Oz, of the
twistor spaces Z;, ¢ = 1,2 to the obstruction space H 2(7'20); this sequence
yields the following sufficient condition:

THEOREM 4.1.1. [8] If H*(©z,) = 0 for i = 1,2 then Z, admits
smoothings and the connected sum M;# M, admits anti-self-dual metrics.
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Since the twistor space of the Fubini-Study metric on CP, is the flag
manifold Fi,5(C3) one obtains for example:

COROLLARY 4.1.2. [8] For every n € IN the connected sum
CPy# - - " #CP, admits anti-self-dual metrics.

The same result was proved around the same time by FLOER [9] using
PDE’s techniques. Floer’s method was then generalized by Taubes who
proved that

THEOREM 4.1.3. [35] Let M be any compact oriented 4-manifold.
Then there exists ng > 0 such that for every natural number n > ng the
connected sum M#CPy# - ™ - #CPy admits anti-self-dual metrics.

4.2 — Proof of Theorem 3.1

THE GEOMETRIC CONSTRUCTION. Given a SFK surface M we want
to investigate the existence of SFK metrics on the 1-point blow up M
of M. Since M is diffeomorphic to the connected sum M#CP; the
Donaldson-Friedman construction applies. Let Z; be the twistor space
of M and Z, = Fy5(C?) the twistor space of CP,; we are now going to
construct a singular twistor space Z; as before. However, since we are
looking for SFK metrics, rather than just anti-self-dual, it will not suf-
fice to have a smoothing Z; of Z; by Proposition 1.1.12 we also need to
obtain a certain complex hypersurface X, sitting inside Z,. Because of
this when we construct the singular twistor space Z, we have to use extra
care and make sure to have an appropriate divisor X, in Z,. In fact it is
always possible to achieve this because M is assumed to be SFK so that
Zy comes with a hypersurface X;. Let Zl be the blow up of Z; as before
and take X; to be the proper transform of X. Similarly in Z, = Fy5(C?)
we can easily find a divisor X, = Dy U D, such that D, h Dy = the
twistor line l,; if we let Z, be the blow up of Z, along I, we will have a
smooth hypersurface )~(2 - Zz.

Finally, Z, = 7 Ug Z, contains a divisor X, = X, U X, with only
normal crossing singularities satisfying the d-semistable condition. Here
! and [ are two disjoint lines in @ and it is not hard to see that X, always
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admits smooth deformations of the right topological type. We also al-
ready understand smoothings of Z, from the previous section and our task
now is to show that if Z, admits smoothings which contain smoothings
of X, then we can choose small deformations Z; containing X; which are
twistor spaces of a SFK metric on M#CP, because of proposition 1.1.12.

DEFORMATION THEORY. Given the above situation we now need to
understand the deformations of the pair (Zy, X,) with Xy, C Z; and find a
sufficient condition for the existence of simultaneous smoothings Z; of Z,
and X, of X, with the property that X, C Z,. Such a theory of relative
deformations of singular complex spaces does not appear to be a simple
extension of the ‘absolute’ deformation theory of Donaldson-Friedman.
Instead we have to use the theory of deformations of maps due to Z1v
RAN [33], [34]. This involves the computation of various local £zt sheaves
and global E zt groups and it yields the following:

THEOREM 4.2.1. ([14], 4.6) Let M be a SFK surface with twistor
space Z and hypersurface X C Z as in Proposition 1.1.12. Let Tx be
the ideal sheaf of X in Z and ©z the holomorphic tangent bundle. If
H?(Z,07 ® Ix) = 0 then the singular pair (Zy, Xo) admits simultaneous
smoothings. As a consequence the blow up of M at any point and any of
its small deformations admit SFK metrics

Theorem 3.1 is a direct consequence of the above result plus the
following powerful vanishing theorem of LEBRUN-SINGER [20], see also
the Appendix in [15].

THEOREM 4.2.2. [20] Let M be a compact SFK surface with c; # 0
and hypersurface X C Z. Then H*(Z,07 ® Ix) = 0 or else one of the
following equivalent conditions apply:

(i) M is a minimal ruled surface of genus v > 2 and H*(M,Ox) # 0.
(i) M =P(L+0O) = S, is the projectivization of a split rank-2 vector
bundle over a Riemann surface of genus v > 2.

4.3 — Proof of Theorem 3.5

The basic idea of the proof is the same as before and it involves
again a geometric construction followed by a relative-deformation argu-
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ment. However in this case both steps are considerably more difficult to
carry out.

THE GEOMETRIC CONSTRUCTION. For the proof of Theorem 3.5
we not only need to generalize the geometric construction of Donaldson-
Friedman to a relative situation as in the proof of 3.1; but we also need
a generalized connected sum of Z,-orbifolds. This new geometric idea is
due to LEBRUN-SINGER [21] who used it to construct new examples of
anti-self-dual 4-manifolds. Again we want to produce a singular twistor
space Z, with a singular hypersurface X,. As before Z, = Z; Ug, Zo will
be constructed by identifying a finite number of quadrics Q; j =1,...,k
contained in two smooth 3-folds Z; and Z,; at the same time we also get
a hypersurface X, C Z, with X, = X; Uzjij X, where I; and Z,- are disjoint
lines in Q.

To construct Z, we start with the twistor space t : Zy — N of a
SFK surface N and assume that N admits a holomorphic isometry &®
with only isolated fixed points py,...,pr and satisfying ®2 = id. Let
Ly,...,Ly C Zy be the twistor lines corresponding to the fixed points
ie. Ly =t"Y(p;), 5=1,...,k; and let Zx be the blow up of Zy along
the lines L;’s. The exceptional divisors @1,..., Q4 in Zy are quadrics
with normal bundle v = O(1, —1) just as in the previous proof; if we now
consider the induced holomorphic involution d:.2 N — Z ~ we realize that
® fixes each quadric @; and acts on its normal bundle by —1; the crucial
point is that because ®2 = id. the quotient space Z; = Zy / ® is a smooth
complex 3-fold, the images le- C Z; of the ();'s are again smooth quadrics
but with normal bundle O(2, —2). We can also trace what happens to the
reducible hypersurface Xy C Zy. Recall that Xy is the disjoint union of
Dy and Dy = o(Dy) where Dy and Dy are respectively biholomorphic
to (N,£Jy). If we fix our attention on Dy we can see that Z; has a
smoothly imbedded hypersurface D; which is obtained by first taking
the proper transform of Dy in Zx and then projecting this hypersurface
to Z;; this exactly amounts to say that D; is obtained from N/® by
replacing each singular point with a CP; of self-intersection —2; finally
we let I} = Q; N D;y. Similarly for Dy and we obtain the desired smooth

hypersurface X; = D; I1 D, in Z; containing 2k rational curves l}- and Z;
of self-intersection —2.
The next step is to construct Z, and we will just say here that Z,
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_consists of k distinct copies of the smooth 3-fold Zpy obtained from
the orbifold twistor space of the conformally compactified Eguchi-Hanson
metric by blowing up the twistor line at infinity. We refer to [21] and {15]
for an explicit description of Z, and we just mention here that Z, will
contain @2,..., Q% quadrics with normal bundle O(2,—2) and a smooth
hypersurface X, intersecting each quadric in two disjoint lines I3 IT Z? =
X, N Q; of self-intersection —2 in Xj.

Finally, our singular twistor space Z, = Z; Ug; Z2 is obtained by
identifying each quadric le- = CP; x CP, of Z, with the corresponding
Q? € Z, in such a way that the two factors are switched; in this way we
also obtain a singular divisor X, C Z;. As before the pair (Zy, Xo) is a
pair of singular complex spaces with only normal crossing singularities
satisfying the d-semistable condition. '

One important remark we wish to make at this point is that in order
for Z, and X, to have only normal crossing singularities we need that all of
the spaces Z1, Z, and X, X, are smooth manifolds and the fact that this
can be achieved by a simple blowing up process, described above, is only
because we are considering Z,-orbifolds rather than more general orbifold
singularities; this is analogous to the familiar Kummer construction of K3
surfaces.

DEFORMATION THEORY. The same deformation arguments used in
the proof of 3.1 show that in the non-obstructed case - i.e. H*(Zy,0z, ®
Ix,) = 0 - the singular pair (Zo, Xo) admits smoothings (Z;, X;) which
are twistor spaces of SFK surfaces; however the technical details of the
computations are more complicated than before.

Finally, the above discussion proves the following quotient result:

THEOREM 4.3.1. [15] Let N be a non-minimal compact SFK sur-
face. Assume there is a holomorphic isometry ® : N — N with only
isolated singularities and ®2 = id. Then there are SFK metrics on the
complex surface M which is obtained from N/® by replacing each singu-
lar point with a CP; of self-intersection —2.

To conclude the proof of Theorem 3.5 we ‘only’ need to find a SFK
surface N with a holomorphic isometry ® satisfying the conditions of
the quotient Theorem 4.3.1. To find such an isometry we need to know
the SFK metric explicitly and this can be achieved using the hyperbolic
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ansatz of LEBRUN [18], [19]. Very briefly, the construction is the follow-
ing: to prove Theorem 3.5 (i) we take N to be the blow up of CP; x S,
at two points lying on the same CP,-fiber, here S, is a Riemann surface
of genus 2 and therefore a 2-fold branched cover of CP;. For the proof of
part (ii) of the same theorem we construct a genus-2 Riemann surface S,
as a 2-fold branched cover of E, p : S, — E, consider a certain line bundle
L over E and then N is obtained from P(p*L & O) — S, by blowing up
four points on the zero-section of p*L C P(p*L @ O).
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