
Rendiconti di Matematica, Serie VII
Volume 16, Roma (1996), 1-107

Macroscopic limits of microscopic systems

C. BOLDRIGHINI

Presentazione: Questo articolo di rassegna ed orientamento alla ricerca è tratto
da un breve corso tenuto alla XIX Scuola estiva organizzata dal Gruppo Nazionale per
la Fisica Matematica a Ravello nel Settembre del 1994. Sono trattati i procedimenti che
consentono di dedurre dalle equazioni differenziali ordinarie, relative allo schema micro-
scopico, le equazioni alle derivate parziali che descrivono l’evoluzione del sistema nello
schema dei mezzi continui. Vengono descritti in particolare alcuni tipi di limite ma-
croscopico: limite idrodinamico o di densità finita, limite di campo medio o di Vlascov,
limite cinetico, considerando alcuni modelli particolarmente semplici e significativi. La
trattazione è indirizzata al lettore matematico che desideri essere introdotto nel campo
della meccanica statistica rigorosa del non equilibrio, ed in particolare in questo settore
che ha avuto un notevole sviluppo negli ultimi decenni.

Abstract: The present paper is meant as an introduction for the mathematically
educated reader to problems of macroscopic limits of microscopic systems, and to the
derivation of PDE′s which describe the evolution of continuous media. The hydro-
dynamic, mean field and kinetic limits are considered for various models, which are
chosen as simple as possible, the aim being of conveying the main ideas which led in
recent years to the first steps in rigorous nonequilibrium statistical mechanics. The
paper is self contained, as far as possible, in the sense that the mathematical notions
that are needed are as a rule introduced in the text.
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– Introduction

Modern Physics describes matter (at ordinary temperatures and den-

sities) as made of particles (molecules) which move under the action of

internal and external forces, according to the laws of quantum mechanics.

In order to determine the behavior of a macroscopic portion of matter

one should then integrate the Schrödinger equation of the corresponding

particle system. One can only think, of course, of numerical integration,

which however, given the extremely high number of variables (a cubic

meter of gas at normal temperature and pressure conditions contains, as

everybody knows, a number N ≈ 6 · 1023 of molecules) is out of reach for

the existing computers. An additional and deeper difficulty arises from

the fact that the particle dynamics is in general unstable, or “chaotic”,

implying that initial or rounding-off errors cause deviations which grow

exponentially fast in time. This happens already for systems with a small

number of degrees of freedom, such as a few classical billiard balls which

collide elastically. For this system it is in practice physically impossible

to assign initial conditions with a precision good enough to get a correct

prediction on the first ten or so collisions.

The recently developed “science of chaos” has very wide practical and

philosophical consequences, which may explain why it has also become a

favourite subject of popular science. For this “genre” we recommend the

books of Gleick [23] and especially of Ruelle [38].

An important consequence of the instability of the dynamics is that

the exact solution of the equations of motion of a macroscopic particle

system, no matter whether classical or quantum, has no predictive value,

since it can never be “verified” by physical measurements. It is only an

abstract mathematical object which plays the role of a theoretical tool.

In spite of chaos, and of the large number of degreees of freedom,

and actually, as we shall see, because of them, the time evolution of the

macroscopic properties of matter, such as density of mass, temperature,

etc., is thoroughly predictable, and is described by relatively simple par-

tial differential equations. The microscopic details disappear, and one

may think that, in some sense, they are related to “additional” variables
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that remain “hidden”. What we observe when we take measurements

of the macroscopic physical observables is only the “statistical state” of

the molecules, at a given place and time. A clear understanding of why

and how this happens is the main problem of nonequilibrium statistical

mechanics.

The main features of the macroscopic description of large particle

systems possess a universal character, i.e., they are essentially indepen-

dent of the precise nature of the interaction. It is generally believed that

the quantum nature of microscopic mechanics is also not essential, and

quantum systems should behave in this respect much in the same way as

their classical analogues. This may be taken as a justification for the fact

that we will consider only classical systems. Another, and maybe more

relevant, reason is that there are at present very few significant results

for quantum systems.

The beginnings of the mathematical theory of nonequilibrium statis-

tical mechanics may be traced back to Boltzmann, who, about a hundred

years ago, formulated his celebrated “ergodic hypothesis”, and introduced

the equation that bears his name. Progress however was very slow and the

main problems of the theory, such as convergence to equilibrium, deriva-

tion of the equations of fluid dynamics, to mention the most relevant

ones, are still open.

The work of Boltzmann gave rise to a heated philosophical debate.

For a modern appreciation of the celebrated question on the “arrow of

time” we recommend the recent conference of Lebowitz [26]. It also

had a considerable impact on Mathematics: it led to the foundations

of Ergodic Theory, and contributed to the development of Probability

Theory. However only in recent times did these branches of Mathematics

grow up to the point of allowing a first approach to the real problems

of statistical mechanics. The first results date back to the sixties and

seventies, when equilibrium statistical mechanics and the theory of phase

transitions and of critical phenomena were raised to a mathematical level,

thanks to the outstanding work of Dobrushin, Dyson, Lanford, Minlos,

Ruelle, Sinai, to mention some of the most relevant contributors, and

other people. Soon after that the mathematical theory of nonequilibrium

statistical mechanics began also to move, with the first results on infinite

particle dynamics and on the ergodic properties of the corresponding

dynamical systems. One should mention here the names of Dobrushin,



4 C. BOLDRIGHINI

Lanford, Lebowitz and Sinai. As landmarks of this initial period one can

take the first rigorous derivation of the Boltzmann equation for a system

of elastic spheres, by Lanford in 1976 [28], which may be considered as

the conclusion of a century of lively discussions, and the theory of the

Lorentz model [8] [9], based on previous results for the Sinai billiard

model, which allowed a deep understanding of the role of local instability

due to the interaction.

In recent times there was a considerable harvest of results, and the

theory of nonequilibrium collective phenomena is by now a well estab-

lished branch of mathemathical Physics. One should mention the con-

struction of nonequilibrium statistical mechanics for some models with

degenerate interaction, and the considerable amount of results on models

with stochastic (or partially stochastic) dynamics. Rigorous derivations

of hydrodynamic and kinetic equations of various kinds are now avail-

able, as “macroscopic limits” of microscopic particle or spin systems, a

fact which has a sizeable impact on the understanding of the behaviour

of the solutions and on the practical problems of solving the equations

by numerical methods.

The present paper intends to be an introduction to the mathematical

problems of nonequilibrium phenomena, directed to the mathematically

educated reader, such as a mathematician working in a different field or a

graduate student. There are by now good review papers and books with

different viewpoints, but they are generally intended for the specialist, or

are devoted to particular aspects. We will focus instead on basic concepts

and constructions, such as the mathematical description of the continuum

limit, the role of local instability of the interaction, the crucial notion

of “propagation of chaos” (in different understandings according to the

nature of the limit: kinetic or hydrodynamic), and on the derivation of

macroscopic equations. The reader is only supposed to be familiar with

functional analysis, to possess some notions of probability theory and an

elementary knowledge of ergodic theory.

One of the main difficulties for “outsiders” who want to get ac-

quainted with the mathematical theory of macroscopic limits is that

proofs are as a rule lengthy and technically involved. We have tried

wherever possible to avoid technicalities, and to illustrate the main ideas

in the simplest possible setting. So we will omit an important result,

such as the derivation of the Boltzmann equation by Lanford, and try to
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convey the main ideas in discussing the easier case of the kinetic limit for

particle systems with stochastic interaction. In some cases we give just

an outline of the proofs or only report some essential parts.

We discuss in detail the free gas, which, though trivial from a physical

point of view, introduces the technical tools that are needed for the kinetic

limits.

In addition to systems evolving according to classical newtonian me-

chanics we also consider particle systems with stochastic evolution. Tho-

ugh they may look rather artificial, there is by now a whole series of

interesting results, which are at present out of reach for deterministic

systems. Stochastic evolution may be considered as a rough way of tak-

ing into account some kind of local “production of chaos” due to the

instability of the dynamics.

The present paper is made of four sections. In the first section we

introduce the equilibrium Gibbs states, and treat the problem of infinite

particle dynamics and of convergence to equilibrium, both for newtonian

and stochastic evolution. We prove the existence of the infinite particle

dynamics for stochastic evolution, and convergence to equilibrium for the

free gas, both classical (newtonian) and stochastic. In the second section,

after some preliminary considerations on the macroscopic description of

particle systems, we introduce the notions of hydrodynamic limit and of

local equilibrium states. We give proofs for the hydrodynamic limit of the

classical free gas, which is trivial, and for the stochastic free gas. After

reporting some results for classical systems with degenerate interaction,

we spend some time to derive a nonlinear diffusion equation as hydrody-

namic limit of an interacting particle system with stochastic evolution.

The proof is based on an interesting “entropy production method”. We

end the section by discussing the notions of local equilibrium and the

so-called “Navier-Stokes” corrections.

Section III is devoted to the mean field (Vlasov) limit. We give

a proof of existence and uniqueness of the Vlasov equation for regular

potential by the fixed point method, and then discuss the case of plane

vortices, proving that the plane incompressible Euler equation is a mean

field limit of regularized vortices.

In Sec. IV we discuss kinetic limits both for classical and stochastic

lattice gases. After a brief discussion of the Boltzmann equation for a

gas of hard spheres, we report in detail the derivation of the kinetic limit
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for the plane Lorentz gas with stochastic distribution of the scatterers.

This is perhaps the simplest model in which one can clearly see how the

local instability of the dynamics leads to a stochastic “markovian” limit.

The final part of the section is devoted to lattice gases with creation and

annihilation interaction which give rise, in the kinetic limit, to reaction-

diffusion equations.

We hope to arise the interest of the reader to further study. For a

general overview of results and open problems we recommend the review

paper [18] and the book of H. Spohn [40].

The content of the present paper is strictly related to a course of

lectures held by the author at the XIX Summer School in Mathematical

Physics, organized by the Gruppo Nazionale per la Fisica Matematica of

C.N.R. at Ravello, Sept. 1994.

1 – The Mathematical Tools of Statistical Mechanics.

General Results

In the first section we recall, mostly without proofs, the main results

of the theory of infinite volume Gibbs States, and the few available results

on the time evolution of states with infinitely many particles, evolving

according to newtonian dynamics.

We also introduce the reader to the important class of particle models

with stochastic evolution, which goes usually under the name “interacting

particle states”.

We will then give a proof of convergence to equilibrium for the free

classical gas and the free lattice gas. Though far from reality, these

models are a good introduction to the general problem.

1.1 – Classical particle systems

1.1.1 – Infinite volume equilibrium Gibbs states.

Let us consider a system of classical, identical, point-like particles,

in a volume Λ ⊂ IRν , which we suppose open and bounded. The phase

space of a system of n particles which move in Λ is

(1.1) Ω
(n)
Λ =

(
(Λ × IRν)n

)
Σ
,
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where the subscript Σ denotes symmetrization. A point of Ω
(n)
Λ is identi-

fied by the collection of the particle positions and of the particle velocities

(1.2) ω = {(q1, v1), . . . , (qn, vn)}, (qi, vi) ∈ Λ × IRν .

The product topology on (Λ × IRν)n induces a natural topology on Ω
(n)
Λ .

For n = 0 Ω
(0)
Λ is the empty state (no particles in Λ). The phase space of

the particle system in Λ is

(1.3) ΩΛ =
∞⋃

n=0

Ω
(n)
Λ ,

equipped with the topology for which the open sets can be represented

as unions of open sets of Ω
(n)
Λ . M

(n)
Λ and MΛ denote the sigma algebras

of the Borel sets in Ω
(n)
Λ and ΩΛ, respectively. The points of ΩΛ are the

configurations of the particle system in Λ, and are also denoted by the

symbol ω.

The physical observables are functions of ω. For example the kinetic

energy and the particle number in a subset A ⊂ Λ (we only consider

measurable sets) are written, respectively, as

(1.4) T (ω) =
m

2

n∑

j=1

v2
j , NA(ω) =

∑

(q,v)∈ω

IIA(q),

where m is the common mass of the particles and II denotes the indicator

function.

We suppose for simplicity that the particles interact by a two-body

potential Φ : IR+ → IR. The interaction energy and the total energy are,

respectively,

(1.5) U(ω) =
1

2

∑

i #=j

Φ(|qi − qj|), H(ω) = T (ω) + U(ω).

Let m denote the Lebesgue measure on IRν , m2 the corresponding product

measure on IRν × IRν , and m̃n the product of n copies of m2, which is

defined on (IRν×IRν)n. The symmetrization map, which we denote by Πn,

defined on (Λ× IRν)n with values in Ω
(n)
Λ , induces a measure m̄n on M

(n)
Λ :
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m̄n(A) =
1

n!
m̃n(Π−1

n A). The measure m̄n is the “Lebesgue measure” on

Ω
(n)
Λ . We also introduce the measure λ on ΩΛ:

(1.6) λ(A) =
∞∑

n=0

m̄n(A ∩ Ω
(n)
Λ ), A ∈ MΛ,

with the convention m̄0(Ω
(0)
Λ ) = 1.

For a fixed choice of the parameters β > 0 e µ ∈ IR, the probabil-

ity measure PΛ
β,µ is defined as the measure on MΛ which is absolutely

continuous with respect to λ with density

(1.7a) Z−1
Λ e−β( H(ω)−µNΛ(ω) ),

where the “partition function” ZΛ is the normalization factor

(1.7b) ZΛ =

∫

ΩΛ
λ(dω)e−β( H(ω)−µNΛ(ω) ).

This measure goes under the name “grand canonical Gibbs measure”

(or “grand canonical Gibbs state”, or also, as usual in Physics, “grand

canonical ensemble”) for the particle gas with interaction potential U , in

the volume Λ, at the temperature T = 1/βk (where k is the Boltzmann

constant), and with chemical potential µ.

In addition to the grand canonical state one can define the “canon-

ical Gibbs state”, for fixed NΛ, which is obtained by taking in (1.7a,b)

II{NΛ=n0} e−β( H(ω)−µNΛ(ω) ) in place of e−β( H(ω)−µNΛ(ω) ), and the ”micro-

canonical Gibbs state”, which corresponds to fixed values of the particle

number and of the energy.

A rigorous foundation of equilibrium thermodynamics based on sta-

tistical mechanics requires that we pass to the limit of infinite systems,

i.e., one has to take the limit as Λ grows to the whole space IRν . The

limit can be considered also for the canonical ensemble, and the particle

number and the energy must increase, as Λ grows, in such a way that the

particle density per unit volume tends to a limit. For the microcanical

ensemble one prescribes limits both for the particle and for the energy

densities.

The limit Λ ↑ IRν just described goes under the name ”thermody-

namic limit”. In the limit the distinction of grand canonical, canonical
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and microcanonical ensembles loses meaning, and the three procedures

give the same type of infinite volume states. This fact, sometimes called

”principle of the equivalence of the ensembles”, was well known to Physi-

cists, and has obtained a general mathematical proof only recently [20].

The limit Λ ↑ IRν has to be taken for a sequence of volumes Λ which

grows to the whole IRν in a suitably uniform way. Moreover one has to

impose some natural condition on the potential U , such as the so-called

“stability”, i.e., the existence of some nonnegative constant B such that

(1.8) U(q1, q2, . . . , qn) ≥ −Bn

for any choice of the n-ple q1, . . . , qn.

The mathematical theory of the infinite volume Gibbs states dates

back to the 60’s and 70’s and is due mainly to the work of Dobrushin,

Lanford, and Ruelle. We refer the reader to the papers [14], [27], [30],

to the book [37], and to the references quoted there. We also recommend

as a good introduction for the outsider the first chapter of the lecture

notes of Pulvirenti [36].

We start with the definition of the infinite volume states. The phase

space of the infinite system is denoted by Ω. It is convenient to un-

derstand a particle configuration ω ∈ Ω as a locally finite subset of

IRν × IRν ,i.e., as a subset such that for any bounded subset A ⊂ IRν

the intersection ω ∩ (A × IRν) is finite. This means that we exclude con-

figurations in which two or more particles with the same velocity are

located at the same space point. This is not restrictive, since for all finite

Λ the λ-measure of such configurations in ΩΛ is zero.

For any E ⊂ IRν × IRν we set AE,n = {ω : card ω ∩ E = n}. Ω is

endowed with the topology for which a fundamental set of neighborhoods

of a point ω0 is given by the sets AC×B;n, where C and B are measurable

subsets of IRν such that i) C is bounded; ii) ω0 ∩ ∂(C × B) = ∅, where

∂(·) denotes the boundary of a set; and iii) n = card ω0 ∩ (C × B).

The topology thus defined corresponds to the intuitive notion of local

convergence. A sequence ωn is close to ω as n → ∞ if, for any given

bounded E, the number of points of ωn ∩ E is equal, starting from some

value n = N , to the number of points of ω ∩ E.

The topology on Ω is metrizable (Ω is a “polish” space). We denote

by M the corresponding σ-algebra of Borel sets. The most important
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consequence of the topological properties of Ω is the existence of con-

ditional probabilities. More precisely, given an arbitary measure P on

M, for any σ-subalgebra M′ ⊂ M one can find for P -almost all ω ∈ Ω

a family of probability measures PM′(·|ω), which depend on ω, satisying

the usual properties of conditional probabilities. A probability measure

on M is currently called a “state”.

We now pass to the precise definition of the infinite volume Gibbs

states. In order to avoid unnecessary technicalities we assume, in addition

to the fact that the potential energy U is given by eq. (1.5) in terms of

a two-body potential Φ, that Φ is bounded from below and short range,

i.e., we assume that there is are positive constants B and R > 0 such

that Φ(r) > −B and Φ(r) = 0 for r > R.

For any given volume Λ ⊂ IRν , which may be unbounded, we denote

by

ωΛ = ω ∩ (Λ × IRν)

the configuration induced by ω in the volume Λ. The subalgebra MΛ is

defined as the smallest σ-algebra that contains the sets AE,n where E is

a measurable subset of Λ × IRν and n = 0, 1, . . . . The restriction of a

state P to MΛ, which is denoted by PΛ, is called the “local distribution

in Λ induced by P”. Since MΛ is isomorphic to the Borel σ-algebra MΛ

introduced above, PΛ can be considered as defined on MΛ. In order to

simplify the exposition, we often do not distinguish between MΛ and MΛ.

The state P is said to be locally absolutely continuous if, for any

measurable volume Λ, the local distribution PΛ is a.c. with respect to

the measure λ.

The energy of the particle system ωΛ in interaction with a fixed par-

ticle configuration ωIRν\Λ in IRν \ Λ is given by

(1.9)

hΛ(ω) = T (ωΛ) + U(ωΛ) + W (ωΛ|ωIRν\Λ),

W (ωΛ|ωIRν\Λ) =
∑

(q,v)∈ωΛ

∑

(q′,v′)∈ωIRν\Λ

Φ(|q − q′|) .

We say that the state P is a Gibbs state with potential U , temper-

ature T and chemical potential µ if for any bounded set Λ ⊂ IRν the

following conditions hold:
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i) for P -almost all ω ∈ Ω the integral

(1.10a) ZΛ(ω) =

∫

ΩΛ
λ(dω′)e−β(hΛ(ω′∪ωIRν\Λ)−µNΛ(ω′))

exists, and

ii) for P -almost all ω ∈ Ω the local distribution induced on MΛ by

the conditional distribution PMIRν\Λ
, denoted for brevity as PΛ(·|ω), is

a.c.with respect to λ, and its Radon-Nikodým derivative is

(1.10b)

pΛ(ω′|ω) ≡ dPΛ(·|ω)

dλ
(ω′) =

=
1

ZΛ(ω)
e−β( hΛ(ω′∪ωIRν\Λ∪ω′)−µNΛ(ω′) ), β =

1

kT
.

Relations (1.10 a.b) are equivalent to the celebrated DLR equations (for

Dobrushin, Lanford, Ruelle).

In dealing with the thermodynamic limit one has to define in what

sense the finite volume distributions tend, as Λ ↑ IRν , to the infinite

volume Gibbs states. Note that the distribution (1.7a,b) is a partic-

ular case of (1.10a,b), corresponding to “empty boundary conditions”,

i.e., ωIRν\Λ = ∅. One can consider, more generally, the limit of the dis-

tributions (1.10a,b) for some fixed nonempty ω, which determines the

“boundary conditions”. For different boundary conditions one can get

in general different limiting states, and we are interested in particular

in the translation invariant states. The extremal states of this family

correspond to the possible “phases” of the system.

Very important results have been obtained in the theory of phase

transitions for lattice systems (which we describe in a while), though up

to now there are very few results concerning continuous systems. The

interested reader is referred to the book [21] and to the vast literature on

the subject quoted there.

Different phases occur only at low temperature or high density. For

particle systems with interaction potential (1.5), subject to the stability

condition (1.8), the limiting state in the thermodynamic limit is unique

in the following cases: i) ν = 1; ii) ν > 1, µ fixed and the temperature

is high enough; iii) the temperature is fixed and the particle density is

low enough, or, equivalently, µ is less than some fixed quantity. In what
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follows we always assume that the conditions on the uniqueness of the

phase are satisfied.

We now come back to the notion of convergence that is needed for

the thermodynamic limit. Let us consider, for semplicity, the measures

PΛ
β,µ, which we can understand as measures on (Ω, M). We say that the

sequence of measures PΛ
β,µ tends as Λ ↑ IRν to the measure Pβ,µ if for any

bounded continuous function f on Ω, measurable with respect to MΛ0
,

for some bounded volume Λ0, we have

lim
Λ↑IRν

∫
f(ω)PΛ

β,µ(dω) =

∫
f(ω)Pβ,µ(dω).

This notion of convergence is natural, since we are interested in local

variables, i.e., functions f which are measurable with respect to some

local σ-algebra.

The physical interpretation of the infinite volume Gibbs states is,

as it is well known, that of equilibrium states of infinite homogeneous

interacting particle systems.

An important tool in studying Gibbs states are the “correlation func-

tions”, or “correlation measure”, which we now define. The space Ω0 of

the finite particle configurations in IRν can be represented as

(1.11) Ω0 ≡
∞⋃

n=0

Ω(n),

where we write Ω(n) for Ω
(n)
IRν . M0 denotes the corresponding Borel σ-

algebra, the topology being the same as for ΩΛ. Given a state P on M

we define the measure on M0

(1.12a) KP (A) =

∫

Ω

P (dω)
∑

ω′⊆ω

ω′∈Ω0

IIA(ω′).

This measure, which can assume the value +∞, is called “correlation

measure”. Its restriction to Ωn, denoted as K
(n)
P , is the n-th correlation

measure.

Equation (1.12a) shows that, if Λ is bounded and B ⊂ IRν is arbitrary,

K
(1)
P (Λ × B) is the average particle number in the set Λ × B. Moreover
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if Ai, i = 1, 2, are subsets of the one-particle phase space M = IRν × IRν ,

then K
(2)
P (Π2(A1 × A2)) represents the average number of particle pairs,

one of which is in A1 and the other one in A2.

If the measure P is locally absolutely continuous (with respect to λ),

and the measure KP is σ-finite, then it is easy to see that KP is absolutely

continuous with respect to λ, and its Radon-Nikodym derivative kP =

dKP /dλ is called “correlation function” of the state P . The restriction of

kP to Ωn, denoted by k
(n)
P , is the correlation function of order n, or n-th

correlation function. Clearly k
(1)
P (q, v) represents the particle density at

the point (q, v) of the one-particle phase space M. The functions k
(n)
P

can be considered as functions on Mn, symmetric with respect to the

permutations of pairs of arguments (qi, vi).

We note that if Λ is bounded, then ΩΛ ⊂ Ω0, and for ω ⊂ Λ

it is not hard to see that, denoting by pΛ the local density pΛ(ω) =∫
P (dω′)pΛ(ω|ω′), we have

(1.12b) kP (ω) =

∫

ΩΛ
λ(dω′)pΛ(ω ∪ ω′).

For a vast class of regular states the correlation measure identifies the

state P uniquely, and it is possible to reconstruct the local densities by

the “inclusion-exclusion formula”

pΛ(ω) =

∫

ΩΛ
λ(dω′)kP (ω ∪ ω′)(−1)card ω′

.

The equilibrium state of a classical fluid made of particles which

move under the action of a two-body potential Φ, in the region of the

parameters for which the phase is unique, is identified, as we said above,

by the inverse temperature β and by the chemical potential µ. One should

actually add three more parameters, which correspond to the average

velocity V of the particles. If V .= 0 the particle system simply moves

uniformly with respect to the reference frame, and the corresponding

equilibrium state is obtained by writing H(ω) in eq. (1.5) as m
∑

(vi −
V)2/2 + U(ω). This is a trivial generalization, but states with V .= 0

are important when we deal with the “local equilibrium” states (Sec. II).

Since the state is uniquely determined by the five parameters µ, V and β,

the number of the independed thermodynamic quantities is also five. We



14 C. BOLDRIGHINI

can take the particle density ρ, the average velocity V, and the energy

density per unit mass e. One can also consider five independent functions

of such quantities.

The free gas. The free gas corresponds to the potential Φ = 0. The

distributions (1.10a,b) are the same for any choice of ω, i.e., the restriction

to Λ of the conditional distribution with respect to the σ-algebra MIRν\Λ,

does not depend on the condition. As a consequence, the occupation

numbers in nonintersecting regions of space are independent. Another

consequence is that there is a unique state satisfying conditions (1.10a,b),

i.e., the free gas Gibbs state is unique for any choice of β and µ.

For any fixed bounded region Λ, by the definition (1.6) of λ, and

setting, as usual, z = eβµ(2πm/β)ν/2, we find ZΛ=
∞∑

n=0
zn|Λ|n/n! = ez|Λ|,

where |Λ| denotes the Lebesgue measure in the volume Λ. It follows

that the distribution of the occupation number NΛ is Poissonian with

parameter z|Λ|

(1.13) P (NΛ = n) = e−z|Λ| (z|Λ|)n

n!
.

Equation (1.13) implies that the average value of the particle number in

the region Λ is z|Λ|, so that z coincides with the particle density ρ of the

state.

For the free gas, due to the degeneracy of the dynamics, which im-

plies conservation of the single velocities, the equilibrium states are much

more than in the general interacting case. They depend on the chemical

potential and on an arbitrary probability distribution (the velocity distri-

bution) whereas in the general interacting case (with V = 0) the velocity

distribution can only be gaussian. One can also introduce Gibbs states

that are absolutely continuous with respect to measures different from

λ. They are constructed in the same way, with the difference that the

measure m2 = m×m on IRν × IRν is replaced by m×m′, where m′ is any

measure in velocity space. As we are not interested in generality, we will

only consider velocity distributions that are absolutely continuous with

respect to the Lebesgue measure.

We denote by h(v) the density of the velocity distribution with re-

spect to the Lebesgue measure on IRν . A state with particle density ρ

and velocity distribution h is constructed by repeating the steps above,
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replacing in (1.10a,b) the term βT (ω) by
∑

(q,v)∈ω log h(v), and the term

−βµ by log ρ. The free gas state obtained in this way is denoted Pρ,h. In

what follows we will always assume that h is bounded and possesses first

and second moments.

Classical Lattice Systems. In order to describe some physical systems,

such as crystals, one considers lattice particle models, in which the par-

ticles can assume only positions close to the points of a regular lattice,

which, for simplicity, we assume to be ZZν . Such systems go under the

general name of ”oscillator systems”. The particles can be labeled by

their “equilibrium position” (a point of ZZν), and the phase space is

Ω = (IRν)ZZν
. It is natural to assume that each particle is subject to

a force corresponding to a one-body potential, that ties it to the equilib-

rium position, and to some other force (not so strong as to destroy the

lattice array), which is due to the other particles, and which we assume

to derive from a two-body potential.

For finite volumes the most natural Gibbs measure is the canonical

one. The construction of infinite volume Gibbs measures is similar to the

the continuous case. The topology here is simply the product topology of

copies of IRν over the sites of ZZν . It is easy to show that it is metrizable

and find an explicit metrics for it. For more detail we refer to the books

[37] and [21].

1.1.2 – The problem of the existence of the infinite volume dynamics.

The ergodic problem and convergence to equilibrium

In this paragraph we report the main facts on infinite volume dynam-

ics. For an introduction to the subject we recommend the lecture notes

of Pulvirenti [36], and for a general view of results and open problems

the paper [18].

The introduction of infinite volume states is very convenient for the

thermodynamic description of equilibrium states, but is a cause of se-

rious problems when one considers the evolution in time, which is now

described by infinitely many coupled equations. If we label the particles

of ω(t) the equations can be written as

(1.14) m
d2

dt2
qi(t)= −

∑

j #=i

∇Φ(|qi(t) − qj(t)|), qi(0)=q0
i , q̇i(0)= q̇0

i ,
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where the indices i and j go from 1 to ∞. The solution of such an infinite

array of coupled equations is defined as a suitable limit of finite volume

solutions, which should converge in the topology of Ω. In addition to

existence one should also establish uniqueness of the solution.

The real problem is that the evolving particle configuration can de-

velop pathologies in a finite time, such as the presence of infinitely many

particles in a finite volume, so that the configuration “gets out” of the

space Ω. This can happen even for the free gas in IR1. In fact the equa-

tions of motion give immediately qi(t) = q0
i + vit, q̇i(t) = vi, and if

q0
i = i, vi = −i, t = 1, for any i ∈ ZZ, we see that at time 1 we are out

of Ω.

The problem can be solved by determining a subset Ω′ ⊂ Ω such that

the solution ω(t) of the equations (1.14), with initial data in Ω′, stays in

Ω′ for any time t. Ω′ should be large enough, as to be the support of a

sufficiently large class of probability measures, which should contain the

Gibbs states with potential Φ, in the region where the phase is unique.

Ω′ should be described in terms of some suitable physical observables,

such as energy, which should not be “too large” in finite volumes. The

construction just described is usually referred to as “nonequilibrium dy-

namics”, to be distinguished from the “equilibrium dynamics”, of which

we shall speak in a moment. The problem of nonequilibrium dynamics

has found an adequate solution by Dobrushin and Fritz [16] only for

the space dimensions ν = 1, 2. For ν ≥ 3 the problem is essentially open,

in spite of partial results ([39]).

The problem of solving equations (1.14) can be treated in a weaker

form. Let P be a Gibbs state with potential Φ, in the region of the pa-

rameters for which the state is unique. One can require the existence of a

subset ΩP ⊂ Ω such that P (ΩP ) = 1 and for any configuration in ΩP the

solution of equations (1.14) exists for any time t and is unique. This is

called ”Equilibrium Dynamics”, and there are fairly general results [36].

However, in solving the problem in this weaker form one cannot unfor-

tunately get any precise information on the configurations of ΩP . We do

not know, for example, whether, by perturbing a little bit the position

of one particle in a configuration in ΩP we get again a configuration in

ΩP . In any case the proof of the existence of equlibrium dynamics is an

important result. Among other things it justifies the statement that the

equilibrium state P is stationary in time.
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Suppose that we have solved the dynamics (in the strong form), and

let {Tt : t ∈ IR} denote the corresponding semigroup of transformations,

defined on Ω′. The evolution of any initial measure P is then defined as

Pt(A) = P (T−t(A ∩ Ω′) ). As an informal statement of the problem of

convergence to equilibrium, which is of crucial importance for Statistical

Mechanics, one can say that if the initial measure P is “good enough”

then the distributions {Pt} converge, as t → ±∞ to an equilibrium Gibbs

state, corresponding to the interaction potential Φ which generates the

interparticle forces. The parameters of the final state will be determined

by the average values of the conserved quantities (i.e., number of particles,

particle velocities and energy) in the initial state P .

A weaker, and apparently more manageable problem, can be formu-

lated in the framework of equilibrium dynamics. One can consider con-

vergence to equilibrium for a smaller class of initial measures, those that

are absolutely continuous with respect to a fixed equilibrium measure. In

this case the evolution of the measure is guaranteed by the existence of

equilibrium dynamics. The restriction to absolutely continuous measures

is however a strong one for infinite volume systems.

The solution of the problem formulated in this way can be reduced

to the proof of the fact that the dynamical system (Ω′, {Tt}, P̄ ), where P̄

is the fixed equilibrium Gibbs measure, possesses the property of mixing

(which is stronger than ergodicity). The problem is thus reduced to

the study of the ergodic properties of the equilibrium dynamical system.

Mixing is in some sense the minimal property which one should require

for convergence to equilibrium to hold.

At present we are still far from an adequate solution. Proving ergodic

properties of the equilibrium dynamical systems is a hard task for inter-

acting hamiltonian systems. Significant results have been obtained only

for systems with degenerate dynamics, namely for the following models:

the free gas, the one-dimensional hard rods (to be described in detail

below) and the harmonic oscillators [4] [7] [15].

1.2 – Lattice systems with stochastic evolution

Important results have been recently obtained in studying lattice

particle systems with stochastic evolution, also called “interacting particle
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processes”, and other similar models. The particle positions are the sites

of a lattice ZZν , and the time evolution is given by a Markov process,

the transition probabilities of which depend on the particle configuration

in such a way as to simulate some kind of interaction. Such models are

apparently very far from classical hamiltonian systems. One can think

nevertheless that the stochastic evolution is a simplified way of keeping

into account the local instability of the motion, which one can assume to

hold at least if the interparticle potential is repulsive, at low densities. In

any case the study of such models is amply justified by the remarkable

results that have been obtained, and by the interesting mathematical

problems that they offer, which are relevant both for statistical mechanics

and for the theory of Markov processes.

An additional reason of interest is the fact that such models can

be used to model solutions of nonlinear partial differential equations on

computers, and they seem to be in many cases faster and more stable

than the usual finite difference models.

The models that are considered in the literature can be divided into

“particle models”, for which the variables at the lattice sites are integer

(occupation numbers), and “spin models” for which they take values in

some other space (finite or infinite). We will consider here only particle

models on the regular lattice ZZν . The configuration space is Ω = INZZν

,

and η(z) ∈ IN will denote the particle number at the site z ∈ ZZν . The

topology on Ω is the product of the discrete topologies, which is metriz-

able. As usual M will denote the Borel σ algebra. We will consider most

of the times the case ν = 1. The reader who is interested in further

reading is referred to the books [11], [29], and [40].

1.2.1 – Definition of the interacting particle processes

We start by defining processes for finitely many particles. As we are

interested in taking a limit in which the particle number becomes infinite,

it is convenient to consider continuous time to start with. It would seem

that continuous time is not natural, as we deal with discrete models. This

is actually not so, as is shown by the following discussion.

Consider a system made of N particles, labeled from 1 to N , on the

lattice ZZ1, with the following evolution law. At discrete times k = 1, 2, . . .

one chooses a particle at random, with uniform distribution (i.e., with
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probability 1/N), and moves it one step to the right with probability

p, and one step to the left with probability q = 1 − p. What we get

is a discrete time random walk of N particles. The process goes “very

slowly”, as N → ∞, since one has to wait in the average N time units

in order that a single particle be moved. To “accelerate” the process

we can perform the random choices and shifts at fractionary times k/N ,

k = 1, 2, . . . . Let us consider a fixed particle, e.g., the one with the label

1, and suppose that we add more and more particles, so that N goes to

infinity. Let τ
(1)
N (t) denote the number of jumps of the particle with the

label 1 up to time t (not necessarily integer) in the accelerated process.

Making use of the well known Poisson Theorem it is not hard to see that

τ
(1)
N (t), tends, as N → ∞, to the Poisson distribution with parameter t.

Moreover if τ
(2)
N (t) is the number of jumps of the particle with label 2,

then the joint distribution of τ
(1)
N (t) and τ

(2)
N (t) converges to the product

of two Poisson distributions with parameter t. The same happens if we

take any fixed collection of particles. We leave the easy proofs to the

reader.

The model described above corresponds to a “free gas”, i.e., a system

of particles that move as independent random walks. This simple argu-

ment shows that it is natural to consider models in which the particles

jump independently at continuous (poissonian) times.

We now pass to rigorous definitions, starting with the case of one

particle performing a nearest neighbor random walk on ZZ, again with

probability p of jumping to the neighboring site on the right, and prob-

ability q = 1 − p of jumping to the left. The transition times are a

realization of a Poisson process on IR+ with intensity 1, and the state

space is of course ZZ. We assume, as usual, that at the transition time

the particle position is the final one (trajectories are right continuous).

The evolution µt at time t ∈ IR+ of an initial measure µ and the

expected value of a bounded function f on ZZ are given by

µt(y) =
∑

z∈ZZ

µ(z)Pt(z → y), IEµt(f) =
∑

z∈ZZ

µt(z)f(z),

where Pt(z → y) is the transition probability from z to y by the time t,

which is easily computed, since the number n(t) of jumps by the time t

has a Poisson distribution with parameter t. The space of the trajectories

is the space of the functions t 0→ ZZ which are right continuous.
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A simple computation shows that

d

dt
IEµt(f) = IEµt(Lf), (Lf)(z) = λp[f(z+1)−f(z)]+λq[f(z−1)−f(z)].

L is a linear operator called “generator of the process”, a bounded oper-

ator on the bounded functions on ZZ. The process is identified by L since

we have

(1.15) (eLtIIy)(x) = Pt(x → y), x, y ∈ ZZ.

In order to prove eq. (1.15) note that the series converges, since L is

bounded. Moreover, setting ft(y) = (eLtIIy)(x), taking into account that

LIIy = p(IIy−1 − IIy)+q(IIy+1 − IIy), we find that ft satisfies the differential

equation
dft(y)

dt
= pft(y − 1) + qft(y + 1) − ft(y).

Taking the Fourier transform φt(τ) =
∑

y eiτyft(y), we find the equation

dφt(τ)/dt = (peiτ +qe−iτ −1)φt(τ), with the initial condition φ0(τ) = eixτ .

Integrating we get

(1.16) φt(τ) = eixτ+t(peiτ +qe−iτ −1).

In order to prove eq. (1.15) it is enough to observe that the expres-

sion (1.16) is the characteristic function of the probability distribution

Pt(x → ·). In fact, if the particle jumps k times to the right and n − k

times to the left its position at time t is r = 2k − n. Taking into account

that the number n of jumps is Poisson distributed, we have

∑

y

Pt(x → y)eiτy =
∞∑

n=0

e−t t
n

n!

n∑

k=0

(
n

k

)
pkqn−keiτ(x+2k−n),

which, after some manipulation, gives φt(τ).

One can of course accelerate or slow down the jump process by taking

for the number of jumps by time t a Poisson distribution with parameter

λt, where λ is a positive number, the “intensity” of the process.

Let us now consider the case of n labeled particles, i.e., the product

of n distinct random walks with state space ZZn. The elements of ZZn
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are denoted as vectors x = (x1, . . . , xn). The transition probabilities are

P̄t(x → y) =
n∏

i=1
Pt(xi → yi), and the generator is

(L̄f)(x) =
n∑

i=1

[p(f(x(i+)) − f(x)) + q(f(x(i−)) − f(x))],

where x(i±) = (x1, . . . , xi ± 1, . . . , xn) .

We are actually not interested in the particle labels, so we pass to the

symmetrized state space, which in this case can be considered as a subset

of Ω = INZZ: Ω(n) = {η ∈ Ω :
∑

x∈ZZ η(x) = n}. We denote again the

symmetrization operator by Πn, so that

(1.17) Pt(η → η′) =
∑

y∈Π−1
n (η′)

P̄t(x → y), x ∈ Π−1
n (η).

(This expression does not depend on the particular element x ∈ Π−1
n (η).)

The generator L is defined by the relation

(1.18)
d

dt

∑

η′
Pt(η → η′)f(η′) =

∑

η′
Pt(η→η′) (Lf)(η′).

By (1.17) we have
∑
η′

Pt(η→η′)f(η′) =
∑
y

P̄t(x→y)f(Πny), hence

Lf(Πny) = ( L̄(f ◦ Πn) )(y) = (L0f)(Πny),

where, denoting by ηx,y the configuration obtained from η by canceling

a particle at the site x and adding a new one at y, the operator L0 is

written as

(1.19) (L0f)(η) =
∑

x∈ZZ

η(x)[p(f(ηx,x+1) − f(η)) + q(f(ηx,x−1) − f(η))].

The process just described is a “jump process”, with state space Ω(n).

Note that in the average there are n jumps in a unit time.

The particle interaction can be expressed by assigning a generator of

the general form

(1.20) (Lf)(η) =
∑

x,y∈ZZ

c(x, y; η)[f(ηx,y) − f(η)].
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c(x, y; η) is the intensity of the jumps from x to y in the configuration

η, and its dependence on η can be interpreted as a consequence of the

particle interaction. If we take c(x, y; η) = p(x → y)η(x), where p(x → y)

is the transition probability of some random walk, then the generator L

degenerates into a “free” generator, which generalizes the generator L0

above. The intensity of the jumps is proportional to the particle number

at the site in x, a fact which expresses the absence of interaction.

The simplest example of interaction is provided by the so-called “sim-

ple exclusion” process. It corresponds to setting c(x, y; η) = p(x → y) if

η(x) = 1 and η(y) = 0, c(x, y; η) = 0 otherwise. In other words, particles

can jump only on empty sites. Clearly if we take an initial configuration

in the subset Ω̄(n) = {η ∈ Ω(n) : η(z) ≤ 1, z ∈ ZZ}, its evolution will never

leave Ω̄(n).

One usually assumes the following properties for the function c(x, y; η):

i) short interaction range, i.e., there is some R > 0 such that c(x, y; η) =

0 for |x − y| > R, and c(x, y; η) depends only on the values η(u) for

|u − x| < R, |u − y| < R; ii) translation invariance, i.e., for any a ∈ ZZ we

have c(x, y; η) = c(x + a, y + a; η + a).

Clearly the particle number is conserved for all models of this type.

Correlation Functions. The correlation functions are most naturally in-

troduced as follows. Let Ω0 = ∪∞
n=0Ω

(n) denote the space of finite config-

urations, and consider, for ξ ∈ Ω0, η ∈ Ω, the function

(1.21a) D(ξ, η) =
∏

z∈ZZ

Dξ(z)(η(z)), Dk(n),

where Dk are the so-called “Poisson polynomials”

Dk(n) =

{
1 if k = 0

n(n − 1) . . . (n − k + 1) otherwise.

The correlation functions of a state µ on Ω are then given by the expres-

sion

(1.21b) u(ξ) = IEµD(ξ, ·), ξ ∈ Ω0.

We can also consider the case in which η ∈ Ω(n), and µ is a measure on

Ω(n). In this case we consider ξ such that card ξ ≤ n. The restriction of
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u(ξ) to the m-particle subspace, i.e., for ξ ∈ Ω(m), is the m-th correlation

function, denoted by u(m).

1.2.2 – The Dynamics of infinitely many particles

The problem of the existence of the process as n → ∞ is, under the

above assumptions for the function c, much easier to deal with than for

classical particles.

Let us first consider the limit n → ∞ for the free particle model.

The limiting process is no more a jump process, as the jumps become

“infinitely frequent”, since the intensity of the jumps grows as n. In

order to define the limit one starts, as in the definition of the infinite

particle dynamics, from finite configurations. For any integer N > 0 we

set

η(N)(z) =

{
η(z) |z| ≤ N

0 otherwise.

Let f be a cylinder function, i.e., a function which depends only on the

occupation numbers η(z) in a finite volume Λ, and consider the quantity

A(f, t, N |η) =
∑

η′
Pt(η

(N)→η′)f(η′).

It is not hard to prove the following result.

Proposition 1.1. If η is such that, for some c > 0 and some

integer n the inequality

(1.22) η(z) ≤ c(|z|n + 1), z ∈ ZZ,

holds, then the limit A(f, t|η) = lim
N→∞

A(f, t, N |η) exists.

Proof. Let H = maxz∈Λ |z|, and N > N ′. We have

|A(f, t, N |η) − A(f, t, N ′|η)| ≤ ‖f‖∞ pN ′
t ,

where pN ′
t is the probability that a particle, starting from some z, |z| > N ′

happens to be in Λ at time t. Now the probability that a particle jumps
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further than R ∈ IN by time t is bounded by

∑

n>R

e−λt (λt)n

n!
≤ (λt)R

R!
.

Hence pN ′
t is bounded by

∑
|z|>N ′

η(z)
(λt)|z|−H

(|z| − H)!
, which, by (1.22), goes to

0 as N ′ → ∞.

The limit of A(f, t|η) can be interpreted as the expected value of the

function f with respect to the process which starts from the configura-

tion η.

Proposition 1.2. There is a probability measure on INZZ, Pt(η→dη′)

such that A(f, t|η) =
∫

Pt(η→dη′)f(η′).

Proof. The proof is based on the fact that the transition probabili-

ties Pt(η
(N)→η′) are a tight family of distributions. We omit the details,

and refer the reader to [11].

It is not hard to see that the generator of the limiting process is once

again L0:

d

dt

∫
Pt(η→dη′)f(η′) =

∫
Pt(η→η′)(L0f)(η′).

One can also show that if the measure µ on Ω is such that sup
z∈ZZ

IEµη(z) <

c < ∞, then the configurations η that do not satisfy Ineq. (1.22) for any

choice of c and n have zero measure with respect to all evolved states µt,

t ≥ 0.

For the simple exclusion process, which can be defined on the subset

Ω̄ = {η ∈ Ω : η(z) ≤ 1, z ∈ ZZ}, the problem of the existence of the

infinite particle dynamics is solved immediately, as there is no need to

control the local growth of the particle number.

1.2.3 – Gibbs States

A very importat fact for the theory of the interacting particle sys-

tems is that one can establish a connection between Gibbs equilibrium
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measures and the generators of the stochastic evolution. It should be

mentioned that the physical concept of “equilibrium measure” cannot be

translated in mathematical terms just as a measure that is stationary

under the action of the dynamics. Stationary measures can arise as a

consequence of boundary conditions and driving forces, which imply lo-

cal situations far from real equilibrium. For infinite volume equilibrium

states one should require at least translation invariance and absence of

external forces.

For stochastic systems it is natural to require that for the equilib-

rium states the so-called “stochastic reversibility” holds. This impor-

tant notion corresponds to the fact that the probability of a trajectory

ηt : 0 ≤ t ≤ T and of the trajectory ηT−t, obtained from it by inverting

time, are the same. For a finite system in a volume Λ with configuration

space ΩΛ = INΛ and equilibrium measure µΛ this condition can be written

in the form

(1.23)
µΛ(η)Pt(η→η′) = (eLtIIη′)(η) =

= µΛ(η′)(eLtIIη)(η
′) = µΛ(η′)Pt(η

′→η),

where, as in (1.15), we espress the transition probabilities in terms of the

generator L. Suppose that we assign a measure µΛ by means of a Gibbs

prescription, in the form

µΛ(η) =
1

ZΛ

e−U(η),

where UΛ is a translation invariant potential, and ZΛ is, as usual, the ap-

propriate normalization factor. By differentiating (1.23) with respect to t

we get, under the assumption that the generator is of the form (1.20), the

so-called “detailed balance” condition, a relation between the potential

U and the coefficients c(x, y; η) which define the dynamics:

c(x, y; η) = c(x, y; ηx,y)e−U(ηx,y)+U(η).

As it is shown by relation (1.23), detailed balance is equivalent to the fact

that the operator L is self adjoint in the space L2(ΩΛ, µΛ). We observe

that detailed balance cannot hold for the free gas if p .= q.

The notions of reversibility and detailed balance can be carried over,

with due care, in the thermodynamic limit Λ ↑ ZZ. We consider for def-
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initeness simple exclusion models with generator (1.20), and we assume

that the potential is always such that existence and uniqueness of the

limiting Gibbs measure are granted. The lim
Λ↑ZZ

[U(ηΛ) − U(ηx,y
Λ )] = Ux,y(η)

exists for a.a. η, with respect to the limiting measure, and detailed bal-

ance is written as

(1.24) c(x, y; η) = c(x, y; ηx,y)e−Ux,y(η).

This condition implies invariance of the limiting measure µ with re-

spet to the dynamics. For the simple exclusion models above in dimension

d = 1, 2 one can further prove that the Gibbs measures are the only sta-

tionary measures. For larger dimension one can only show that there are

no other stationary translation invariant measures. Details can be found

in [40].

One of the advantages of interacting particle models with stochastic

dynamics is that one can get significant results on equilibrium dynamics,

in the sense of § 1.1.2. For lattice gases with exclusion, under the hypothe-

ses above, one can show that, as a consequence of stochastic reversibility,

the equilibrium dynamics is mixing [40]. Hence one has convergence to

equilibrium for measures which are absolutely continuous with respect to

the equilibrium measure. For convergence to equilibrium of more general

measures one has up to now no results.

Equilibrium states for the lattice free gas. It is not hard to prove that the

translation invariant stationary measures for the lattice free gas are the

measures νρ, which are an infinite product of Poisson distributions with

parameter ρ > 0. More precisely νρ is the measure such that the occupa-

tion numbers at the various sites are independent and equally distributed,

with distribution

(1.25) νρ({η(z) = k}) = e−ρ ρk

k!
, k ∈ IN, z ∈ ZZ.

Clearly ρ has the meaning of an average particle density.

1.3 – The free gas

1.3.1 – The classical free gas

We report here in a simple form some results of [4].

For the free gas it is easy to prove that the equilibrium states are in-
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variant with respect to the dynamics, and one can also prove convergence

to equilibrium for a large class of initial states. Let

(1.26) Ttω = {(q, v) ∈ M : (q − vt, v) ∈ ω}

denote the free dynamics on Ω. As we said above there are points ω ∈ Ω

such that the relation Ttω ∈ Ω is not valid. Let Ω′ ⊂ Ω denote the

collection of the points ω such that Ttω ∈ Ω for any t ∈ IR. Ω′ is

measurable, and we are of course interested in those states P such that

P (Ω′) = 1. The proof that for any “reasonable” state P this condition is

satisfied requires some rather lengthy considerations, and we will consider

the weaker condition that the subset

Ω′
t = {ω : Ttω ∈ Ω}

has full P measure for any t ∈ IR. This fact is enough to ensure existence

of the evolution of the state P , which is given by the relation

(1.27a) Pt(A) = P (T−t(A ∩ Ω′
t) ) t ∈ IR.

We prove first a simple result. Let K
(1)
P denote the first correlation

measure of the state P , and let, for any t ∈ IR, K
(1)
P,t denote the measure

(1.27b) K
(1)
P,t(A) = K

(1)
P (T−tA), A ∈ M0

1.

The following proposition holds.

Proposition 1.3. If for any bounded Λ ⊂ IRν we have K
(1)
P,t(Λ ×

IRν) < ∞, then P (Ω′
t) = 1.

Proof. In order that Ttω ∈ Ω one has only to make sure that there

is no finite volume Λ which contains infinitely many particles. The reader

can check that the proof follows immediately from the definitions.

We can now establish the invariance of the equilibrium states.

Theorem 1.4. Let Pρ,h be a free gas translation invariant equilib-

rium state. Then for any t ∈ IR we have Pρ,h(Ω′
t) = 1, and (Pρ,h)t = Pρ,h.
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Proof. The measure K
(1)
Pρ,h

is absolutely continuous with respect to

the Lebesgue measure, with density ρh(v). Hence, by translation invari-

ance we have KPρ,h,t(A) = KPρ,h
(A), so that K

(1)
Pρ,h,t(Λ× IRν) = ρ|Λ| < ∞

for any bounded Λ and any t ∈ IR. Hence Pρ,h(Ω′
t) = 1, which guarantees

the existence of the state (Pρ,h)t. Moreover clearly

K(Pρ,h)t(A) = KPρ,h
(T−tA) = KPρ,h

(A).

Since the correlation measure uniquely identifies the state, it follows that

(Pρ,h)t = Pρ,h.

We now come to the problem of convergence to equilibrium. We

consider only locally absolutely continuous initial states P , such that the

following three conditions hold.

I. The first correlation function is bounded, uniformly in q, by a bounded

integrable function f

k
(1)
P (q, v) ≤ f(v), f ∈ L∞(IRν) ∩ L1(IRν).

II. The second correlation function is also uniformly bounded in space as

follows

k
(2)
P (q1, v1, q2, v2) ≤ f ′(v1)f

′(v2), f ′ ∈ L∞(IRν) ∩ L1(IRν).

In addition we assume that the state P satisfies a mixing condition, which

we state for simplicity in the following form. Given two nonintersecting

regions Λ1,Λ2, we measure their dependence by the coefficient

αP (Λ1,Λ2) = sup
A1∈MΛ1
A2∈MΛ2

∣∣P (A1 ∩ A2) − P (A1)P (A2)
∣∣.

We denote by D(r, q) the open cube in IRν with center in q and sides of

length 2r. The number

(1.28) αP (r, s) = sup
q∈IRν

αP

(
D(r, q)), IRν \ D(r + s, q)

)

is said to be the mixing coefficient of the state P .
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III. The third condition on the state is the existence of positive costants

c1, c2 such that the following inequality holds:

(1.29) αP (r, s) ≤ c1r
ν−1e−c2s .

Condition III expresses the fact that space regions far away from each

other are approximately statistically independent. Though a weaker con-

dition would be enough, condition (1.29) makes the proof much simpler,

and can be proven to hold for Gibbs states with short range potential,

in the region of the parameters in which the phase is unique ([4] and

references therein).

The notion of convergence that we consider here is “weak conver-

gence”, usually denoted by ⇒, corresponding to the weak topology on

the set P of the probability measures on (Ω, M), associated to the topol-

ogy of Ω defined above. This is the weakest topology such that the func-

tionals Ψf (P ) =
∫
Ω P (dω)f(ω), with f a bounded continuous function,

are continuous. Weak convergence of the family {Pt} to some state P is

equivalent to the condition that, for any A ∈ M such that P (∂A) = 0 we

have lim
t→∞

Pt(A) = P (A) [2].

For correlation measures the notion of weak convergence is not appro-

priate. We use instead the notion of “local weak convergence” or “vague

convergence”. This notion, for measures on the one-particle phase space

M = IRν × IRν , amounts to the following. We say that the measures

µt(dq × dv) converge locally weakly to µ, if for any bounded volume Λ,

and any continuous function f with support in Λ × IRν we have

lim
t→∞

∫
µt(dq × dv)f(q, v) =

∫
µ(dq × dv)f(q, v).

It is equivalent to the condition that, for any bounded Λ and any B ⊂ IRν

such that µ(∂(Λ × B)) = 0, we have lim
t→∞

µt(Λ × B) = µ(Λ × B).

Theorem 1.5. If the state P satisfies the conditions I, II and III,

then

i) P (Ω′
t) = 1 for any t ∈ IR.

ii) The states {Pt : t ∈ IR} converge weakly to the free gas equilibrium

state with parameters ρ and h, if and only if the measures K
(1)
P,t, defined

by relation (1.27b), converge locally weakly to the measure ρh(v)dqdv.
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Proof. In order to make the proof shorter we prove the result only

in the one-dimensional case. In more dimensions the proof is similar, and

the reader can easily work out the details. The proof is based on the

Poisson theorem.

Let A = Λ × IR, with Λ bounded. We have

K
(1)
P,t(A) = K(1)(T−tA) =

∫
dqdv II(q + vt ∈ Λ )k(1)(q, v) ≤

≤ |Λ|
∫

IR

f(v)dv < ∞,

where we simply integerated over q and then applied Condition I. It

follows that P (Ω′
t) = 1, for any t ∈ IRν , hence the evolution of the initial

state {Pt : t ∈ IR} is well defined.

We first show that the weak convergence Pt ⇒ Pρ,h implies local weak

convergence of the measures K
(1)
P,t to ρh(v)dqdv. Let Λ ⊂ IR be a segment

and B ⊂ IRν a measurable set. Since Pρ,h is locally absolutely continuous

we have Pρ,h(A∂(Λ×B),n) = 0, for n > 0, and, of course, K
(1)
Pρ,h

( ∂(Λ ×
B) ) = ρ

∫
∂(Λ×B) dqh(v)dv = 0. It is enough to prove that

lim
t→∞

K
(1)
P,t(Λ × B) = lim

t→∞
K

(1)
Pt

(Λ × B) = ρm(Λ)

∫

B

h(v)dv,

where we used the fact that K
(1)
P,t = K

(1)
Pt

.

Hence K
(1)
P,t(Λ × B) =

∑∞
n=1 nPt(AΛ×B,n). Each term of the series con-

verges to Pρ,h(AΛ×B,n) by assumption. As for the remainder we have

(1.30)
∞∑

n=k

nPt(AΛ×B,n) ≤
∞∑

n=k

nPt(AΛ×IR,n) ≤

≤ 1

k − 1

∞∑

n=k

n(n − 1)Pt(AΛ×IR,n) =
2

k − 1
K

(2)
Pt

(Π2(Λ × IR × Λ × IR) ).

From (1.30) and Condition II we have

K
(2)
Pt

(Π2(Λ × IR × Λ × IR) ) = K
(2)
P,t(Π2(Λ × IR × Λ × IR) ) ≤

≤1

2

∫
dq1dq2dv1dv2f

′(v1)f
′(v2)II(q1 + v1t ∈ Λ)II(q2 + v2t ∈ Λ) =

=
1

2
(|Λ|

∫
f ′(v)dv)2 < ∞.
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Hence we can go to the limit under the summation sign, and necessity is

proved.

As for sufficiency, using some general facts of measure theory, it is

enough to verify that for any collection of finite intervals Λ1,Λ2, . . . ,Λk,

of (possibly infinite) intervals B1, B2, . . . , Bn, and of nonnegative integers

n1, n2, . . . , nk we have

lim
t→∞

Pt

( k⋂

i=1

AΛi×Bi,ni

)
= Pρ,h

( k⋂

i=1

AΛi×Bi,ni

)
.

We first consider the case k = 1, and let B be a finite interval,

B = (v1, v2]. Let

ξ
(t)
Λ,B(ω) = card (Ttω ∩ Λ × B) = card (ω ∩ T−t(Λ × B)).

We want to study the limiting distribution of the random variables ξ(t) =:

ξ
(t)
Λ,B. We divide the interval B in Nt = [tβ], β ∈ (0, 1) subintervals

Ik = (v1 + (k − 1)ε, v1 + kε], where ε = (v2 − v1)/Nt, and consider,

assuming that Λ = (a, b), the sets

Vk(t) =
{
(q, v) : q + vkt ∈

(a + b − L

2
,
a + b + L

2

)
, v ∈

(a − q

t
,
b − q

t

)}
,

k = 1, . . . Nt − 1,

where L = tα and α > 0 is chosen in such a way that α + β < 1.

We set Uk(t) = T−t(Λ × Ik) ) \ ∪jVj(t). It is easy to see that the sets

Vk(t) have Lebesgue measure (b − a)L/t 5 (b − a)t−1+α (5 denoting

asymptotic equivalence) and the sets Uk(t) have Lebesgue measure (a −
b)ε 5 (a − b)tβ. Moreover the sets Uk are at a distance L from each

other. We have ξ(t) =
Nt∑

k=1

ξ
(t)
k +

Nt−1∑
k=1

η
(t)
k , with ξ

(t)
k = card (ω ∩ Uk(t)) )

and η
(t)
k = card (ω ∩ Vk(t)) ). Making use of the fact that the function

f(v) is bounded and of Condition I we have

lim
t→∞

IE
Nt−1∑

k=1

η
(t)
k ≤ C lim

t→∞
tβt−1+α = 0,

so that we have only to consider the limit of the random variable ξ̂(t) =
Nt∑

k=1

ξ
(t)
k , which we will compare with that of the sum ξ̄(t) =

Nt∑
k=1

ξ̄
(t)
k , where
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the variables ξ̄
(t)
k have the same distribution as the ξ

(t)
k , but are mutually

independent. The difference of the characteristic functions is estimated by

a recurrence relation, making use of the mixing property (1.28): |IEeisξ̂(t)−
Nt∏

k=1

IEeisξ̄
(t)
k | ≤ const tβe−c2L, and the right side goes to 0 as t → ∞.

As for the sum of the independent variables ξ̄(t) we can now use the

Poisson theorem. We need to establish the following three relations:

lim
t→∞

max
k

P ({ξ̄
(t)
k > 0}) = 0,

lim
t→∞

Nt∑

k=1

P ({ξ̄
(t)
k = 1}) = ρ(b − a)

∫

B

h(v)dv,

lim
t→∞

Nt∑

k=1

P ({ξ̄
(t)
k ≥ 2}) = 0.(1.31)

The first one is obvious, given the estimate for the Lebesgue measure of

Uk(t) above, which gives IEξ̄
(t)
k ≤ t−β → 0.

P ({ξ̄
(t)
k ≥ 2}) is bounded from above by K

(2)
P (Π2(Uk(t) × Uk(t)) ),

which, since f ′ is bounded (Condition II), is majorized, up to a constant

term, by the square of the Lebesgue measure of Uk(t). Hence we find
Nt∑

k=1

P ({ξ̄
(t)
k ≥ 2}) ≤ C Ntt

−2β. This quantity is bounded by const t−β,

which proves the third relation (1.31). Observe that in actual fact we

proved that

(1.32) lim
t→∞

∑

k

IEξ̄
(t)
k II(ξ

(t)
k ≥ 2) = 0.

From what is said above it follows that lim
t→∞

(
IEξ(t) −

Nt∑
k=1

IEξ̄
(t)
k

)
= 0,

and relation (1.32) gives lim
t→∞

|IEξ̄(t) −
Nt∑

k=1

P ({ξ̄
(t)
k = 1})| = 0. The second

relation (1.31) follows,since we have by assumption

lim
t→∞

IEξ(t) = lim
t→∞

K
(1)
P,t(Λ × B) = ρ(b − a)

∫

B

h(v)dv.

If B is not a bounded interval we can proceed in a similar way, making

use of the fact that f and f ′ are integrable.
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In order to achieve the proof we have to extend the result to the case

k > 1. Consider for example the case k = 2. We introduce intervals Λ1

and Λ2 and B1, B2, and the random variables ξ
(t)
(j), j = 1, 2, defined as the

occupation numbers of the sets Λ1×B1 and Λ2×B2 respectively, under the

assumption that (Λ1 ×B1)∩ (Λ2 ×B2) = ∅. Note that convergence of the

joint distribution of ξ
(t)
(1) and ξ

(t)
(2) to the joint distribution of the random

variables η1, η2, is equivalent to convergence of the distribution of the

random variable ξ
(t)
12 = κ1ξ

(t)
(1) + κ2ξ

(t)
(2) to the distribution of κ1η1 + κ2η2,

for any choice of the real numbers κi, i = 1, 2. The proof for the variable

ξ
(t)
12 is made in analogy to what was done for k = 1, the main change

being the fact that ξ
(t)
1,2 can assume noninteger values. The details are left

to the reader.

The case k > 2 is done in the same way.

Observe that in the above proof the only source of “randomization” is

the continuous velocity distribution. If the velocity distribution is atomic

the theorem fails.

1.3.2 – The free stochastic gas

The translation invariant stationary measures are {νρ : ρ > 0}, de-

fined by relation (1.25).

Consider for definiteness the symmetric first neighbor case (p = q =

1/2), and assume that the initial configuration η satisfies condition (1.22).

We denote by Pt(·|η) the measure that evolves out of the initial configu-

ration η, i.e., the measure Pt(η → ·). The following analogue of Theorem

1.5 holds.

Theorem 1.6. Under the above assumptions, if η is such that

η(y) ≤ C(1 + |y|)α, where C > 0 is a constant and α ∈ (0, 1/2), a neces-

sary and sufficient condition in order that the measures Pt(·|η) converge

weakly to the invariant measure νρ is that for any x ∈ ZZ one has

(1.33) lim
t→∞

IEPt(·|η)η(x) = lim
t→∞

IE(ηt(x)|η) = ρ.
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Proof. Since the random walk is symmetric, Pt(x→y) depends only

on |x−y|, and we write Pt(x→y) = πt(y−x). We first prove the following

formula

(1.34) IE(ηt(x)|η) =
∑

y

πt(x − y)η(y).

Let xt be a random walk independent of the variables η, with transition

probabilities given again by πt, and with starting point x0 = x. Consider

the joint process (ηt, xt) with the product measure, and the function of

the process g(s, t|η) = ηs(xt−s). It is easy to see that, denoting by IE the

expectation with respect to the joint process, we have

(1.35)
d

ds
IEηs(xt−s) = 0.

In fact the generator of the joint process is simply the sum of the gener-

ators. This is easily seen by differentiating the expectation of a product

of functions, f1(ηs)f2(xs), and then extending the result to the general

case. Relation (1.35) is obtained by using the expression of the gen-

erators given by (1.19). Formula (1.34) then follows by the equality

IEg(0, t|η) = IEg(t, t|η).

Suppose that (1.33) holds, and consider for definiteness the point

x = 0. We can write ηt(0) =
∑

y∈ZZ ξ0,y
t , where ξ0,y

t denotes the number

of the particles that are at the site 0 at time t and were at the site y at

time 0. Clearly the ξ0,y
t ’s are random variables which are independent

for different y’s, since the particles do not interact. Each one of the

η(y) particles at y jumps to 0, independently of the other ones, with

probability πt(y). It is then easy to see that

P(ξ0,y
t ≥ 2) =

η(y)∑

k=2

(
η(y)

k

)
πt(y)k(1 − πt(y))η(y)−k ≤

≤ η(y)(η(y) − 1)(πt(y))2.

Since πt(y) = O(
1√
t
), uniformly in y, we have lim

t→∞

∑
y

P(ξ0,y
t ≥ 2) = 0,

and clearly

lim
t→∞

∑

y

P(ξ0,y
t = 1) = lim

t→∞

∑

y

πt(y)η(y) = ρ.
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The random variables ξ0,y
t are infinitesimal as t → ∞, since πt(y) → 0,

and we can again apply the Poisson theorem, to obtain the result.

Suppose now that we have weak convergence to νρ. By assumption

the single terms of the sum
∑∞

k=0 P(ηt(0) = k|η) converge to ρke−ρ/k!. It

is enough to prove that the remainder is infinitesimal. Observe first that,

if η satisfies Ineq. (1.22), then the quantity
∑

y πt(y)η(y) is majorized by

a constant depending on t. The result then follows from the inequality

P(|ηt(0) −
∑

y

πt(y)η(y)| > K) ≤ 1

K2

∑

y

IE(ξ0,y
t − πt(y)η(y))2 ≤ Ct

K2
.

2 – The transition from discrete to continuous description.

Local equilibrium states and hydrodynamic limit

We begin by a brief discussion on the nature of the limit that allows

to describe discrete media in terms of continuous functions. We will

then introduce local equilibrium states and the hydrodynamic limit, with

the aim of conveying general ideas and the main technical tools. We

give proofs, sometime incomplete, only for the free gas, and for a simple

interacting particle system that leads to a nonlinear diffusion equation.

We will also briefly discuss problems connected with the search of an

appropriate definition of local equilibrium states and with their evolution

in time, and conclude with a few words on the so-called “Navier-Stokes

corrections”.

2.1 – Macroscopic and microscopic description. Changes of space scale

Passing from a discrete (molecular) description of the fluids to a

continuous one, such as that of fluid dynamics, implies in mathematical

terms a limiting procedure, which is not exclusive of statistical physics.

Consider for example the problem of finding an approximate reproduction

of a plane figure in terms of points on white paper or on a screen. (This is

what happens in photographs or on the tv screen.) In mathematical terms

we want to approximate a continuous density ρ(q) in a volume Λ ⊂ IRν

by a finite configuration ω of N points. Let Ω
(N)
Λ be the space of such

configurations, and ΩΛ the union ∪NΩ
(N)
Λ . These spaces are endowed with
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topologies and of corresponding Borel σ-algebras as explained in § 1.1.

To each point ω ∈ Ω
(N)
Λ we associate a probability measure µω on Λ:

µω =
1

N

∑

q∈ω

δq,

where δq is the point measure with support q. If the sequence {ωN ∈
Ω

(N)
Λ : N = 1, 2, . . . }, converges, as N → ∞, to the continuous density

ρ(q), then, for any q ∈ Λ, the fraction of the particles that are in a

small volume ∆ ⊂ Λ around the point q has to be close, for large N , to

ρ(q)m(∆), where m is the Lebesgue measure on IRν . This means that the

mathematical notion that we need is weak convergence of the measures

µωN
to the measure ρ(q)dq, i.e., the convergence

lim
N→∞

∫

Λ

µωN
(dq)f(q) =

∫

Λ

f(q)ρ(q)dq,

for any continuous bounded function f . The corresponding topology

on the space of the probability measures P on MΛ is metrizable, and a

possible choice of the metrics is

(2.1) d(µ(1), µ(2)) = sup
f∈C1

|
∫

Λ

µ(1)(dq)f(q) −
∫

Λ

µ(2)(dq)f(q)|,

where

(2.2) C1 = {f |f : Λ → [0, 1], |f(x) − f(y)| ≤ |x − y|}

is the class of the nonnegative functions with values in [0, 1], which are

Lipschitz continuous with Lipschitz constant not exceeding 1. The proof

of this fact is easy and is left to the reader.

An interesting application of this notion of convergence is the Mon-

tecarlo method for computing multiple integrals. Suppose that we want

to compute the integral J =
∫
Λ h(x)dx, where h is a continuous positive

function, and that we know, maybe by previous computation, the dis-

tribution of a random variable ξ, which is distributed on Λ with density

f(x), which we assume to be strictly positive. Consider the new random

variable ζ = h(ξ)/f(ξ). The integral J is the average value of the random
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variabile ζ: J = IEζ. By generating on the computer N independent val-

ues xk of the random variable ξ we can approximate the integral by the

average

JN =
1

N

N∑

j=1

h(xj)

f(xj)
.

JN is a sum of independent random variables, and will typically differ

from J by a quantity of the order σN =
√

IDζ/N , where IDζ is the

dispersion of ζ. The auxiliary function f can be chosen in such a way

that the dispersion of ζ be small, which is true if h/f is close to a constant.

The Montecarlo method is much faster than the traditional Riemann

approximation in high dimension ν. In fact the Riemann sum of the

integral J , for h Lipschitz, and computed on a regular lattice of N points,

approximates as a rule the integral up to a quantity of the order N− 1
ν .

In the Montecarlo method we deal, as in statistical mechanics, with

random configurations. The measure corresponding to the configuration

ωN = ΠN{x1, . . . , xN} is close with large probability to the measure

f(x)dx on Λ, in the sense that, as it follows by applying the Cheby-

shev inequality, for any continuous bounded function g the integrals∫
Λ µωN

(dx)g(x) and
∫
Λ f(x)g(x)dx are close in probability for large N .

It is not so hard to prove the following stronger result.

Proposition 2.1. If d denotes the metrics defined above, P N the

distribution of the random configuration ωN , and mf the measure on Λ

which is absolutely continuous with respect to the Lebesgue measure, with

density f , we have, for any δ > 0,

lim
N→∞

P N({ωN : d(µωN
, mf ) > δ} ) = 0.

In statistical mechanics the number of points N is not a free pa-

rameter, but is determined by the physical conditions. Describing the

distribution of matter in a fluid as a continuous mass is like looking at

the particle system through an inverted telescope, which makes images

smaller by a factor ε ∈ (0, 1). It is clear that in real physical cases one

cannot take ε too small, otherwise the macroscopic structure, i.e., the

space distribution of mass, temperature etc., which we want to describe,

disappears. The factor ε should be taken equal to the ratio between the
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typical intermolecular distance and the typical distance over which the

macroscopic variables which we want to describe vary in a significant way.

Hence the scale parameter ε, which characterizes the transition from

the microscopic to the macroscopic description, is essentially a given

(nonzero) quantity. The “macroscopic limit”, in which the system be-

comes a continuum, corresponds to the limit ε → 0, and provides of course

an approximate description, which is accurate if ε is small.

Similar problems arise in choosing the right time scale for the macro-

scopic description, which of course will depend on the space scale param-

eter ε. We shall discuss this problem in the next paragraph.

2.2 – Local equilibrium, time evolution and hydrodynamic limit

2.2.1 – Local equilibrium states

The dynamics of fluids provides a macroscopic description of particle

systems in a state of “local equilibrium”. As we said above the equilib-

rium states of a fluid of identical interacting particles, are described in

terms of five thermodynamic quantities: the density of mass, the density

of momentum, and the density of energy. Hence local equilibrium situ-

ations will be described by five functions, which give the values of the

thermodynamic quantities as functions of space and time.

The problem of finding an adequate mathematical description of local

equilibrium states is highly nontrivial, and, though we have by now some

important results, one can hardly consider the present state of the matter

as satisfying. The point of view that we assume here is essentially due to

Morrey [33] and to Dobrushin et al. [5], [17].

The first difficulty that one has to face is the obvious fact that by

taking the thermodynamic limit of finite volume states, whatever the

boundary conditions, one cannot get a distribution which reproduces dif-

ferent equilibrium states in different space regions. From a physical point

of view it is clear that if the thermodynamic parameters of a fluid vary

in space, the fluid cannot be in equilibrium in any space region, i.e., local

equilibrium can only hold approximately. From a mathematical view-

point local equilibrium can only correspond to the ideal limiting situation

ε → 0. In the limit the objection above does not hold, since macroscop-

ically distinct regions are separate by a distance which is infinite on a
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microscopic scale.

Let us go back, for definiteness, to the case of a fluid made of identical

particles that interact through a pair potential Φ, in dimension ν = 3.

We shall assume for simplicity that the fluid is infinitely extended. We

can define a local equilibrium state as a family of Gibbs states {P ε :

ε ∈ (0, 1)}, the parameters of which depend on the space variables. The

states are defined by changing the expressions (1.10a,b) in that we replace

βhΛ(ωΛ ∪ ωIR3\Λ) by

(2.3)

∑

(q,v)∈ωΛ

β(εq)
[m

2
(v − V(εq))2 + µ(εq)+

+
1

2

∑

(q′,v′)∈ωΛ

Φ(|q − q′|) +
∑

(q′,v′)∈ω
IR3\Λ

Φ(|q − q′|)
]
.

What we have just defined is a state for which the chemical potential µ,

the average velocity V and the temperature T depend “weakly” on the

space variables (i.e., they are functions of εq). We shall always assume

that the range of µ and β is in the region for which uniqueness of the

Gibbs state and mixing in the sense of Ineq. (1.29) are proved. As a

consequence the state defined by eq.s (2.3) exists for any ε, is unique and

is mixing in the sense of Ineq. (1.29) (see [4] and references therein).

Sometimes it may be convenient to define the local equilibrium states in

finite volumes ε−1Λ.

The macroscopic description of the fluid is obtained in the limit ε → 0

(macroscopic limit), although clearly any given physical state can only be

described by a single element of the family P ε, for some value of ε, which

will determine the accuracy of the limiting description. In the limiting

situation we still have the possibility of describing our system in terms of

the local microscopic variables. It is not hard to see that if g is a local

observable, i.e., a function depending only on the configuration ωΛ, where

Λ ⊂ IR3 is a finite region, one has

(2.4) lim
ε→0

IEP εSε−1qg = ḡ(µ(q),V(q), β(q)),

where Sq, q ∈ IR3, denotes the translation operator on functions, defined

as (Sqg)(ω) = g(ω−q), the traslation of the configuration ω being defined
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as ω − q = {(q′ − q, v′) : (q′, v′) ∈ ω}. By ḡ(µ,V, β) we denote the

expected value of the local function g in the equilibrium Gibbs state with

parameters µ,V, β.

Hence the local equilibrium states P ε in the neighborhood of the

macroscopic point q (corresponding to the microscopic point ε−1q) tend,

as ε → 0, to the equilibrium state with parameters µ(q),V(q), β(q).

What happens if, for ε fixed, we measure a macroscopic observable in

the neighborhood of the macroscopic point q? We need first an adequate

definition of “macroscopic observable”. We assume here that a physical

observable is a quantity g which can be associated to any configuration in

a finite region Λ (we may denote by gΛ the corresponding function), and

is additive, in the sense that if the region Λ is represented as a union of

several disjoint regions Λ = ∪n
j=1Λj, then the quantity gΛ can be written

as a sum gΛ =
∑n

j=1 gΛj
. These requirements are satisfied by the five

basic conserved quantities, i.e., particle number, mechanical momentum,

and energy, and by similar quantities such as the kinetic energy.

Let us consider for definiteness the number of the particles in a

macroscopic (or semimacroscopic) region Λε = ε−γΛ, γ ∈ (0, 1), with

velocity in some set B ⊂ IRν , and let Aε = Λε × B. Denoting by

Aε + ε−1q = {ω : ω − ε−1q ∈ Aε} the space shift of Aε, for the local

equilibrium Gibbs states with particle potential Φ one has a law of large

numbers in the following form.

Proposition 2.2. For any choice of γ′ ∈ (0, 1/2) one can find

positive constants c and r such that

P ε
({ 1

|Λε| |NAε+ε−1q − K
(1)
P ε (Aε + ε−1q)| > |Λε|− 1

2+γ′})
≤ r e−c|Λε|2γ′

.

Proof. The proof follows from the mixing property (1.29). For more

details and we refer the reader to [4].

This result means that the empirical density of particles in Aε +

ε−1q, for any q, is close, with overwhelming probability to the average

value |Λε|−1K
(1)
P ε (Aε + ε−1q) which in its turn, due to the fact that the

parameters of the state P ε do not vary significantly over the volume Λε,

tends, by (2.4), to the density ρ(q) of the limiting state, with parameters

µ(q),V(q), β(q).
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This is the general scheme of the proof for additive physical variables.

What was said above explains in which sense the limit ε → 0 of the states

P ε describes a fluid in local equilibrium with thermodynamic variables

(µ(q),V(q), β(q)).

Local equilibrium states on the phase space of interacting particle

models with stochastic dynamics can be defined in the same way [40].

Since in most cases the only conserved quantity for such models is the

particle number, the corresponding local equilibrium states will depend

only on one function ρ(q).

Free gas local equilibrium states. We need to consider Gibbs states P ε

with interaction potential equal to 0, and with particle density and veloc-

ity distribution given by some functions ρ(εq), and h(εq, v), respectively.

Instead of invoking the general construction it is simpler to define the

states P ε by prescribing the following three conditions:

i) For any choice of the finite disjoint volumes Λ1, . . . ,Λn the corre-

sponding local distributions are independent.

ii) The local distribution in a finite volume Λ is absolutely continuous

w. r. to the measure λ, and the corresponding density, computed at the

point Πn{(q1, v1), . . . , (qnvn)} is given by the function

(2.5)
1

Zε
Λ

n∏

j=1

ρ(εqj)h(εqj; vj),

where Zε
Λ is, as usual, the normalization factor.

For the lattice free gas the local equilibrium state with density profile

ρ(q) is the product of poissonian independent measures for each site z ∈
ZZν , with parameter ρ(εz).

In both cases the law of large numbers and other limiting results as

ε → 0, are easy to prove, as we essentially deal with sums of independent

random variables. We formulate the following result, the proof of which

can be done in analogy with the result of § 1.3, and is left to the reader.

Proposition 2.3. The state Sε−1qP
ε of the classical (lattice)

free gas, corresponding to the functions ρ(·), h(·, ·) (function ρ(·)) tends

weakly, as ε → 0, to the classical (lattice) free gas state with parameters

ρ(q), h(q; ·) (with parameter ρ(q)).
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2.2.2 – Time dynamics of the local equilibrium states. Hydrodynamic limit

A system of interacting molecules has a charactersitic (microscopic)

time scale, which is the ratio between the average intermolecular dis-

tance and the average velocity of the molecules. For a gas at room tem-

perature this time is approximately 10−12 sec. A second characteristic

(macroscopic) time scale corresponds to times over which the local ther-

modynamic variables change significantly, which may be of the order of

seconds, or hours, months, etc., depending on the physical system under

consideration.

From a conceptual viewpoint the simplest situation is the one in

which time and space are rescaled with the same factor ε. Passing from

microscopic variables (q, τ) to the macroscopic ones (x, t) then means just

changing scales by the same factor: q = ε−1x, τ = ε−1t. The interaction

is unchanged. The limit ε → 0 in this case is known under the name

“hydrodynamic limit”.

Once local equilibrium states are defined, one would like to under-

stand how they behave under time evolution. The important question

is whether the evolution changes local equilibrium states into new local

equilibrium states. A mathematical notion of local equilibrium that is

not preserved in time is flawed, since physical experience shows that flu-

ids in their time evolution stay, as a rule, close to a local equilibrium

situation, a property which is appropriate to call “propagation of local

equilibrium”.

A rigorous proof of propagation of local equilibrium for systems of

particles interacting by a realistic potential is at the moment, whatever

the definition, out of reach for the existing mathematical tools, since we

would need the existence of nonequilibrium dynamics. The only models

for which one can obtain some results are models with degenerate inter-

action and interacting particle models with stochastic evolution. Part of

the discussion below is based on these models.

We should remark, first of all, that propagation cannot hold in gen-

eral if we assume the above definition of local equilibrium without change.

In fact the state obtained after evolution (for a macroscopic time t) P ε
ε−1t

is no more a Gibbs state with hamiltonian of the type (2.3), correspond-

ing to some functions ρ(εq, t) etc. One can overcome this difficulty by

assuming as correct definition of local equilibrium the validity of relation
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(2.4) for the family {P ε}. A local equilibrium state would then be the

class of all states for which in the limit ε → 0 that relation holds. Physical

arguments, and the results which have been obtained for models with de-

generate interaction, show that this definition works well if one wants to

deduce the “Euler equations” in the hydrodynamic limit. Problems, con-

nected with the fact that the new definition allows “too many” states,

arise when we consider the so-called “Navier-Stokes” corrections. We

will say more about this later on. Finding an adequate definition of local

equilibrium states and proving that local equilibrium persists in time is

maybe the main open problem in nonequilibrium statistical mechanics.

When speaking of local equilibrium family we will refer, unless oth-

erwise stated, to the validity of relation (2.4). A formulation of the ba-

sic result on time evolution that is needed for a rigorous derivation of

the “Euler equations” in the hydrodynamic limit ε → 0, is the follow-

ing. Suppose that an initial family of local equilibrium states is given

{P ε : ε ∈ (0, 1)}, with “thermodynamic profile” ρ(q),V(q), e(q), and let

P ε
ε−1t be the state obtained by time evolution of the initial state P ε at

the time ε−1t. Then the family {P ε
ε−1t : ε ∈ (0, 1)} is, for any t, a local

equilibrium family corresponding to a thermodynamic profile given by

some other functions ρ(q, t),V(q, t), e(q, t).

This is almost all that is needed for a rigorous derivation of the Euler

equations in the hydrodynamic limit ε → 0. One can in fact prove [12])

that if this is true, then, due essentially to the conservation laws, the

functions ρ(q, t),V(q, t), e(q, t) are the solutions of a system of partial

differential equations which coincide with the classical Euler equations

for the system. Hence the hydrodynamic limit ε → 0 corresponds to the

approximation of “perfect fluids”. We will come back to this point in

§ 2.2.7.

2.2.3 – The hydrodynamic limit for the classical free gas

Local equilibrium states for the classical free gas are defined by for-

mula (2.5).

We associate to any ω ∈ Ω an infinite measure on M, which is given

by the sum of the atomic measures for each point. We shall denote

this measure as ω(dqdv). By ωt we denote the evolution of ω in time

(according to the dynamics (1.26)).
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We need to modify a little bit the notion of “macroscopic observable”.

Let ϕ be a “test function”, namely a function of class C∞ on M with

compact (in q) support, i.e., such that ϕ(q, v) = 0 if |q| > R, for some

R > 0. We say that the macroscopic observable associated to the function

ϕ is the quantity

ξε
t (ϕ) = εν

∫
ϕ(εq, v)ωε−1t(dqdv) = εν

∑

q,v∈ω
ε−1t

ϕ(εq, v).

The functional ξε
t takes the name of density field at the time t. The

function ϕ(εq, v) varies over distances of the order ε−1, and has support

with diameter ε−1R, hence εν is the normalization factor corresponding

to the scale change. The function f(q, v) = ρ(q)h(q, v) describes the

“macroscopic profile” of the fluid at time t = 0. We assume that f ∈ C1.

For the free gas we can assume the definition of local equilibrium of

§ 2.2.1, i.e., the family of states with local distributions given by expres-

sion (2.5). Propagation of local equilibrium holds: it is easy to see that

the states P ε
ε−1t are again free gas states, and the local distributions are

obtained by replacing f(εq) by f(εq−vt). This is all that we need for the

hydrodynamic limit of the free gas. We state the result in a somewhat

different form for later reference.

Theorem 2.4. For any choice of the function ϕ in the class of the

C1 functions with compact support in M, of t ∈ IR, and of δ > 0 we have

lim
ε→0

P ε(|ξε
t (ϕ) −

∫

M
dqdvϕ(q, v)f(q, v, t)| > δ) = 0,

where f(q, v, t) is the unique solution of the equation

(2.6)
∂f

∂t
+ v · ∇qf = 0,

with initial data f(q, v, 0) = f(q, v).
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Proof. As time evolution is given by formula (1.26) we have ξε
t (ϕ) =

ξε
0(ϕt), where ϕt(q, v) = ϕ(q + vt, v). Hence the result will follow from

the relation

(2.7) lim
ε→0

P ε(|ξε
0(ϕt) −

∫

M
dqdvϕt(q, v)f(q, v)| > δ) = 0,

which, by the definition of local equilibrium states for the classical free

gas, can be easily reduced to the law of large numbers for the Poisson

distribution. (It is enough to approximate ϕ as a linear combination of

indicator functions with disjoint support.)

The integral in formula (2.7) is equal to
∫

M dqdvϕ(q, v)f(q − vt, v),

as one can see by a change of variables, and the function f(q, v, t) =

f(q−vt, v) is the unique solution of the equation (2.6) with the prescribed

initial data.

2.2.4 – The hydrodynamic limit for the lattice free gas

Consider the lattice free gas on ZZ with transition probabilities p and

q (see § 1.2.). The local equilibrium state with macroscopic profile ρ(q) is

the state for which the variables η(z) are Poisson distributed with param-

eter ρ(εz). (We suppose for simplicity that the function ρ is bounded.)

It is not hard to prove the following result.

Proposition 2.5. Let P ε be the local equilibrium family with profile

ρ. The state P ε
t , obtained as the time evolution of P ε at time t according

to the dynamics defined by the generator L0, is such that the variables

η(z) are independent and Poisson distributed with parameter

(2.8) ρε
t(z) =

∑

y

Pt(y → z)ρ(εy).

Proof. The proof is based again on the representation of ηt(z) as a sum of

independent random variables: ηt(z) =
∑
y

ηz,y
t , where ηz,y

t is the number

of the particles which jump from y to z by the time t. The characteristic

function of ηt(z) is an infinite product of characteristic functions

IEeiτη
z,y
t = IEIE(eiτη

z,y
t |η) =

= IE
(
1 + Pt(y → z)(eiτ − 1)

)η(y)

= ePt(y→z)ρ(εy)(1−eiτ ).
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Since ρ is a bounded function, the series
∑

y Pt(y → z)ρ(εy) converges,

and the assertion is proved.

This is almost all we need for the hydrodynamic limit. We know that

ρε
ε−1t(z) is the profile of the state P ε

ε−1t. We assume for simplicity that ρ

is a C2 function, with uniformly bounded derivatives, and consider first

the case p .= q.

Proposition 2.6. Under the above hypotheses we have

lim
ε→0

ρε
ε−1t([ε

−1x]) = ρ(x − (p − q)t).

Proof. Let {Nε > 0 : ε ∈ (0, 1)} be positive numbers such that Nε ↑ ∞
as ε → 0. Note that the transition probabilities Pt(y → z), considered for

fixed z as y varies, define a new set of transition probabilities Qt(z → y),

i.e., a new process (called “dual process”), corresponding to a particle

which jumps to the right with probability q. This fact is easily proved by

using the explicit expressions above.

For the dual process the central limit theorem holds, of course, to-

gether with all the classical estimates for sums of bounded independent

random variables. In particular we have that, if Nε does not diverge faster

than ε− 1
6 , then

log
∑

y:|z−y−(p−q)ε−1t|>
√

4pqε−1tNε

Qε−1t(z → y) 5 −1

2
N 2

ε .

Setting u = [ε−1x] − y − (p − q)ε−1t and expanding ρ in εu we get

ρε
ε−1t([ε

−1x]) = ρ(ε[ε−1x] − (p − q)t) + O((εt)
1
2 Nε),

whence the result.

It is worth to observe that ρε
ε−1t([ε

−1x]) is not close to ρ(x− (p− q)t)

uniformly in t. It is enough to take t = O(ε−2).

We introduce the macroscopic observables

ξε,t(ϕ) = ε
∑

z

ϕ(εz)ηε−1t(z).
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Proposition 2.7. We have for any choice of the test function ϕ,

and of the number δ > 0

(2.9) lim
ε→0

IP(|ξε,t(ϕ) −
∫

dxϕ(x)ρ(x − (p − q)t)| > δ) = 0.

Proof. By the preceding result the average value is equal to

IEξε,t(ϕ) = ε
∑

z,y

ϕ(εz)ρε
ε−1t(z).

The law of large numbers (2.9) follows from this and from the fact that,

as we saw above, the state obtained at time t by the evolution of the

initial state is an independent Poisson state with profile ρε
ε−1t.

The result above gives the Euler equation for the free lattice gas:

∂f

∂t
+ (p − q)

∂f

∂x
= 0.

p − q plays here the role of an average velocity (it is the average shift of

a particle in a time unit).

In the symmetric case p = q the hydrodynamic limit is trivial: the

average velocity is 0 and the profile is constant. This is readily explained:

by the central limit theorem the particles move by the time ε−1t a distance

of the order
√

ε−1t, hence they stay all the time in the neighborhood of

the same “macroscopic point”. One must wait a time of the order ε−2 for

the density to vary significantly. We say that the system has a “diffusive

behavior”.

Proposition 2.8. Under the hypotheses above, if p = q = 1
2

we

have, denoting by πt the transition probabilities,

(2.10)

ρ(x, t) = lim
ε→0

∑

y

ρε
ε−2t([ε

−1x]) = lim
ε→0

πε−2t([ε
−1x] − y)ρ(εy) =

=
1√
2πt

∫
e− (x−q)2

2t ρ(q)dq.

Proof. Reasoning as in the proof of Proposition 2.6, one estimates the

sum for large values of y − [ε−1x]. For the remaining ones one writes the
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leading term in the expansion of the transition probabilities πt for large

t, given by the local central limit theorem. The resulting expression is

recognized as a Riemann sum, the limit of which is the integral on the

right side of formula (2.10).

The expression “diffusive behavior” corresponds to the fact that the

limiting density ρ(x, t) satisfies the diffusion equation

∂

∂t
ρ(x, t) =

1

2

∂2

∂x2
ρ(x, t), ρ(x, 0) = ρ(x).

The law of large numbers can be proved exactly as in the previous

case. Note however that, contrary to the case p .= q, the function ρ(x, t)

given by formula (2.10) provides an approximation which is valid for times

larger than ε−2. In actual fact it is valid for all times, as shown by the

following corollary, the proof of which is left to the reader.

Corollary 2.9. Under the hypotheses above we have

lim
ε→0

sup
t>0

|ρε
ε−1t(ε[ε

−1x]) − ρ(x, t)| = 0.

The limit in formula (2.10) is often called in the literature “hydrody-

namic limit”, although the limiting equation is diffusive, and the Euler

equations are instead reversible in time. In this terminology “hydrody-

namic limit” would simply mean the limit ε → 0, irrespective of the choice

of the scaling factor for time.

2.2.5 – Hydrodynamic limit for classical interacting systems

For systems of classical interacting particles the hydrodynamic limit

should lead to the Euler equations for perfect fluids. At the present

time, as we said above, the only results available have been obtained for

systems with degenerate interaction, such as systems of elastic identical

hard rods in one dimension and the harmonic oscillators. We will only

discuss the first model, for which the interaction is “real” (it cannot be

simply removed by passing to new coordinates, such as the normal modes
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for the harmonic oscillators), and leads to a nonlinear Euler equation.

The model is discussed in [4, 5].

The system is made of infinitely many particles of common mass m

and length d on the line IR. By convention the position of a particle is

given by the middle point of the rod. The particles travel with constant

velocity, except that when two of them collide (i.e., they are at a distance

d) they exchange velocities. Collisions of more than two particles can be

neglected, as they occur with zero probability, but one can also assign an

appropriate rule. The equilibrium Gibbs states correspond to an inter-

action Φ which is infinite for |qi − qj| ≤ d, and zero otherwise. Since the

potential is infinite at short distance (“hard core condition”) there is an

a priori bound for the number of particles in a given volume.

The degeneracy of the interaction is expressed by the fact that veloc-

ities, as for the free gas, are preserved, and translation invariant Gibbs

states corresponding to a particle density ρ < 1/d and a velocity distri-

bution h which admits first and second moment, are invariant under the

dynamics [4].

For this model one can prove a theorem on convergence to equilib-

rium. The proof makes use of a construction, typical of the hard rod

systems, which allows to represent the dynamics in terms of the free dy-

namics of an appropriate system of free particles and of a random shift,

the distribution of which depends in a simple way on the initial measure.

A rigorous derivation of the hydrodynamic limit can be obtained for a

general class of initial local equilibrium families P ε, which includes states

with a pure hard core two-body potential, and one-body potential of the

type log ρ(εq) + log h(εq, v). The particle density ρ and the probability

density h(εq, v) should satisfy some conditions, which we write in terms

of the function f(q, v) = ρ(q)h(q, v) as follows:

i) f is C1 in q;

ii) supq

∫
dvf(q, v) < d−1;

iii) there is a bounded function ψ(v) such that
∫

dvv2ψ(v) < ∞, so

that one has

sup
q

[
f(q, v) +

∣∣∂f(q, v)

∂q

∣∣
]

≤ ψ(v).

The second condition excludes “close packing”, i.e., the limiting density

d−1. We denote by F the class of the functions that satisfy conditions
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i)-iii). One can prove the following theorem [5]

Theorem 2.10. Under the above hypotheses, if ξε,t(ϕ) =

ε
∫

ωε−1t(dqdv)ϕ(εq, v), where ϕ is a test function, then

lim
ε→0

P ε(|ξε,t(ϕ) −
∫

dqdvf(q, v, t)ϕ(q, v)| > δ) = 0,

where ft(q, v) is the unique solution, in the class of the functions g(q, v, t)

which are differentiable in t and such that g(·, ·, t) ∈ F for any t ∈ IR, of

the problem

∂

∂t
f(q, v, t)+(2.11)

+
∂

∂q

[
v +

d

1 − d
∫

dv′f(q, v′, t)

∫
dw(v − w)f(q, w, t)

]
f(q, v, t) = 0

with the initial condition f(q, v, 0) = f(q, v).

Equation (2.11) is the Euler equation of the problem. One can under-

stand it as a system of infinitely many coupled equations, labeled by the

parameter v, as one should expect, since we have infinitely many locally

conserved quantities (the number of particles with any given value of the

velocity).

2.2.6 – Hydrodynamic limit for stochastic interacting systems

Fairly complete results have been obtained for the hydrodynamic

limit of interacting particle systems with stochastic evolution. We shall

discuss here a one-dimensional lattice gas model with exclusion, which

leads to a nonlinear diffusion equation. We give an almost complete

derivation, for a case which is as simple as possible, and we try to re-

duce the technical difficulties to a minimum and omit some standard

parts. Our aim is to convey the essential ideas, in particular the entropy

techniques, introduced by Varadhan and collaborators, which allow to

“measure” closeness to local equilibrium. The reader who wants to fill

up the gaps is referred to [11] and [40].
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We take a generator of the form (1.20), with the function c(x, y, η)

given by

(2.12)
c(x, x + 1, η) = (η(x) − η(x + 1))2[1 + α(η(x − 1)) + η(x + 2))],

c(x, y, η) = 0 if |x − y| > 1

where α is such that 1 + 2α > 0, so that the transition probabilities are

positive. For α = 0 we get the symmetric simple exclusion model, which

leads in the limit ε → 0, as we shall see, to the heat equation.

The model above satisfies the gradient condition: i.e., the current

j(x,y)(η), which governs the instantaneous change of the occupation num-

bers according to the relation d
dt

IE(ηt(x)|η0 = η)|t=0 =
∑

y j(x,y)(η), can

be written as the discrete gradient of a local function h(η): j(x,y)(η) =

Sxh − Syh, where Sx, x ∈ ZZd, is the translation operator. By “local

function” we mean that it depends on the values of η(x) for x in some

finite volume Λ. Observe that at equilibrium the expected value of j(x,y)

vanishes, by the condition of detailed balance.

The gradient condition implies important technical simplifications

([40], Part II, § 2.4). Its meaning is that the current behaves, at the

microscopic level, in the same way as the current of a conserved quantity

on the macroscopic scale.

In our case we have

(2.13) h(η) = η(0) + α[η(−1)η(0) + η(0)η(1) − η(−1)η(1)].

We leave to the reader the proof that the instantaneous current is

given by the expression j(x,y)(η) = c(x, y, η)(η(x)−η(y)), and that the sys-

tem above satisfies the gradient condition with h given by formula (2.13).

Considere a finite system, on the periodic lattice ZZN with N sites

(that is, on the integers modulo N). The state space is denoted by

ΩN = {0, 1}N . In what follows we often tacitly understand integers as

integers mod N . Taking as scale parameter ε = 1/N , the limit ε → 0

corresponds to the limit N → ∞.

The Bernoulli distributions are equilibrium distributions for our sys-

tem, which is reversible with respect to them. Hence the local equilibrium

measures are Bernoulli with parameter depending on the macroscopic

space coordinate q = x/N . There are no velocities here, since for any
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equilibrium state the particles jump with equal probabilities to the right

or to the left. Hence the motion is diffusive and time has to be rescaled

with a factor ε−2.

The density field is defined by the position

ξε
t (ϕ) = ε

N∑

x=1

ϕ(εx)ηε−2t,

where ϕ is a function of class C∞ on the torus T 1 (which we identify

with the interval [0, 1] with endpoints glued together), and ηt denotes the

process with generator

(2.14) Lf =
∑

x,y∈ZZN

c(x, y, η)(f(ηx,y) − f(η)).

As N varies, it is convenient to consider ΩN as a subset of the space M1

of the nonnegative measures on T 1, by associating to the element η ∈ ΩN

the measure nε(q, η)dq, with

nε(q, η) = η(x) x − 1

2
< ε−1q ≤ x +

1

2
.

On M1 we assign the topology of weak convergence, which, as observed in

§ 2.1, is metrizable. Having fixed T > 0 and an initial measure µε, the pro-

cess is related to a measure (depending on ε) on the space D([0, T ],M1) of

the right continuous functions [0, T ]→M1, by setting nε
t(q) = nε(q; ηε−2t),

0 ≤ t ≤ T . On the space D([0, T ],M1) we assign the Skorokhod metrics

s(x, y) = inf
λ∈H

[
sup

0≤t≤T
d(x(t) − y(λ(t)) ) + sup

0≤t≤T
|t − λ(t)|],

where d(·, ·) is a possible metrics of M1, H is the family of the home-

omorphisms λ : [0, T ] → [0, T ], such that λ(0) = 0 and λ(T ) = T (see,

e.g., [35], sec. VII.6). The measure on D([0, T ],M1) corresponding to

the process with initial measure µε is indicated by Pε. We assume the

following conditions on the measure µε: i) it has initial profile ρ0(q), i.e.,

IEµεη(x) = ρ0(εx), where ρ ∈ C2(T 1); and ii) for any test function ϕ the

law of large numbers holds in the form

(2.15) lim
ε→0

µε

({∣∣nε
0(ϕ) −

∫ 1

0

dqϕ(q)ρ0(q)dq
∣∣ > δ

})
= 0
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for any δ > 0. We use the notation nε
t(φ) =

∫
T 1 nε

t(q)φ(q)dq.

We leave to the reader the proof that if the measure µε is a Bernoulli

measure on ΩN such that IEµεη(x) = ρ0(εx), then condition (2.15) is

satisfied for δ = εα, for any α ∈ (0, 1/2).

Theorem 2.11. Under the hypotheses above, we have, for any

δ > 0

(2.16) Pε
({

sup
t∈[0,T ]

∣∣nε
t(ϕ) −

∫ 1

0

dqϕ(q)ρt(q)dq
∣∣ > δ

})
= 0

where ρt(q) is the unique solution of the nonlinear diffusion equation

(2.17)
∂

∂t
ρt(q) =

∂

∂q

[
1 + 2αρt(q)

∂

∂q
ρt(q)

]

on the unit circle T 1, with initial condition ρ0.

Proof. If we apply the generator of the process to nε
t(ϕ) we get

Lnε
s(ϕ) = ε

∑

x

(ϕ(εx + ε) + ϕ(εx − ε) − 2ϕ(εx))Sxh(ηε−2s),

with h(η) given by (2.13). The fact that the discrete laplacian and the

function h appear in this expression is due to the gradient condition.

Since L is the generator, the quantity

(2.18a)

M ε
t (ϕ)=nε

t(ϕ)−nε
0(ϕ)−ε−2

∫ t

0

dsε
∑

x

(ϕ(εx+ε)+ϕ(εx−ε)−2ϕ(εx))Sxh(ηε−2s)

is a martingale with respect to the measure Pε. By a standard result [11]

we have that

(2.18b) (M ε
t (ϕ))2 − ε−2

∫ t

0

( [L(nε
s(ϕ))]2 − 2nε

s(ϕ)Lnε
s(ϕ) )ds

is also a martingale.

Proposition 2.12. The family Pε, ε ∈ (0, 1), is tight.
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Proof. The proof follows from the following relations, which are

proved by a simple computation [11]:

(2.19a) IEε[ε−2Lnε
s(ϕ)]2 ≤ const (‖ϕ′′‖∞)2,

(2.19b)

IEε[ε−2( [Lnε
s(ϕ)]2 − 2nε

s(ϕ)Lεs(ϕ))]2 =

= IEε
( ∑

x∈ZZN

(ϕ(εx) − ϕ(εx + ε))2(ηε−2s(x) − ηε−2s(x + 1))2·

· [1 + α(ηε−2s(x − 1) + ηε−2s(x + 2))]
)

≤ const ε2(‖ϕ′‖∞)2.

Relations (2.18b), (2.19b) imply that, for ε → 0

(2.20) IEε(M ε
t (ϕ))2 = ε−2

∫ t

0

IEε( [Lnε
s(ϕ)]2 − 2nε

s(ϕ)Lnε
s(ϕ))ds → 0.

where IEε denotes expectation with respect to Pε. By a standard proce-

dure of martingale theory one can replace in formula (2.20) IEε(M ε
t (ϕ))2

by IEε( sup
t∈[0,T ]

(M ε
t (ϕ))2), which also tends to 0. We approximate the second

difference in (2.18a) by the second derivative, and we get

(2.21) lim
ε→0

IEε
(

sup
t∈[0,T ]

∣∣nε
t(ϕ) − nε

0(ϕ) −
∫ t

0

ε
∑

x

ϕ′′(εx)Sxh(ηε−2s)ds
∣∣
)

= 0.

If we now take α = 0, i.e., h(η) = η(0), it is easy to conclude. In

fact let P be a limiting point of the family {Pε}. P is concentrated on

the continuous trajectories in M1, an easy consequence of the fact that

the jumps of nε
t(ϕ) are not larger than 2ε‖ϕ‖∞. Moreover by (2.21) we

have, P-a.e., nt(ϕ) = n0(ϕ) +
∫ t

0 dsns(ϕ
′′). It follows that nt(ϕ) is also

differentiable and satisfies the equation dnt(ϕ)/dt = ξt(ϕ
′′), with initial

condition ξ0(ϕ) =
∫

T 1 dqϕ(q)ρ0(q). This is just the heat equation in weak

form, and the result now follows from the uniqueness of the solution of

the heat equation in weak form.

We go back to the general case α .= 0. The presence of an interac-

tion leads us to the problem of approximating the function Sxh by the

function ĥ, computed at the empirical particle density near x, where ĥ
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is defined as ĥ(ρ) = IEρh = ρ + αρ2. This is the problem that is solved

by an entropy method. We interrupt the course of the proof in order to

describe the main ideas. If µ is a measure on ΩN we define its entropy as

S(µ)= − ∑
ηµ(η) log(µ(η)). A particle system that evolves according to

a reversible lattice gas stochastic dynamics describes a physical situation

in which external driving forces are absent, and the interaction with the

external world is given by a “thermal bath” at constant temperature. As

the mechanical work is zero, the average entropy flux going out of the

system is equal, up to a sign, to the change in the average value of the

energy, i.e., it is −dE(µt)/dt, where E(µ) =
∑

η µ(η)H(η), {µt, t ≥ 0}
is the evolution of the initial measure and H is the energy times 1/kT .

The entropy production is then equal to the derivative of the Gibbs free

energy with opposite sign:

σ(µt) =
d

dt
(S(µt) − E(µt)).

It is convenient to take as reference measure the equilibrium measure.

The choice is not restrictive, since ΩN is a finite set. We write the entropy

production in terms of the density f (defined by the relation µ(η) =

f(η)e−H(η)/Z, where Z =
∑

η e−H(η) is the partition function) as follows:

σ(f) =
1

4

∑

x,y

〈c(x, y, η)[f(ηx,y) − f(η)][log f(ηx,y) − log f(η)]〉.

Here 〈·〉 refers to the equilibrium measure µ̄(η) = e−H(η)/Z. It is easy to

see that σ is convex, that σ(f) ≥ 0 and σ(f) = 0 if and only if f = 1.

Hence the free energy E − S takes a minimum at the equilibrium state.

We will now show that the entropy production tends to 0 as ε → 0 for

measures averaged over time. Since the entropy production is minimal

for the equilibrium state, this fact means that the averaged measures

tend to be close to equilibrium. As a reference measure we take the

Bernoulli measure µ
1
2 , with parameter 1/2, i.e., the measure such that

µ
1
2 (η) = 1/2N for all η. Any other measure is written as µ(η) = f(η)2−N .

The corresponding entropy production is

σ(f) =
1

2

∑

x∈ZZN

〈c(x, x + 1, η)[f(ηx,x+1) − f(η)][log f(ηx,x+1) − log f(η)]〉 1
2
,
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where 〈·〉 1
2

denotes averaging with respect to µ
1
2 . On the other hand,

as µ
1
2 is a Gibbs measure with H(η) = 0 and Z = 2N , the free energy

F (µ) = −S(µ) =
∑

η µ(η) log(µ(η)) is equal to

∑

η

µ(η) log(f(η)) − N log 2 = 〈f log f〉
µ

1
2

− N log 2.

Since F (µ) ≤ 0,and, by convexity, 〈f log f〉 1
2

≥ 0, we get F (µ)≥−N log 2.

For the evolution µεe
Ls of µε at time s, we have F (µεe

Lε−2t) + ε−2

∫ t

0 dsσ(µεe
Lε−2s) = F (µε). Since the free energy is bounded in absolute

value by N log 2 we have
∫ t

0 dsσ(µεe
Lε−2s) ≤ ε log 2. Consider the time

averaged measures tµ̄ε =
∫ t

0 ds µε eLε−2s, for t > 0. As σ is a convex

functional we have

(2.22) tσ(µ̄ε) ≤ ε log 2.

This means that the entropy production of the averaged measure tends

to 0 for large times.

The following result shows that we can replace in formula (2.21) the

function h by ĥ computed for the empirical average.

Proposition 2.13. For any continuous function ϕ on T 1 we have

(2.23)

lim
-→0

lim
ε→0

∫ t

0

dsIEε
(∣∣ε

∑

x

ϕ(εx)
(
Sxh(ηε−2s)−ĥ

(ε

5

∑

y:|y−x|≤ε−1 '
2

ηε−2t(x)
))∣∣

)
=0.

Proof. Given an interval I ⊂ ZZN we introduce the average of a local

function h:

AI(h) =
1

|I|
∑

x∈I

Sxh,

where |I| denotes the length (number of points) of the interval. h is now

any local function and ĥ(ρ) = IEρh. For h = η(0) we get the empirical

average of the particle number, which we denote as MI . We set I(x; 5) =
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{y ∈ ZZN : |y − x| ≤ ε−15/2}. By inverting the summation order we have

ε|
∑

x∈ZZN

ϕ(εx)(Sxh − AI(x;-))| =

= ε|
∑

x∈ZZN

Sxh(η)(ϕ(εx) − 1

ε−15

∑

y∈I(x;-)

(ϕ(εy))| ≤

≤ ‖h‖∞
∑

x∈ZZN

|ϕ(x) − 1

ε−15

∑

y∈I(x;-)

(ϕ(εy))|.

The last expression does not depend on η any more and tends to 0 as

ε → 0, since ϕ is uniformly continuous on T 1. Adding and subtraction in

the integral of (2.23) the quantity AI(x;-)), we see that in addition to the

term of the preceding inequality we get a term bounded by

tµ̄ε

(∣∣ε
∑

x

ϕ(εx)(AI(x;-)(h) − ĥ(MI(x;-))|)
∣∣
)

≤

≤ t‖ϕ‖∞µ̄ε

(
ε
∑

x

|AI(x;-)(h) − ĥ(MI(x;-))|
)
.

Let W (η) = ε
∑

x |AI(x;-)(h) − ĥ(MI(x;-))|, and consider the class Sε of

the measures which have density f such that σ(f) ≤ εt−1 log 2. Clearly

µ̄ε ∈ Sε, by Ineq. (2.22). Instead of the function σ it is convenient

to consider the “Dirichlet form” D(f) =
∑

x∈ZZN
〈(f(ηx,x+1) − f(η))2〉 1

2
.

Making use of the inequality (u − v)2 ≤ (u2 − v2)(log u − log v), which is

valid for u, v > 0, it is easy to see that

D(
√

f) ≤ const
∑

x

〈c(x, x+1, η)(
√

f(ηx,x+1)−
√

f(η))2〉
µ

1
2

≤ const σ(f).

Hence, instead of considering Sε, we can take the sup over the functions

f such that D(
√

f) ≤ Ctε, for some constant Ct > 0.

Notice moreover that, since W (η) is invariant under translations over

ZZN , it is enough to consider densities f which are translation invariant.

In fact, for any given f , let f̄ =
∑

x∈ZZN
Sxf/N denote its space “homo-

geneization”. f̄ is translation invariant, and clearly 〈(f − f̄)H〉 1
2

= 0.

Moreover the function D(
√

f) has the following convexity property: if
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f =
n∑

i=1
λifi, where fi are densities and the numbers λi ∈ [0, 1] are such

that
∑
i

λi = 1, we have

(2.24) D(
√

f) ≤
∑

i

λiD(
√

f i).

Formula (2.24) follows immediately from the inequality

(( ∑

i

ai

) 1
2 −

( ∑

i

bi

) 1
2

)2

≤
∑

i

(
√

ai −
√

bi)
2,

which holds for any choice of the numbers ai, bi ≥ 0. It follows that

D(f̄
1
2 ) ≤ D(f

1
2 ), so that we can consider the supremum of the quantity

〈fW 〉 1
2

over all f ’s that are translation invariant over ZZN and such that

D(f
1
2 ) ≤ C̄tε, for some constant C̄t. We denote this class of fucntion

by S̄ε.

Consider the expression |AI(x;-)(h)− ĥ(MI(x;-))| which appears in W .

We take an integer L, and divide the interval {q : |q − x| ≤ ε−15/2} into

contiguous subintervals which are open on the right and of length L. The

firsts subinterval starts at the point x − ε−15/2, and maybe there is a

residual interval of length smaller than L. We denote by Bj, j = 1, . . . K

the subintervals of I(x; 5) which are obtained by taking the intersections

of such intervals with ZZN , and B1 will have as first element the first

element of I(x; 5). The intervals Bj, j = 1, . . . , K − 1 have length L

(i.e., L elements), whereas BK may have a smaller length, and we have

|Bj|/|I(x; 5)| ≤ (K − 1)−1, for j = 1, . . . , K.

Clearly we have

|AI(x;-)(h) − ĥ(MI(x;-))| ≤

≤
K∑

j=1

[
|ABj

(h) − ĥ(MBj
)| |Bj|

|I(x; 5)| +
1

K − 1
|ĥ(MBj

) − ĥ(MI(x;-))|
]
,

and, by expanding in Taylor series, we get

|ĥ(MBj
) − ĥ(MI(x;-))| ≤ ‖ĥ′‖∞

K∑

i=1

|MBj
− MBi

| |Bi|
|I(x; 5)| .
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The following two relations hold

(2.25a) lim
L→∞

lim
ε→0

sup
f∈S̄ε

〈f |AB1
(h) − ĥ(MB1

)|〉 1
2

= 0,

(2.25b) lim
L→∞

lim
-→0

lim
ε→0

sup
1≤j≤K−1

sup
f∈S̄ε

〈f |AB1
(h) − ABj

(h))|〉 1
2

= 0.

They are called, respectively, the one-block and the two-block estimate.

The first one says that the space average of a local function h, over a vol-

ume which is “microscopically large” is close to the function ĥ computed

at the empirical average of the particle number over the same volume.

The second one says that the densities over two volumes which are mi-

croscopically large and macroscopically close to each other, are close to

each other.

We prove the first one, which is conceptually important, and go back

for definiteness to the original function h given by (2.13). It is not restric-

tive to assume that B1 is the interval [1 . . . , L]. Let f1 be the marginal

density induced by f ∈ S̄ε on B1. If η(1) denotes the configuration in B1,

we have, with obvious notation

f1(η
(1)) =

∑

(η(1))c

1

2N−L
f(η(1), (η(1))c),

so that, using once again convexity and translation invariance, we have

for f ∈ S̄ε

D1(
√

f1) ≡
L−1∑

x=1

√
f1((η

(1))x,x+1) −
√

f1(η
(1)))2 ≤

≤
∫

dµ
1
2 ((η(1))c) D1(

√
f(·, (η(1))c)) =

=
L−1∑

x=1

〈(
√

f(η1,2) −
√

f(η))2〉 1
2
= (L − 1)εD(

√
f) ≤ C̄t(L − 1)ε2.

We actually need a block of length a little larger than L, as h depends

on four neighboring sites. So we take as B1 the interval [−3, . . . , L+4] ⊂
ZZN , and let L′ = L + 8. Let S̄ε

1 denote the class of the densities f1 with
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respect to the restriction to B1 of µ
1
2 , so that D1(

√
f1) ≤ C̄tL

′ε2. We

need to estimate the quantity

Rε
1 = sup

f1∈S̄ε
1

〈f1|AB1
(h) − ĥ(MB1

)|〉 1
2
.

For fixed ε the set of the measures over which we take the supremum is

compact, so that the supremum is actually reached for some density f ε
1 .

Here we can take the topology on the space of measures corresponding to

the variation distance. Since we deal with a finite probability space, we

can equivalently consider the problem in a finite dimensional euclidean

space.

One can see in a similar way that the measures f ε
1dµ

1
2 are again a

compact set, as ε varies, so that the limit lim supε→0 Rε
1 can be reached

over a subsequence εn → 0, such that f εn
1 dµ

1
2 converges as n → ∞. If f0

1

denotes the limit, as D1 is continuous, we have D1( (f0
1 )

1
2 ) = 0. Hence

lim supε→0 Rε
1 is majorized by the quantity

sup
f1:D1(

√
f
1
)=0

〈f1|AB1
(h) − ĥ(MB1

)|〉 1
2
.

Now, since D1 is the Dirichlet form associated to the generator of

the symmetric simple exclusion process on the sites of B1, the condition

D(
√

f1) = 0 identifies the canonical Gibbs measures, so that, if 〈·〉n de-

notes expectation with respect to the canonical measure with n particles

in B1, we have [29]

sup
f1:D1(

√
f
1
)=0

〈f1|AB1
(h) − ĥ(MB1

)|〉 1
2

= sup
λ

L+8∑

n=0

λ(n)〈|AB1
(h) − ĥ(MB1

)|〉n,

where the supremum is on the functions λ(n) ≥ 0, n = −3, . . . , L + 4,

with the condition
L+8∑
n=0

λ(n) = 1.

By the Schwartz inequality we have

(〈|AB1
(h) − ĥ(MB1

)|〉n)2 ≤ 〈(AB1
(h) − ĥ(MB1

)2〉n.

We write the explicit expression of the square term under the expectation

sign, plug the expression of h and ĥ, taking into account that MB1
= n/L′,
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and, as a result, we see that the problem reduces to computing differences

of the type 〈∏r
k=1 η(jk)〉n − (n/L′)r, where the jk’s are all distinct and r

can take values from 1 to 4. Carrying out the explicit computation, it is

not hard to see that

〈
r∏

k=1

η(jk)〉n =

(
L′ − k

n − k

)/(
L′

n

)
,

and this quantity is close to (n/L′)k, uniformly in n = 0, . . . , L′.

The two-block estimate (2.25b) can be proved by similar methods.

We refer for more details to [11], [40].

We can now conclude the proof of Theorem 2.11. Let P be a limiting

point of the family {Pε}. P is concentrated on the continuous func-

tions with values in M1, as the jumps of nε
t(ϕ) do not exceed 2ε‖ϕ‖∞.

Moreover P is also concentrated on the measures which have for all t

density with respect to the Lebesgue measure dq on T 1, so that Rela-

tion (2.16) holds for some function ρt(q). In order to prove this observe

that |nε
t(ϕ)| ≤ ε

∑
x |ϕ(εx)|, hence nε

t(ϕ) makes sense for ϕ = III , where

I ⊂ T 1 is any interval. If nt : t ∈ [0, T ] denotes a generic element of M1,

and P is a limiting point of the family {Pε}, for any I ⊂ T 1 we have,

P-a.e., sup
t∈[0,T ]

nt(III)/|I| ≤ 1, which implies that P is concentrated on the

trajectories in M1 which have density ρt(q) with respect to the Lebesgue

measure dq on T 1. By (2.21) and (2.23) we get, for any δ > 0,

(2.26)

lim
-→0

lim
ε→0

Pε

{
sup

t∈[0,T ]

∣∣∣nε
t(ϕ)−nε

0(ϕ)−
∫ t

0

ε
∑

x

ϕ′′(εx)ĥ
(1

5
nε

t(III'(εx))
)∣∣∣>δ

}
=0.

Here I-(εx) = {q : |q−εx| ≤ 5}. In (2.26) we take account of the fact that

the element nt ∈ M1 has density with respect to the Lebesgue measure,

which we denote by ρt(q), so that the expression in the argument of ĥ

makes sense. For small 5 the expression nt(III'(q))/5 is close to ρt(q), so

that, with probability 1 with respect to any limiting point P we have

nt(ϕ) − n0(ϕ) =

∫ t

0

ds

∫ 1

0

dqϕ′′(q)ĥ(ρs(q)),

which is equation (2.17) in weak form. The conclusion of Theorem 2.11

now follows from the uniqueness of the weak solution of eq. (2.17) [40].
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2.2.7 – Propagation of local equilibrium and hydrodynamic limit

In this paragraph we formulate a result which shows that propaga-

tion of local equilibrium “almost” implies the classical Euler equation of

fluidodynamics in the hydrodynamic limit ε → 0. This important concep-

tual point has been stressed in the monography [12], to which we refer

the reader for the proofs.

We use the following notation: the functions ρ(q, t), m ρ(q, t)V(q, t)

and e(q, t) will denote the particle density, the density of mechanical

momentum and the density of energy at the (macroscopic) point q and

(macroscopic) time t. Suppose that we have at time t = 0 an (infinite

volume) local equilibrium family {P ε}, for a fluid made of particles of

common mass m, with a two-body interaction potential Φ. The macro-

scopic profile of the family {P ε} is given by some functions ρ0(q) = ρ(q, 0),

V0(q) = V(q, 0), e0(q) = e(q, 0). Suppose moreover that for any t ∈ IR

the evolution of the initial states P ε at time ε−1t, denoted by P ε
ε−1t, make

up again a local equilibrium family, i.e., that for some continuous func-

tions ρ(q, t),V(q, t), e(q, t) we have

lim
ε→0

Sε−1qP
ε
ε−1t = Pρ(q,t),V(q,t),e(q,t).

We need to assume that the initial states are such that the infinite

particle dynamics exists, and moreover that for any τ the following con-

dition holds:

sup
ε

sup
z∈ZZ3

sup
t≤ε−1τ

P ε
ε−1t({|ωD(z)| + T (ωD(z))} ) < ∞,

where D(z) is the cube with center z half side of length 1, and T denotes

the kinetic energy. This condition is a uniform bound on occupation

numbers and velocities. A third technical condition that is needed is

expressed in terms of the Liouville operator L:

d

dt
IEP εT ∗

t ϕ = IEP εT ∗
t Lϕ,

where ϕ is a test function and T ∗
t is the evolution operator for functions

associated to the dynamics in Ω. All conditions just stated should be, as
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we hope, provided as results by a “good” theorem on the existence and

regularity of the dynamics in Ω.

The following Theorem holds.

Theorem 2.14. Under the hypotheses above, the functions ρ(q, t),

V(q, t), e(q, t) are solutions of the Euler equations

(2.27)

∂

∂t
ρ + ∇(ρV ) = 0

∂

∂t
(mρVα ) + ∇(ρVαV) +

∂

∂qα

p = 0, α = 1, 2, 3

∂

∂t
e + ∇( (e + p) )V ) = 0,

where p = p(ρ, u) is the pressure of the state with parameters ρ,e and V,

and u is the density of internal energy u = e − mρv2/2.

A recent remarkable result of Olla Varadhan and Yau [34] shows

that by adding a small stochastic noise to the Newton equations, which

vanishes in the hydrodynamic limit, one can “almost” obtain a complete

derivation of the Euler equations. The term “almost” refers to the fact

that for technical reasons the model has to be deformed by replacing the

usual quadratic expression of the kinetic energy with a “milder” function.

2.2.8 – The “Navier-Stokes” corrections

As we have seen, for the free lattice gas with p .= q the solution of

the Euler equation ρ(x − (p − q)t) is a bad approximation of the real

average density ρε
ε−1t(ε[ε

−1x]) for large times. For the free classical gas

the solution is a good approximation for all times, due to the fact that the

classical free gas is “more degenerate” than the free lattice gas. In fact

the stochastic motion of the particles can be considered as a simulation

of the effect of some kind of interaction.

For the lattice gas we may try to get an improved description by

keeping the corrections of order ε to the limit lim
ε→0

ρε
ε−1t. This is not hard
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to do: starting from formula (2.8) one can write

(2.28)

ρε
ε−1t([ε

−1x]) =

√
ε

4pqt

∑

u

e− 1
2

εu2

4pqt ρ(ε[ε−1x] − t(p − q) − εu)
(
1 + O

(
ε

3
2

))
,

where u takes values on the lattice {k−ε−1t(p−q) : k ∈ ZZ}, and the term

O(ε
3
2 ) is uniform in t. The proof of (2.28) follows immediately from the

usual local limit theorem with corrections [22]. By a simple estimate of

the difference between the Riemann approximation and the corresponding

integral, which takes into account the fact that the lattice is regular, we

get

(2.29) ρε
ε−1t([ε

−1x]) =

∫
dyKt(y)ρ(ε[ε−1x] − t(p − q) − √

εy) + O(ε
3
2 ),

where Kt(y) = (4pqt)−1e− 1
2

y2

4pqt is the heat kernel, and the approximation

is uniform in t. The expression on the right of formula (2.29) differs by

a term O(ε) from the function ρε(x, t) =
∫

dyKt(y)ρ(x − (p − q)t − √
εy),

which is the unique solution of the equation

∂

∂t
f + (p − q)

∂

∂x
f = 2pqε

∂2

∂x2
f.

This can be considered as the equation for the next approximation (the

first one being the solution of the Euler equation), or as the “Navier-

Stokes” equation for our system.

As we have seen, the Navier-Stokes solution gives a better approxi-

mation for small t, and approximates the real density up to terms which

are small in ε uniformly in time. It is not clear whether such result can

hold for a significantly wide class of interacting systems. One may think

that “in general” the N.S. solution provides a good approximation only

for times of the order ε−2.

The main problem connected with the N.S. approximation is that

the definition of local equilibrium corresponding to condition (2.4) is too

wide. One can argue that if only condition (2.4) is assumed, then the form

of the N.S. correction may depend on the initial family. This implies that,

roughly speaking, one can only take as initial states Gibbs states with

the same potential which gives the interparticle interaction. A condition
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of this type looks reasonable, but, as we saw above, it cannot satisfy the

propagation condition.

Moreover it is not completely clear whether the N.S. approximation

can be uniquely defined by an expansion in ε for small times, or by the

circumstance that it provides an approximation which is valid over times

larger than ε−1, and one does not know how these properties are con-

nected.

We have at present just a few results for degenerate systems. For the

classical free gas, with the particles subject to an additional independent

random motion, one gets results which are similar to the ones above for

the lattice gas [17]. More significant results have been obtained for the

harmonic oscillators and for the one-dimensional hard rods, for which we

refer to the papers [5], [6], [15] and to the book [40]. The results show

that the N.S. approximation is not determined by the circumstance that

it provides a good approximation for large times. The “real” N.S. equa-

tion needs the additional requirement that the viscosities which appear

in the equation, i.e., the coefficients, in the linearized equation, of the

second derivatives in the space variables, should be in accordance with

the “Green-Kubo relations” [40].

The problem of clarifying the mathematical nature of the N.S. cor-

rections is one of the most interesting among the open problems in the

mathematical theory of nonequilibrium statistical mechanics.

3 – The Vlasov or mean field limit

In the present chapter we illustrate the Vlasov, or “mean field” limit,

which leads to the Vlasov equation. It applies to system of particles which

interact through a small and long range potential, a situation which often

appears in problems of star dynamics and in plasma Physics. The force

which acts on each particle is given by a sort of average of contributions

due to the other particles, which are small and of the same order of

magnitude, due to long range. Therefore the Vlasov limit is a sort of

mean field limit.

The mathematical theory of the Vlasov equation, in a recent formu-

lation due to Dobrushin, takes the form of a fixed point problem in a

space of measures. This approach is remarkably simple and elegant, and

leads to a general solution.
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We shall first discuss the case of particles interacting through a reg-

ular potential. In the second paragraph we will deal with an important

model with singular potential, the plane vortex model. We will show how

in an appropriate limit the Vlasov solution for the vortex model leads to

solution of the plane Euler equation for an inviscid incompressible fluid.

3.1 – Vlasov limit for particle systems

Consider the motion of N identical particles in a volume Λ ⊂ IR3

subject to internal forces due to a weak potential, of the order 1/N . The

equations of motion can then be written as

(3.1)
d

dt
qi(t) = vi(t), m

d

dt
vi(t) = − 1

N

∑

j #=i

∇iΦ(qj(t) − qi(t)), i = 1, . . . N.

If we increase N , in such a way that particles are more and more dense

in Λ, and, in the limit, distributed with a density f(q, v) in the one-

particle phase space M = Λ × IR3, then the force −N−1
∑

j ∇iΦ(qj(t)

− qi(t)) which acts on each of them tends to the averaged force

(3.2) F (x) = −
∫

dx′dvf(q, v)∇xΦ(x − x′).

If at later times the system can be described by a density f(q, v, t), then

this function should be a solution of the Vlasov equation

(3.3)
∂

∂t
f(x, v, t)+v·∇xf(x, v, t)=

1

m

{∫
dx′dv′f(x′, v′, t)∇Φ(x−x′)

}
·∇vf(x, v, t),

which expresses the condition that the particle density is conserved along

the stream lines corresponding to the system of equations

d

dt
x(t) = v(t),

d

dt
v(t) = Ft(x) = −

∫
dx′dvf(x′, v, t)∇Φ(x − x′).

This is the content on the Vlasov theory.

For a rigorous discussion we assume that Φ is twice differentiable

Φ ∈ C2, and isotropic, i.e., it depends only on |x|. We also assume that
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the derivatives are uniformly bounded, i.e. there are two constants B and

L such that

|∇Φ| ≤ B, |Φ(x) − Φ(x′)| ≤ L|x − x′|.

Observe that in our hypotheses we have ∇xΦ(0) = 0, so that in the sum

(3.1) we can omit the restriction j .= i.

As we said above the most natural and general way of treating the

Vlasov equation is to consider it as an equation for measures. Let µt be

a measure on M with density f(q, v, t), which is supposed to satisfy eq.

(3.3). Integrating a test function ϕ(q, v) over this measure, eq. (3.3) gives

(3.4)
∂

∂t
µt(ϕ) = µt(v · ∇xϕ) − 1

m
(µt × µt)(∇Φ(x − x′) · ∇vϕ(x, v)),

where we use the notation µ(ϕ) =
∫

µ(dx dv)ϕ(x, v). Equations (3.1) can

also be written in this form, thanks to the factor 1/N . In fact, setting

ω
(N)
t (dq dv) =

1

N

N∑

i=1

δxi(t)(dq)δvi(t)(dv),

it is not hard to see that the validity of eq.s (3.1) is equivalent to the fact

that the measure ω
(N)
t (dq dv) satisfies equation (3.4).

We will then consider eq. (3.3) as the Vlasov equation for finite

measures, to be solved for some initial condition µ0 = µ.

We can look at the Vlasov limit in two different ways. We can keep

the volume Λ fixed and increase N , making at the same time the force (or

the potential) weaker according to (3.1), keeping the range unchanged.

Or we can, more physically, introduce a characteristic parameter ε, which

has, as discussed in § 2.1, the meaning of a ratio of the typical micro-

scopic length to the typical macroscopic one, and consider a macroscopic

volume ε−1Λ, with a number of particles of the order of ε−ν , and an in-

teraction potential which is small and has macroscopic range, written in

the form ενΦ(εq), where Φ is fixed. In this way the integral of the poten-

tial over the whole volume (which is approximately proportional to the

sum of the interaction potentials of the particles) does not vary with ε:

εν
∫

ε−1Λ Φ(εq)dq =
∫
Λ Φ(q)dq.
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We introduce the space A of the finite measures on Λ, and let d be

the metrics in A defined by eq. (2.1), which correponds, as we saw, to

weak* convergence. Since the total measure is preserved, we can restrict

our considerations to probability measures.

The following theorem holds.

Theorem 3.1. Under the above hypotheses for the potential Φ we

have:

i) The Vlasov equation (3.4) has a unique solution in the space A;

ii) If µ
(1)
t ,and µ

(2)
t are two solutions with initial data, respectively,

µ(1) and µ(2), then there is a constant c such that

(3.5) d(µ
(1)
t , µ

(2)
t ) ≤ ec|t|d(µ(1), µ(2)).

Proof. Suppose that we have a weakly continuous family of mea-

sures {µt} on Λ. Under the above hypotheses the differential equation

(3.6)
d

dt
x(t) = v(t),

d

dt
v(t) =

1

m
F µ

t (x(t)),

where the force, depending on time, F µ
t is given by

Ft(x) = −
∫

µt(dx′dv′)∇Φ(x − x′),

has a unique solution. The solution defines a flux in the one-particle

phase space M, which we denote as T t,s
{µ·} (more precisely T t,s

{·} denotes the

evolution from time s to time t). The evolution of any initial measure λ0

induced by the flux is given by the law

λt(A) = λ0(T
0,t
{µ·}A), A ⊂ M, or λt = λ0 ◦ T 0,t

{µ·}.

If we impose λ0 = µ0, the Vlasov equation (3.4) becomes a fixed point

problem:

(3.7) µt = µ0 ◦ T 0,t
{µ·}.

We shall prove existence and uniqueness of the solution with the help of

the contraction method.
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We establish first Ineq. (3.5). From (3.7) we have, making use of the

triangular inequality,

(3.8)
d(µt, λt) = d(µ0 ◦ T 0,t

{µ·}, λ0 ◦ T 0,t
{λ·}) ≤

≤ d(µ0 ◦ T 0,t
{µ·}, µ0 ◦ T 0,t

{λ·}) + d(µ0 ◦ T 0,t
{λ·}, λ0 ◦ T 0,t

{λ·}).

Setting w(t) = (x(t), v(t)), we can write equation (3.6) as

(3.9)
d

dt
w = Gµ

t (w),

so that, with obvious change of notation, we have

(3.10) d(µ0 ◦ T 0,t
{λ·}, λ0 ◦ T 0,t

{λ·}) = sup
f∈C1

|
∫

(µ0(dw) − λ0(dw))f(T t,0
{λ·}w)|.

The Lipschitz constant of the function f(T t,0
{λ·}w) does not exceed the

quantity eL′t, with L′ = L/m + 1. In fact we have, for any λ

(3.11)

|Gλ
t (w) − Gλ

t (w′)|2 =

= |v − v′|2 +
∣∣∣ 1

m

∫
µt(dx̄ dv̄)(∇Φ(x − x̄) − ∇Φ(x′ − x̄)

∣∣∣
2

≤

≤ (
L

m
+ 1)|w − w′|.

Setting ∆t = T t,0
{λ·}w −T t,0

{λ·}w
′, we find d|∆t|/dt ≤ L′|∆t|. It follows

that |∆t| ≤ eL′t|∆0|, so that the function e−L′tf(T t,0
{λ·}w) is in C1. The

expression (3.10) is then bounded from above by eL′td(µ0, λ0).

The first term of (3.8) is a little harder to estimate. We have

d(µ0 ◦ T 0,t
{µ·}, µ0◦T 0,t

{λ·}) = sup
f∈C1

|
∫

µ0(dw)[f(T t,0
{µ·}w) − f(T 0,t

{λ·}w)] | ≤

≤
∫

µ0(dw)|T 0,t
{µ·}w − T 0,t

{λ·}w| =

=

∫
µ0(dw)|

∫ t

0

dτ [Gµ
τ (T τ,0

{µ·}w) − Gµ
τ (T τ,0

{λ·}w)]| =: R(t),
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where we made use of eq. (3.9). By adding and subtracting the term

Gλ
τ (T τ,0

{µ·}w) in the integral over τ , makig use of Ineq. (3.11), recalling the

definition of the evolution µτ , we find

R(t) ≤
∫ t

0

dτ [

∫
µτ (dw)|Gµ

τ (w)−Gλ
τ (w)|+L′

∫
µ0(dw) |T τ,0

µ· w−T τ,0
λ· w| ].

Now

|Gµ
τ (w) − Gλ

τ (w)| =
1

m

∣∣
∫

(µτ (dw′) − λτ (dw′)) ∇Φ(x − x′)
∣∣ =

= max
e

1

m
L(B + 1)

∣∣
∫

(µτ (dw′) − λτ (dw′))
e · ∇Φ(x − x′)

(B + 1)L

∣∣ ≤

≤ 2(B + 1)L′ d(µτ , λτ ),

where e runs over all unit vectors in IRν and the inequality comes from

the fact that the function e ·∇Φ(x−x′)/(B +1)L is bounded in absolute

value by 1 and is Lipschtz with constant less than 1 (whatever the values

of B and L). We find

R(t) ≤ 2(B + 1)L′
∫ t

0

dτd(µτ , λτ ) + L′
∫ t

0

dτR(τ),

and, by the Gromwall lemma, since R(0) = 0, we have

R(t) ≤ 2(B + 1)L′
∫ t

0

dτ eL′(t−τ)d(µτ , λτ ).

We have obtained the inequality

(3.12) d(µt, λt) ≤ eL′td(µ0, λ0) + 2(B + 1)L′
∫ t

0

dτeL′(t−τ)d(µτ , λτ ),

and, by applying the Gromwall lemma once again, we have

d(µt, λt) ≤ d(µ0, λ0)e
ct, c = L′(1 + 2(B + 1)).

Relation (3.5) is then proved.

In order to prove that equation (3.7) admits a unique solution we

can now apply the Banach fixed point theorem. Let T be a fixed time
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and consider the space of the continuous (in the metrics d) functions

[0, T ] → A, which we denote as CA. In this space we assign the metrics

dM(µ·, λ·) = sup
t∈[0,T ]

d(µt, λt)e
−Mt,

where M > 1 is a positive constant. As A is a complete metric space,

such is also (CA, dM).

Let µ ∈ A be fixed, and consider an element t → µt of CA, with initial

point µ: µ0 = µ. The dynamics T t,0
{µ·} associates to µ· a new element of

A, the curve t→µ ◦ T 0,t
{µ·}. The corresponding map CA→CA is denoted by

F . By Ineq. (3.12), as the new curve λt comes out of the same point µ,

we get

d
(
(Fµ·)(t), (Fλ·)(t)

)
= d(µ ◦ T 0,t

{µ·}, λ ◦ T 0,t
{µ·}) ≤

≤ 2(B + 1)L′
∫ t

0

dτeL′(t−τ)d(µτ , λτ ).

Therefore, assuming that M > L′ + 2(B + 1)L′, we have

dM(Fµ·,Fλ·) ≤ 2(B + 1)L′

M − L′ dM(µ·, λ·) ≤ γdM(µ·, λ·),

with γ ∈ (0, 1), and the map F is a contraction.

The application to particle dynamics is immediate. Let ωN be a se-

quence of particle configurations in M, and let ω(N) be the corresponding

sequence of atomic normalized measures. We denote by ωN
t the configu-

ration corresponding to the evolution at time t generated by Eq.s (3.1),

with initial data ωN , and by ω
(N)
t the corresponding normalized measure.

By the previous theorem we immediately have the following corollary.

Corollary 3.2. Let µ be a normalized measure on M and suppose

that

lim
N→∞

d(ω(N), µ) = 0.

Then for any t ∈ IR there is an element µt ∈ A such that

lim
N→∞

d(ωN
t , µt) = 0,

and µt is the solution of the Vlasov equation with initial data µ.
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Proof. The proof comes immediately from the fact that ω
(N)
t is the

solution of the Vlasov equation with initial data ω(N), and from Ineq.

(3.5).

If the initial data ωN are random, with a distribution such that the

measures ω(N) approximate µ as N → ∞ in probability, one can formulate

a corresponding theorem in statistical form.

3.2 – The plane incompressible Euler equation as Vlasov limit for vortices

A remarkable application to hydrodynamics of the Vlasov limit is the

so-called vortex method for the incompressible fluid in two dimensions.

The vortex model provides finite dimensional approximations which are

conceptually simple, of considerable theoretical interest, and, in addition

to that, turn out in many cases to be very convenient in computing ap-

proximate solutions of the incompressible hydrodynamic equations. The

vortices appear as some kind of particles, and the analogy is deep, since

the vortex model has, as we shall see, a hamiltonian structure.

We give in what follows a simple derivation of the Euler equation as

a limit of equations for vortex systems. As usual, we shall omit some

technical parts of the proof. To the reader interested in the vortex model

we recommend the books [31], [32], to which we often refer.

We begin by writing the Euler equations for the incompressible fluid

in the plane IR2 in terms of the vorticity field ω. We consider a problem

with no external forces in a connected domain D ⊂ IR2 with smooth

boundary ∂D. Let u(x), x ∈ D be the function that describes the velocity

field of the fluid in D. The Euler equation reads

(3.13)





∂

∂t
u + u · ∇u = −1

ρ
∇p

div u = 0

u · n = 0 on ∂D,

where ρ is the mass density, which is constant by the incompressibil-

ity condition div u = 0, p is the pressure, n is the external normal on

the boundary, and the equations are completed by the initial condition

u(x, 0) = u0(x).
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The vorticity is ω = −∆ψ, where ψ is the current function, defined

by the relation u = ∇⊥ψ
(∇⊥ = (∂/∂x2,−∂/∂x1)

)
.

Let gD(x, y) be the fundamental solution of the Poisson equation in

D, or Green function, satisfying the condition gD(x, y) = 0 if x or y are

on the boundary. Equations (3.13) can be written as:

(3.14)





∂

∂t
ω(x, t) + u · ∇ω(x, t) = 0

u(x, t) =
∫

D(∇⊥
x gD(x, y)ω(y, t)dy

.

One should of course add the initial condition ω(x, 0) = ω0(x), whereas

the boundary conditions are satisfied thanks to the choice of the Green

function gD [31].

It is natural to consider ω(x, t) as the density, with respect to the

Lebesgue measure, of the vorticity measure (which is a measure with

sign). The case of n point-like vortices corresponds to a vorticity measure

of the form

(3.15) ω(dx) =
n∑

i=1

aiδxi
(dx),

where the real numbers ai are the intensities (positive or negative) of

the vortices, the point xi are the vortex positions, and δx(dy) denotes,

as usual, the atomic measure concentrated in x with total mass 1. The

velocity field can be written as

u(x) =
n∑

i=1

ai∇⊥gD(x, xi).

This expression has the disadvantage that it becomes singular when x →
xi, since, as it is well known, for small distances |x−y| we have gD(x, y) =

− log |x − y|/2π + γD(x, y), where γD is a regular function in D × D.

Hence the velocity diverges as |x−xi|−1. This difficulty cannot be simply

removed by writing the equations in weak form, i.e., in the form:

(3.16)
∂

∂t
ωt(ϕ) = ωt(u · ∇ϕ),
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where ϕ is a test function, and u is given by the second equation (3.14), in

which the measure ω(x, t)dx has to be replaced by the singular measure

ωt(dx), given by eq. (3.15), with atoms at the positions xi(t) of the

vortices at time t. Since ωt is atomic, the velocity is not defined, because

of the divergence of the self-interaction terms gD(xi, xi), so that the right-

hand side of (3.16) makes no sense. If self-interaction is eliminated, an

assumption that can be justified in several ways (see [31], Sec.2) one can

see that Eq. (3.16), if the initial measure has n vortices as in (3.15), leads

to the equations

(3.17a)
d

dt
xi ≡ ẋi = ∇⊥

i

( n∑

j=1
j %=i

ajgD(xi, xj) +
1

2
∇⊥

i aiγ̄(xi)
)
,

where γ̄(x) = γD(x, x). The system of equations just obtained can be

written in hamiltionian form:

ai(ẋi)1 =
∂H

∂(xi)2

, ai(ẋi)2 = − ∂H

∂(xi)1

H =
1

2

∑

i #=j

aiajgD(xi, xj) +
1

2

∑

i

a2
i γ̄(xi).(3.17b)

The conjugated variables are
√

|ai|(xi)1 and
√

|ai|(xi)2sign ai.

Equations (3.17b) are of course valid as long as the positions of the

vortices are distinct. When two or more positions coincide we have a

“collapse”. One can show that collapses do happen, but they are is some

sense statistically negligible. More precisely, the initial positions that

lead to collapses correspond to sets of zero measure with respect to the

Lebesgue measure dλn =
n∏

i=1
dxi on IR2n [31]. We observe that, since

the system is hamiltonian, the Liouville theorem holds and the Lebesgue

measure dλn is left invariant by the evolution associated to the system of

equations (3.17b).

This point is however technically involved, and we remove the difficul-

ties due to the singularities, which cause divergences of the hamiltonian

H, by regularizing the system. We replace the point-like vortices by ex-

tended “vorticity bubbles”, of size δ > 0. We will then show that sending

δ to 0, keeping a constant value of the vorticity, we recover the Euler
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equation. For a more extensive discussion of the singularity problem we

refer once again to [31], [32].

As regularized Green function we choose

gδ(x, y) =

∫

D

ρδ(|z − y|)gD(x, z)dz,

where δ is a positive number which at the end will tend to 0, and the

function ρδ is a “regularizer”, satisfying the conditions

ρδ ≥ 0,

∫

IR2
ρδ(|x|)dx = 1, supp ρδ ⊂ [0, δ].

We require moreover that ρδ be such that gδ satisfies the following con-

ditions

|gδ(x, y)| ≤ C(1 − log |x − y|),
∣∣∣ ∂

∂xi

gδ(x, y)
∣∣∣ ≤ C

|x − y| , i = 1, 2

∣∣∣ ∂2

∂xi∂xj

gδ(x, y)
∣∣∣ ≤ C

|x − y|2 , i, j = 1, 2

where C is a constant indipendent of δ. One can check that the conditions

above are satisfied for the choice

ρδ(r) =





k + 1

πδ2

(
1 −

(r

δ

)2)k

r ∈ [0, δ]

0 r /∈ [0, δ],

where k is a positive integer. The reader may have in mind this function

for definiteness.

We write a regularized version of the Euler equation in weak form:

∂

∂t
ωδ

t (ϕ) = ωδ
t (u

δ · ∇ϕ)

uδ(x, t) =

∫
ωδ

t (dy)∇xgδ(x, y).(3.18)

Equations (3.18) are accompanied by an initial condition ωδ
0 = ω. Insert-

ing the expression of u given by the second equality (3.18) into the first
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one we get an equation which can be considered as the Vlasov equation

for vortices. It is to be understood, like the analogous equation (3.4), as

an equation in the space of the measures on D, with the difference that

we now consider measures with sign.

Let AD(a, b) be the space of the measures with sign on D such that

the total masses of the positive part and of the negative part in the Jordan

decomposition are, respectively, a and b. The topology in this space is

once again the topology of weak convergence. The boundary condition

uδ ·n on ∂D, where n is the outside normal, is satisfied by the proprerties

of gD.

Once again we consider, for any weakly continuous family of measures

in AD(a, b) {ωt : t ∈ [0, T ]} the flux T t,s
δ,ω· defined by the equation

d

dt
x =

∫
ωt(dy)∇xgδ(x, y).

The following existence and uniqueness theorem holds.

Theorem 3.3. The problem (3.18) with initial data ω admits a

unique solution in the space AD(a, b), which is at the same time the so-

lution of the fixed point problem in AD(a, b)

(3.19) ωt = ω ◦ T 0,t
δω·

with initial data ω0 = ω.

Proof. The proof, which is similar to the proof of Theorem 3.1, is

left to the reader.

We can now prove that, in the limit δ → 0, we obtain the Euler

equation in weak form.

Theorem 3.4. Under the hypotheses of the preceding theorem, let

the initial data ω(dx) ∈ AD(a, b) be such that ω(dx) = ω(x)dx, for some

function ω(x) ∈ L∞(D). Then there is a unique function ωt(x) ∈ L∞ such

that ωt(x)dx ∈ AD(a, b), and this function satisfies the Euler equation in

weak form (3.16) with u given by eq. (3.14).
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Proof. The proof is obtained by taking the limit δ → 0 of the solu-

tions of the regularized problem. It is based on the following inequalities,

the proof of which is rather lengthy. (The reader may find a detailed

exposition in the book [31]). They are:

(3.20a)

∫

D

|ω(x)||∇gδ(x, y)|dx ≤ C(‖ω‖∞ + ‖ω‖1)

(3.20b)

∫

D

|ω(x)||∇gδ(x, y)−∇gδ(x, y′)|dx ≤ C(‖ω‖∞+‖ω‖1)φ(|y−y′|),

where the function φ is given by the relation

(3.20c) φ(r) =

{
r(1 − log r) 0 < r < 1

1 r ≥ 1.

Here ‖ · ‖1 denotes the norm of L1(D), and C is a positive constant.

We set xδ(t, x) = T 0,t

δ,ωδ·
x, where ωδ

t denotes the solution of (3.19) with

initial data ω. For δ′ ≤ δ we evaluate the difference |xδ(t, x) − xδ′(t, x)|.
Observe that, since the flux T 0,t

δ,ωδ·
preserves the Lebesgue measure (be-

cause ∇ · uδ = 0), we have

(3.21) ‖ωδ
t ‖∞ = ‖ω‖∞, ‖ωδ

t ‖1 = ‖ω‖1.

Moreover it is not hard to see that, by the properties of the function ρδ,

we have |∇xgδ(x, y) − ∇xgδ′(x, y)| ≤ const δ. Therefore, making use of

the equations of motion and of (3.20b), we get

(3.22) |xδ(t, x) − xδ′(t, x)| ≤

≤ const ‖ω‖∞ t δ + const (‖ω‖∞ + ‖ω‖1)

∫ t

0

φ(xδ(s, x), xδ′(s, x))ds+

+

∫ t

0

∣∣∣
∫

(ωδ
s(y) − ωδ′

s (y)∇xgδ(xδ(t, x), y)dy
∣∣∣ ds.

The last expression on the right of (3.22) can be written, by the invariance

of the the Lebesgue measure, in the form

∫ t

0

∣∣∣
∫ [

ω(y)∇xgδ(xδ(s, x), xδ(s, y)) − ∇xgδ(xδ(s, x), xδ′(s, y))
]
dy

∣∣∣ds.
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Multiplying this expression by |ω(x)| and integrating over dx, taking into

account the invariance of the norms (3.21), we see that it is bounded from

above by

const

∫ t

0

ds(‖ω‖∞ + ‖ω‖1)

∫
dy|ω(y)|φ(xδ(s, y), xδ′(s, y)).

Hence, multiplying the expression (3.22) by |ω(x)| and integrating over

dx, having set

Y1(δ, δ
′, t) =

∫
dx|ω(x)||xδ(t, x) − xδ′(t, x)|,

Y2(δ, δ
′, t) =

∫
dx|ω(x)|φ(xδ(t, x) − xδ′(t, x)),

we find the inequality

Y1(δ, δ
′, t) ≤ const ‖ω‖∞ t δ + const (‖ω‖∞ + ‖ω‖1)

∫ t

0

dsY2(δ, δ
′, s).

It is not hard to see that, by convexity of the function φ in the interval

(0, 1), we have

Y2(δ, δ
′, t) ≤ const φ(Y1(δ, δ

′, t) )

where the constant can depend on the size of the bounded domain D.

We are then led to consider the differential problem ẏδ = bφ(yδ), with

the initial condition yδ(0) = δc, where b and c are positive constants. We

leave to the reader the final step, namely the proof that for any finite

time t the solution of the last equation tends to 0 as δ → 0.

4 – Kinetic limits

The name “kinetic limit” is applied to models in which, as in the mean

field limit that leads to the Vlasov equation, the interaction changes in

the limiting procedure. The difference is that in the mean field limit we

increase the range and decrease the intensity of the force, whereas in the

kinetic limit the intensity of the force is unchanged and the range varies in

such a way that the particles interact more and more rarely. They spend

most of the time in free motion, and undergo very rare interactions with
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the other particles (usually called “collisons”), each of which produces a

finite change in velocity. Time has to be rescaled, and the characteristic

macroscopic time τ is such that a given particle undergoes in the average

one collision over a time τ .

The model which has been most studied is undoubtely the “rarefied

gas”, or “Boltzmann gas”. This model is of great historical, method-

ological and practical importance. The papers by Boltzmann, published

about a hundred years ago, in which he proposed the model and derived

his celebrated equation can be considered as the foundation of nonequi-

librium statistical mechanics. The name “kinetic limit” originated in the

theory of the Boltzmann gas.

We will not treat in detail the Boltzmann gas, a subject to which an

enormous literature is devoted. It is important, by the way, to remark

that a complete and rigorous derivation of the Boltzmann equation, as

well as a complete rigorous theory of the equation itself are still lacking.

We begin with a brief discussion on the Boltzmann equation. The

second, and largest, part of the section is devoted to the kinetic limit

for the Lorentz model, or, better, for the “Lorentz gas”. This model has

provided in the last decades a series of rigorous results which have thrown

more light, maybe, than anything else on the connections between ergodic

theory and statistical mechanics. We spend some time on the proof of the

kinetic limit mainly because it is perhaps the only “easy” result which

shows how the instability due to the interaction leads to a Markovian

limit. Other results for the same model, such as the derivation of ergodic

properties and the hydrodynamic limit for the same model, rely on the

rather heavy technical machinery of the Markov partitions.

In § 4.2 we briefly discuss the kinetic limit for a system of interacting

particles on the one-dimensional lattice with stochastic evolution, which

leads in the limit to reaction-diffusion equations. We only outline the

proof, which is interesting also because its main ideas are essentially the

same as in the proof of Lanford for the classical Boltzmann gas.

4.1 – Kinetic limits for classical gases

4.1.1 – The Boltzmann gas

A gas can be said to be rarefied if the intermolecular distance is much
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larger than the range of the force field generated by a single molecule.

The molecules will then move most of the time as free particles, and will

undergo rare collisions, which can be approximately treated as indepen-

dent events, if the distribution of the gas molecules is “chaotic”.

If we want to understand the rarified gas as a limit, we must, as we

said, change the range of the interaction. Consider, for definiteness, a

gas in dimension ν = 3. If a is the range of the intermolecular force, ρ

the particle density, and v a typical velocity, then the average number of

collisions up to time t will be of the order a2vtρ. If t = τ , where τ is

the average time interval between two subsequent collisions of the same

particle, this quantity is of the order 1, and the quantity

(4.1) λ = vτ =
1

a2ρ

is the “mean free path”.

Boltzmann deduced his equation as an approximation. The assertion

that the Boltzmann equation becomes exact in the limit a → 0, while λ

is kept fixed, is due to Grad. This is why the kinetic limit is also called

“Grad-Boltzmann limit”.

A huge literature is dedicated to the Boltzmann equation, with con-

tributions of mathematical, physical and technological nature. We refer

the reader to [10] and to the literature quoted there.

One of the most favored models is the model of elastic hard spheres.

That is, the particles are considered as identical spheres, subject only to

elastic collisions. We will refer for definitess to this particular model.

Let a be the radius of the spheres, which can be considered as the

range of the force. The rescaling (adimensional) parameter ε is introduced

as a factor of the range, i.e., we consider for each ε a system of spheres

with radius εa. We do not rescale time, and, in order to keep λ finite,

the average density of particles has to grow as ε−2.

The choice that we made can be defined as “macroscopic point of

view”. We can alternatively work in a frame of reference in which the ra-

dius of the spheres is constant (“microscopic point of view”), so that finite

macroscopic lengths (such as the mean free path) grow as ε−1. The vol-

ume of a finite (macroscopic) box, which contains O(ε−2) particles grows

as ε−3, so that the density decreases as ε. Hence the Grad-Boltzmann

limit is, on microscopic scale, a low density limit. The macroscopic time
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unit should also grow like ε−1 if we want to see finite effects of the inter-

action, and this is why the Grad-Boltzmann limit corresponds to “rare

interactions”.

Finally, it may be convenient to adopt a “mesoscopic” point of view,

in which the particle density is kept constant. In this case macroscopic

lengths (and the mean free path) grow as ε− 2
3 , and the radius of the

spheres tends to 0 as ε
1
3 . Time should also be rescaled by a factor ε− 2

3 .

In the Grad-Boltzmann limit the distribution of particles and veloci-

ties tends to a free gas state, which is not surprising, since a rarefied gas

behaves “most of the time” as a free one. More precisely, for each time

t we have a free gas local equilibrium family in the sense explained in

§ 2.2. The local state is identified by a function f(q, v, t), which gives the

particle density in the one-particle phase space M, or, in mathematical

terms, represents the intensity of the Poisson distribution at the point

(q, v) and at time t. This function is the unknown function of the Boltz-

mann equation. So the Boltzmann gas is locally (in space and time) a

free gas, with the local parameter given by the solution of the Boltzmann

equation, which takes into account the rare collisions. Closeness to the

free gas makes the Grad-Boltzmann limit much easier to handle than the

hydrodynamic limit, and we have by now quite a few relevant rigorous

results.

The Boltzmann equation is usually written in the form

∂

∂t
f(q, v, t) + v · ∇qf(q, v, t) =(4.2)

=
1

λ

∫
dv1

∫

ω̂·(v−v1)≥0

ω̂ ·(v−v1)[f(q, v′
1, t)f(q, v′, t)−f(q, v1, t)f(q, v, t)]dω̂,

where (v, v1) are the incoming velocities at collision, v′v′
1 are the outgoing

velocities, and ω̂ is a vector on the unit sphere normalized in such a way

that
∫

dω̂ = 4π.

The most important rigorous result is the derivation of the Boltz-

mann equation for elastic spheres, in the Boltzmann-Grad limit, proved

by Lanford in 1976 [28]. The result includes a proof of the convergence

of the local state to a free gas state, the parameter being of course given

by the solution of the Boltzmann equation. Unfortunately the proof by
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Lanford is valid only for small times, more precisely for some fraction of

the free flight time τ .

What is lacking in order to extend the result to larger times is the so-

called “propagation of chaos”, which is the analogue of the propagation

of local equilibrium discussed in Sec. 2. More precisely, we need to prove

that if the initial state is locally close to a free gas equilibrium state,

then at later (macroscopic) times the state is still locally close to a local

equilibrium state, with different local parameters, which, in the Grad-

Boltzmann limit are given by the solution of the Boltzmann equation.

One may comment that a rigorous proof of propagation of chaos for

the rarefied Boltzmann gas should be much easier to get than the proof

of propagation of local equilibrium in a hydrodynamic (finite density) sit-

uation. For the Boltzmann gas we have a clear idea of the “mechanism”

at work: the Poisson distribution is established by the fact that the par-

ticles move independently most of the time, as discussed in the proof of

convergence to equilibrium for the free gas (Th. 1.4). The only techni-

cal difficulty to be overcome in proving that chaos holds for large (with

respect to τ) times is connected with the role of collisions. One should

prove that, at least in the case of elastic spheres and other respulsive

potentials, collisions help in establishing chaos, by causing a “diffusion”

of velocities. This mechanism will be seen at work for the Lorentz gas

below. For the hard sphere Boltzmann gas there is hope that a refine-

ment of the results on the ergodic properties of systems of hard spheres

will lead to a solution of the problem (see for example [25]). A result

of this type could probably provide a general existence and uniqueness

theorem for the Boltzmann equation (4.2) for all times, which, as we

mentioned above, could not be obtained up to now by purely analytical

tools, in spite of the enormous amount of work dedicated to the problem.

An up-to-date result on the analytic theory of the Boltzmann equation

is in [13].

4.1.2 – The Lorentz gas

The “Lorentz gas” was introduced at the beginning of the present

century by Lorentz as a model of the diffusion of electrons in metals.

The model is very simple: a point particle (electron) moves freely in a

region in which some fixed scatterers (atoms), represented by spheres, are
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located. The particle interacts with the spheres only by elastic collisions.

The model can be considered in any dimension ν ≥ 2. We will only

consider the case ν = 2.

If the scatterers are located at the points of a regular lattice, the

model coincides with the celebrated “Sinai billiard”, the first mechanical

model for which the “ergodic problem” stated by Boltzmann could be

solved. The solution came by the construction of the so-called ”Markov

partitions”, which can be considered as a mathematical realization of the

old physical idea of “coarse graining”. They appear to be the appropriate

mathematical tool which allows to derive the unpredictable or “stochas-

tic” behaviour of deterministic mechanical systems over large times from

the instability of the dynamics. Markov partitions allow a complete rig-

orous derivation of nonequilibrium statistical mechanics at finite density

for the periodic Lorentz gas [9].

We consider here a random distribution of the scatterers. The peri-

odic case is not so natural in the kinetic limit, and has some technical

difficulties, due to the fact that the dispersion of the mean free path is

infinite [1]. We shall assume that the distribution of the scatterer centers

is poissonian. One could also consider other kinds of distributions, pro-

vided that they are translation invariant, and that the correlations decay

fast enough with the distance. We will prove an “almost everywhere”

result, which is physically the most natural. That is, we prove that for

almost any configuration of the scatterers, with respect to the Poisson

distribution P, the motion of the gas is described in the Grad-Boltzmann

limit by the “Boltzmann equation“ of the problem, which, due to the fact

that there is no interparticle interaction, is linear.

What we report here is the essential content of the paper [3]. A

previous elegant result of Gallavotti [19] proved convergence to the

solution of the limiting equation in the weaker sense of convergence in

probability.

Suppose then that we have on the plane IR2 a Poisson distribution

P of points, with constant density ρ. Let Ω be the space of the point

configurations and ω the generic element of Ω. Each point q = (q1, q2) ∈ ω

corresponds to the center of a scatterer, which is a disk Da(q) = {q′ :

|q − q′| ≤ a}, of radius a > 0 and center at q. The boundary of Da(q) is

denoted by Ka(q).

Consider the motion of a free particle. As the absolute value of the
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velocity does not change at collision, we can assume that it is equal to 1,

so that a particle is identified by a point (q, ψ) in the one-particle phase

space M = IR2 ×S1. At the time when a particle collides with a scatterer

Da(q), we assume for definiteness that its velocity is outgoing, and the

particle is represented by a point in the set

K̂a(q) = {(q′, ψ) : q′ ∈ Ka(q), (q
′ − q) · ψ ≥ 0} ⊂ M.

We also define, for each ω ∈ Ω the “free space” IRω
a , and the phase space

accessible to the particles Mω
a :

IRω
a = IR2 \

⋃

q∈ω

Da(q), Mω
a = (IRω

a × S1) ∪ K̂ω
a ,

where K̂ω
a = {(q′, ψ) ∈ ⋃

q∈ω K̂a(q) : q′ ∈ K̄ω
a }, and K̄ω

a is the set of

the points that belong to the boundary of one scatterer only. In fact we

have to exclude the “angular” points which belong to two or more circles

(boundaries of the scatterers), for which the dynamics is not defined.

The dynamics T ω,a
t on Mω

a is described as follows: the point moves

uniformly with velocity of modulus 1, and when it collides with a scatterer

it changes direction in such a way that the outgoing and ingoing directions

make with the normal to the circle at the point of collision equal angles,

and are on opposite sides with respect to the normal. Since the dynamics

is not defined at angular points we consider the subset M̂ω
a ⊂ Mω

a for

which the particle does never hit an angular point. It is easy to see that

the set Mω
a \M̂ω

a has zero measure with respect to the Lebesgue measure

dq dψ.

The free path τ̄ω
a (q, ψ), i.e., the length of the segment that starts at

q in the direction ψ and ends at the first collision point with a scatterer,

is defined for any (q, ψ) ∈ Mω
a . It can, of course be equal to infinity. If it

is finite, we denote by T ω
a (q, ψ) the point of K̂ω

a correponding to the first

collision. The discrete map T ω
a is defined on

(4.3) M̃ω
a = {(q, ψ) ∈ M̂ω

a : τ̄ω
a (q, ψ) < ∞}.

For (q, ψ) ∈ M̃ω
a one defines the “impact parameter” b̄ω

a (q, ψ) as the dis-

tance, with sign, of the center of the scatterer that is hit from the straight
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line starting at q with angle ψ. In addition to the impact parameter we

define the quantities d̄±,ω
a (q, ψ) : (−d̄−,ω

a , d̄+,ω
a ) is the maximal interval

on the line orthogonal to ψ, containing the point q (considered as the

origin), such that all trajectories starting from the points of it hit the

same scatterer. We suggest the reader to draw a simple figure.

For the Grad-Boltzmann limit it is convenient to choose a “meso-

scopic”: rescaling: we leave the configuration ω fixed and send to zero

the radius a of the scatterers. The mean free path is of the order a−1

(since dimension is 2), so that we have to rescale lengths and time by the

same factor. We identify for convenience of notation a with the scaling

parameter ε, and introduce the normalized variables

τω
ε (q, ψ) = ετ̄ω

ε (q, ψ), bω
ε = ε−1b̄ω

ε , d±,ω
ε = ε−1d̄±,ω

ε .

In what follows we will drop most of the time ω from the notation. All

subsets of M and Ω which we introduce are supposed to be measurable.

Let f(q, v) be an initial particle density. We shall prove that in the

limit ε → 0 the evolution of the density is given by the solution of the

following “Boltzmann equation”

(4.4)

∂

∂t
f(q, ψ, t) + (ψ · ∇q)f(q, ψ, t) =

=
ρ

2

∫ π

−π

dψ′
∣∣∣ sin (ψ − ψ′)

2

∣∣∣[f(q, ψ′, t) − f(q, ψ, t)]

with initial data f(q, v, 0) = f(q, v).

This is the Fokker-Planck equation associated to a Markov process,

which is, not surprisingly, a jump process for the velocity. The process

can be described as follows. The particle moves freely, except that at

some random times its velocity jumps. Moreover the lengths of the free

flight intervals are i.i.d. random variables with exponential distribution

and the impact parameters (which identify the velocity jumps) are also

independently distributed. One says that the limit ε → 0 is a “markovian

limit”.

It is important to observe that, as we consider a deterministic system

for a fixed configuration ω, the only stochasticity comes from the initial
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distribution of the particles, which is supposed to be absolutely continu-

ous with respect to the Lebesgue measure, with density f(q, v). We also

need some regularity of f(q, v).

A point (q′, ψ) ∈ K̂ε(q) is represented by two angles

(4.5) θ = arctan
(q′

2 − q2)

(q′
1 − q1)

, ϕ = ψ − θ mod 2π.

where θ is the angle of the vector q′−q with respect to the q1 axis and ϕ is

the angle of the outgoing velocity ψ with respect to the outgoing normal.

The connection between the impact parameter b and ϕ is b2 = 1− cos2 ϕ.

To each scatterer Dε(q) is then associated a copy S(q) of the cylinder

S = S1 × [−π/2, π/2].

As a first step, we find the joint distribution of the free path and the

impact parameter.

Proposition 4.1. Let (q, ψ) ∈ M be a fixed point, and consider

the quantities

F ε(x, y) = P({τε(q, ψ) < x, bε(q, ψ) < y}), x ∈ [0,∞), y ∈ [−1, 1]

Gε
± = P({dε

±(q, ψ) < u}), u ∈ [0, 2].

Then the following limits hold, uniformly in (x, y) ∈ [0,∞) × [−1, 1], and

in u ∈ [0, 2]:

lim
ε→0

F ε(x, y) = F (x, y), lim
ε→0

Gε
±(u) = G±(u),

where

(4.6) F (x, y) =
1

2
(1 + y)(1 − e−2ρx), G(u) =

2u

2 + u
.

Proof. Clearly the point q belongs to the interior of some scatterer

with finite probability, which tends however to 0 as ε → 0. For such

choices of ω we set conventionally τω
ε = 0, bω

ε = −1. The probability

that the mean free path is less than ε−1x is equal to the probability

that there are points of ω in a region made by a cylinder of height ε−1x

and basis 2ε plus two half-circles of radius ε. This probability is equal to
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1−e−ρ(2x+4πε2). Moreover the distribution of the impact parameter under

the condition that the mean free path is less than ε−1x must be, in the

limit, uniform and independent of the condition. This is enough for the

proof. The reader can easily work out the details.

Consider now, for a fixed choice of the scatterer configuration ω the

distribution of the mean free path and impact parameter induced by

the Lebesgue measure dψ on some bundle of directions, coming out of

a point q. A fundamental step of our arguments consists in proving

that, for P-a.e. ω this distribution is again given in the limit ε → 0 by

the functions (4.6). The proof provides a concrete understanding of the

statement that the Lebegue measure “generates stochasticity” for a fixed

configuration ω.

Consider the bundle of directions ψ ∈ ∆ = [ψ1, ψ2] coming out of

the same point q ∈ IR2, and denote by dµ∆ the normalized measure

dµ∆ = dψ/|∆|, where dψ is the Haar measure on S1, and | · | denotes

the measure (“length”) of sets. The measure dµ∆ induces, for fixed ω, a

distribution of the mean free path and impact parameter. For technical

reasons we formulate the result in a more general form. We consider a

family of bundles ∆ε with vertex at q, and we allow their size to decrease

as ε decreases, in such a way that the lower bound |∆ε| > εα is satisfied

for some α ∈ [0, 1). We set

M ε(x, y) = {ψ ∈ ∆ε : τε(q, ψ) < x, bε(q, ψ) < y},

N±,ε(u) = {ψ ∈ ∆ε : dε
±(q, ψ) < u}.(4.7)

The following theorem holds.

Theorem 4.2. Given a decreasing sequence εn < n−s, s > 0, for

almost all ω ∈ Ω we have, uniformly in (x, y) ∈ [0,∞) × [−1, 1] and

u ∈ [0, 2]

lim
n→∞

µεn(M εn(x, y)) = F (x, y)

lim
n→∞

µεn(N±
εn

(u)) = G(u).

Proof. We choose two numbers β1,2 such that 0 < β1 < β2 < 1 − α,

and set κ(ε) = [ε−β1 ]. For a given bundle ∆ε = [ψ1, ψ2] we set ψ̄k =
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ψ1 + k|∆ε|/κ(ε), for k = 1, . . . , κ(ε) − 1. The points ψ̄k divide ∆ε into

κ(ε) intervals of equal length, and are taken as centers of the smaller

intervals Jk = (ψ̄k − |∆ε|εβ2/2, ψ̄k + |∆ε|εβ2/2), k = 1, . . . , κ(ε)−1. What

is left, i.e., ∆ε \ ∪κ(ε)−1
k=1 Jk is made of κ(ε) disjoint subintervals, which we

denote as Ik : k = 1, . . . κ(ε). We have, with obvious notation

M ε(x, y) =
{ κ(ε)⋃

k=1

M ε
Ik

(x, y)
}

∪
{ κ(ε)−1⋃

k=1

M ε
Jk

(x, y)
}
,

and therefore

0 ≤ µε(M
ε(x, y)) −

κ(ε)∑

k=1

µε(M
ε
Ik

(x, y)) ≤
κ(ε)−1∑

k=1

µε(∆Jk
) ≤ Cεβ2−β1 .

If we throw away the contributions of the intervals Jk, the remaining in-

tervals Ik give independent contributions, if there are no points of ω at

a distance from q less than ε(sin(|∆ε|εβ2/2))−1. Namely, there is depen-

dence only if there are scatterers which can be hit by trajectories coming

out of neighboring intervals. We set r(ε) = 4ε1−α−β2 , and consider the

distribution Pε, conditioned to the event that in a sphere of center q and

radius r(ε) there are no points of ω. With respect to Pε the contributions

of the intervals Ik are independent. We have

(4.8) ‖Pε − P‖ ≤ c1ε
1−α−β2 =: r1(ε),

where ‖ · ‖ denotes here the variation distance. We set, for ε < ε′,

Rε,ε′
k (x, y) = µε(M

ε
Ik

(x, y)) − IEε′
µε(M

ε
Ik

(x, y)), where IEε denotes expec-

tation withn respect to Pε. The quantities Rε,ε′
k (x, y) are independent,

with respect to Pε′
. We now show that, for some δ1, δ > 0 we have, for

small ε,

(4.9) Pε′( ∥∥∥
κ(ε)∑

k=1

Rε,ε′
k (·, ·)

∥∥∥
∞

> εδ1
)

< e−ε−δ

.

Clearly |Rε,ε′
k (x, y)| < rε := 2(κ(ε))−1, so that the variables r−1

ε Rε,ε′
k are

bounded by 1 in absolute value. Making use of the exponential Chebyshev
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inequality we find, for any positive X and h ∈ (0, 1), Pε′
(| ∑k Rε,ε′

k (x, y)|
> Xrε) < 2e−hX+ h2

2 κ(ε)(1+O(h)). Hence, taking h = ε
β1
2 , X = ε−β1+δ1 ,

with δ1 ∈ (0, β1/2), we find

(4.10) Pε′( ∣∣∣
∑

k

Rε,ε′
k (x, y)

∣∣∣ > 3εδ1
)

< c2e
−ε−δ

, δ =
β1

2
− δ1.

We further introduce, for some α1 > 1, the points

xj = jεα1 , j = 0, . . . , N ε
1 := [ε−2α1 ], xNε

1
+1 = ∞

yj = jεα1 − 1, j = 0, . . . , N ε
2 := [2ε−α1 ], yNε

2
+1 = 1.

From (4.10), taken for all the possible pairs (xi, yj), which are of the order

of ε−3α1 , relation (4.9) follows, by modifying somewhat the definition of

δ1 and δ. If εn = n−s, then e−(εn)−δ
is summable, which implies that

limn→0 ‖ ∑κ(εn)
k=1 Rεn,ε′

k ‖∞ = 0, for Pε-a. a. ω, by te Borel-Cantelli lemma.

Since µε(M
ε
Ik

(x, y)) =
∫

Ik
dψ II(τω

ε (q, ψ) < x, bω
ε (q, ψ) < y), it follows from

(4.8) that

‖IEε′
µε(M

ε(·, ·)) − F ε(·, ·)‖∞ < r1(ε
′)µε(Ik).

By Prop. 4.1 we have moreover lim
ε→0

‖F ε − F‖∞ = 0, so that

(4.11) Pε′({
ω : lim sup

n→∞
‖µεn(M εn(·, ·) − F (·, ·)‖∞ < r1(ε

′)
})

= 1.

From (4.11), taking into account the definition of Pε the result follows.

For N±,ε the proof is similar.

Remark. If ε varies in the interval (εn+1, εn), it is not hard to see

that the set of angles M ε(x, y) varies only a little, more precisely, only the

angles for which the trajectories are almost tangent to the scatterers or

end up close to angular points are affected. The size of this set of angles

is controlled by the distribution of d±, so that it is easy to conclude that

P-almost everywhere

(4.12) lim
ε→0

‖µε( M ε(·, ·) ) − F (·, ·)‖∞ = 0.

A similar relation holds for N±,ε.
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The (almost) exponential estimate (4.9) allows us to consider the

supremum of the norms in (4.12) over a family of bundles, the number of

which can grow as an inverse power of ε. The idea is to take a “sufficiently

dense” family, so that we can approximate the actual distribution of the

particles by a discrete distribution over the bundles.

As we have to deal with densities, it is not enough to consider the

uniform measure dψ. The class of the densities f(ψ) which we can allow

depends on the possibility of approximating the normalized distribution

µ∆(dψ) = dψ/|∆| by the distribution (also normalized)

µf,∆(dψ) =
f(ψ)dψ∫
∆ f(ψ)dψ

.

The following inequality holds: for any measurable A ⊂ ∆ we have

(4.13) |µ∆(A) − µf,∆(A)| ≤ 2|A|supψ∈∆ |f ′(ψ)|
infψ∈∆ f(ψ)

.

Ineq. (4.13) follows if we observe that, if ψ0 is the middle point of ∆, we

have, writing f(ψ) = f(ψ0) + f(ψ) − f(ψ0), and observing that |f(ψ) −
f(ψ0)| ≤ |∆| maxψ̄ |f ′(ψ̄)|,

∣∣∣ |A|
∫

∆

f(ψ)dψ − |∆|
∫

A

f(ψ)dψ
∣∣∣ ≤ 2|A||∆| max

ψ̄
|f ′(ψ̄)| .

Since we consider intervals ∆ of the order εα, we admit that the ratio

on the right of (4.13) may grow as an inverse power of ε. Let F ε
∆(α),

α ∈ (0, 1) be the class of the positive functions of C1, such that

(4.14)
supψ∈∆ |f ′(ψ)|
infψ∈∆ f(ψ)

< ε−α.

If we have a bundle ∆ with density f ∈ F ε
∆ we can divide it into smaller

bundles of length less than εα, and approximate the distribution of τε, bε

and d±
ε induced by f with the one induced by the uniform measure dψ.

The technique of the proof consists in approximating the initial den-

sity f(q, ψ) by its values f(qk, ψ), on some lattice of points {qk}, which

gets more and more dense as ε → 0. The distribution of the mean free
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path and of the impact parameter induced by f(qk, ψ) is in its turn ap-

proximated by uniform distributions over some small intervals, the length

of which tends to 0 as ε → 0.

For 5 > 1, η > 1, we introduce a finite lattice with lattice spacing

a(ε) = ε-

(4.15) ZZε(ω) =
{
ka(ε) : k ∈ ZZ2, |ka(ε)| < ε−η

}
,

and, for some β ∈ (0, 1), let Z̄Zε(ω) = {q ∈ ZZε : dist (q, ω) > εβ} be the

subset of the lattice points which are not too close to the scatterers.

For any q ∈ Z̄Zε consider the bundles obtained by dividing S1 into

κ(ε) pieces:

∆j =
[
(j − 1)

2π

κ(ε)
, j

2π

κ(ε)

]
, κ(ε) = [1 + log ε−1].

The set of such bundles is denoted Γε(q). In complete analogy with

Th. 4.2, taking into account the estimate (4.9), one proves the following

proposition, which we state without proof.

Proposition 4.3. For any choice of the family F∆(α), we have,

for P-almost any ω ∈ Ω

lim
ε→0

max
q∈ZZε

∆∈Γε(q)

max
f∈Fε

∆

‖µf,∆(M ε
∆(·, ·) − F (·, ·)‖∞ = 0

lim
ε→0

max
q∈ZZε

∆∈Γε(q)

max
f∈Fε

∆

‖µf,∆(N±,ε
∆ (·) − G(·)‖∞ = 0.

Under the first collision map an angular bundle breaks up into

a certain number of continuous curves, corresponding to reflection

over each scatterer. In order to be able to consider the following col-

lisions we need to extend the results for angular bundles to more general

curves.

We shall say that γ = {(q(ψ), ψ) : ψ ∈ ∆γ} is an admissible curve, if

∆γ is an interval of length not less than εα, where α ∈ (0, 1) is fixed, and if

the curve is of class C1 and such that supψ∈∆γ
|dq/dψ| < ∞. Particularly

important are the increasing curves on the cylinders S(q) associated to
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the scatterers q ∈ ω, i.e., the curves ϕ(θ) such that dϕ/dθ > 0 (we admit

the value +∞). If we write any such curve in terms of the outgoing angle

ψ = ϕ + θ we get functions θ(ψ), φ(ψ), and a curve in the space M by

setting q(ψ) = q + εθ(ψ) ( θ is here the unit vector of direction θ). It

is not hard to see that the curve is ammissibile as a consequence of the

condition dϕ/dθ > 0.

For an admissible curve γ we set, in analogy with (4.7),

M ε
∆γ

(x, y) =
{
ψ ∈ ∆γ : τ(q(ψ), ψ) < x, b(q(ψ), ψ) < y

}
,

and define N±,ε
∆γ

(u) in a similar way. µf,∆γ will denote, as above, the

normalized measure on ∆γ with density f .

The images of the angular bundles under the first collision map, i.e.

after reflection from the scatterers, are “mostly” made of increasing curves

with slope near to 1. We introduce on S = S1 × [−π/2, π/2] the family

Zε of segments of slope dϕ/dθ = 1, with endpoints at the points of the

lattice {(k1, k2)d(ε)}, where d(ε) = 2π/ν(ε), ν(ε) = 2ε−2, with −ν(ε) ≤
k1 ≤ ν(ε), −ν(ε)/2 ≤ k2 ≤ ν(ε)/2, and of length not less than 1/2κ(ε).

Zε(q) will be the copy of Zε on S(q), q ∈ ω. Let

ωε =
{
q ∈ ω : |q| < ε−η,dist (q, ω \ {q}) > εβ

}
,

for η > 1, and β ∈ (0, 1), be the configuration of the scatterers not too

far away and not too close to other scatterers. For any choice of the

family of densities F ε
∆γ

(α), defined as above, and satisfying the analogue

of condition (4.14), we have the following result.

Proposition 4.4. For P-a. a. ω ∈ Ω we have

lim
ε→0

max
q∈ωε

γ∈Zε(q)

sup
f∈Fε

∆γ

‖µf,∆γ (M ε
∆γ

(·, ·)) − F (·, ·)‖∞ = 0,

lim
ε→0

max
q∈ωε

γ∈Zε(q)

sup
f∈Fε

γ

‖µf,∆γ (N±,ε
∆γ

(·)) − G(·)‖∞ = 0.

Proof. The proof is similar to the previous one, except that the

curves, being associated to the scatterers, have random positions. We

will only explain how to overcome this difficulty.
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Consider once again the lattice ZZε given by (4.15), and let Qk be the

square with sides parallel to the coordinate axes, with center ka(ε) and

with side length a(ε). Since a(ε) < ε the intersection Qk ∩ ωε contains at

most only one scatterer center of ωε. We denote by Pε′,q the probability

“under the condition” that there is in Qk a point of ωε′ with position q.

The correct notion is that of Palm measure (see, e.g., [24]). The measure

Pε′,q is then the distribution Pq conditioned to the event that there are

no points in a sphere of radius (ε′)β with center q.

Since for a Poisson state the distribution induced by Pq in IR2 \ {q}
coincides with the one induced by P, we can perform all the steps in the

proof of Th. 4.2. Namely, for any particular curve γ of the family Zε

associated to the scatterer with center q, we construct the analogue of

the quantities Rε,ε′
, introduced in the proof of Th. 4.2, which we denote

by the same symbol, where the expectation of M ε
Ik

is taken with respect

to Pε′,q. The distributions induced by this state and by P in the region

outside the sphere of center q and radius εβ coincide, so that we find,

exactly as in Th. 4.2, the inequality

(4.16) Pε′,q(‖
κ(ε)∑

k=1

Rε,ε′
(·, ·)‖∞ > εδ1) < e−ε−δ

.

The probability that there is a scatterer of ωε′ in Qk and that on some

curve of Zε, associated to it, the inequality inside the probability sign in

(4.16) is satisfied, is bounded by the integral of the right side of Ineq.

(4.16) over the measure ρdq on Qk. The result is bounded from above by

const a(ε)2ε−4e−ε−δ
. Summation over all points of Z̄Zε shows that we can

take the supremum over all scatterers of ωε′ . The assertion now follows

as for Th. 4.2.

We have constructed a dense family of curves both in free space and

on the spaces S(q) associated to the scatterers q ∈ ω, such that for P-a.a.

ω the distribution of the quantities τ ε, bε, and dε
± induced by a general

class of densities, is close to the limit. The curves have a distance o(ε)

from each other. In the next step we show that if we have two admissible

curves γ, γ′ at a distance o(ε), then the corresponding distributions of τ ε,

bε, and dε
± are close. The proof is tedious, but straightforward. We will

only state the result.
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Proposition 4.5. Let γ = {(q(ψ), ψ) : ψ ∈ ∆γ} and γ′ =

{(q′(ψ), ψ) : ψ ∈ ∆γ′} be two admissible curves, lying in Mω
ε , and such

that:

i) ∆γ′ ⊂ ∆γ;

ii) |∆γ \ ∆γ′ | < εη1, η1 > 1;

iii) sup
ψ∈∆γ′

|q(ψ) − q′(ψ)| < εη2, η2 > 1. Then, if, for some α ∈ (0, 1),

sup
f∈Fε

∆γ′ (α)

‖µf,∆γ′ (M
ε
∆γ′ (·, ·)) − F (·, ·)‖∞ < δ

sup
f∈Fε

∆γ′ (α)

‖µf,∆γ′ (N
±,ε
∆γ′ (·) − G(·)‖∞ < δ,

there are positive constants s and C such that

sup
f∈Fε

∆γ
(α)

‖µf,∆γ (M ε
∆γ

(·, ·)) − F (·, ·)‖∞ < C(δ + εs)

sup
f∈Fε

∆γ
(α)

‖µf,∆γ (N±,ε
∆γ

(·) − G(·)‖∞ < C(δ + εs)

We now come to a crucial point in the proof of the markovian limit,

for which we use the expansive properties of the discrete map T ω
ε . The

first step consists in showing that increasing curves are transformed into

increasing curves.

Proposition 4.6. Let ϕ(θ) be an increasing curve on S(q), q ∈ ω,

over which the map Tε is continuous, and let ϕ1(θ1) be its image under

Tε, belonging to S(q̄), q̄ ∈ ω. Then the image curve satisfies the equation

(4.17a)
dϕ1

dθ1

= 1 +
cos ϕ1

τ̄

ε
+

dθ

dψ
cos ϕ

,

where τ̄ is the free path, and ψ = θ + ϕ. Moreover if ψ1 = θ1 + ϕ1 is the

outgoing direction of the image curve, it follows that

(4.17b) −dψ1

dψ
= 1 +

2

cos ϕ1

( τ̄

ε
+

dθ

dψ
cos ϕ

)
.
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Proof. The proof is based on elementary geometric facts, and is left

to the reader.

We need to control how densities grow under the action of T ω
ε . This

is done by the following result.

Proposition 4.7. Let γ = {θ(ψ), ϕ(ψ)) : ψ ∈ ∆γ} ⊂ S(q̄), q̄ ∈ ω,

be an increasing curve of class C2 with bounded second derivative d2θ/dψ2
1,

and let f(ψ) be a positive function of class C1. Let γ1 = {θ1(ψ1), ϕ1(ψ1) :

ψ1 ∈ ∆γ1
} be a continuous curve in the image T ω

ε γ, over some scatterer at

a distance from q̄ larger than R > 2. If f1(ψ1) denotes the density induced

on γ1 by f , under the action of T ω
ε , then the following inequalities hold

sup
ψ1∈∆γ1

∣∣∣d
2θ1

dψ1

∣∣∣ < C1ε
[
1 + sup

ψ∈∆γ

∣∣∣d
2θ

dψ

∣∣∣
]

supψ1∈∆γ1
|f ′

1(ψ1)|
infψ1∈∆γ1

f1(ψ1)
≤ C2

u

[
1 +

supψ∈∆γ
|f ′(ψ)|

infψ∈∆γ f(ψ)

]
,

where u = inf
ψ1∈∆γ1

cos(ϕ1(ψ1)), and C1,2 are absolute constants.

Proof. The proof is simple, but somewhat tedious, and is based on

formulas (4.17a,b). The starting point is the equality

f1(ψ1) = −f(ψ)
dψ1

dψ

,

which is then manipulated by using (4.17a,b). We leave once again the

details to the reader.

Remark. By iterating the formula above for a continuous curve γn

in the n-th image of γ, it is not hard to see that the second derivates

d2θn/dψn are uniformly bounded in n, and that the following inequality

holds

supψn∈∆γn
|f ′

n(ψn)|
infψn∈∆γn

fn(ψn)
≤ (

C2

u
)n

[
1 +

supψ∈∆γ
|f ′(ψ)|

infψ∈∆γ f(ψ)

]
+

C

u
.
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We now come to the proof of the Markovian limit, which makes clear

how the Grad-Boltzmann limit allows to eliminate the discontinuities

of the dynamics which cause difficulties in the analysis of the Markov

partitions. Consider the class G of the densities f(q, ψ) such that

sup
|q|<ε−1−δ1

[maxψ∈S1 | ∂
∂ψ

f(q, ψ)|
minψ∈S1 f(q, ψ)

]
< ε−δ2 ,

where δ1, δ2 are positive small numbers. We define, for any interval ∆ of

directions coming out of q the sets

M ε
∆(x1, . . . , xn; y1, . . . , yn) =

= {ψ ∈ ∆ : τ (1) < x1, . . . , τ (n)
ε < xn, b(1)

ε < y1, . . . , b(n)
ε < yn},

where τ (j)
ε (q, ψ), b(j)

ε (q, ψ), j = 1, 2, . . . denotes the sequence of the free

paths and impact parameters, starting from (q, ψ). Consider once again

the lattice Z̄Zε(ω) defined above. Denoting as µf,∆, for ∆ ∈ Γε(q) the

normalization of the measure on ∆ with density f(q, ·), we can prove the

following result.

Theorem 4.8. Under the hypotheses above we have, for any n =

1, 2, . . . ,

(4.18)

lim
ε→0

sup
f∈G

max
q∈ZZε

∆∈Γε(q)

‖µf,∆(M ε
∆(x1, x2, . . . , xn; y1, y2, . . . , yn))−

−
n∏

i=1

F (xi, yi)‖∞ = 0.

Proof. For n = 1 the assertion follows from Prop. 4.4. We then

consider the case n = 2.

We first get rid of the trajectories that end up on scatterers which

are too close or too far, or too close to other scatterers, as well as of those

that are too close to the discontinuity points of the dynamics, i.e., such

that cos φ1 = 0. We make use of the fact that cos φ1 is controlled by d±
ε .

We set from now on δ = 1/(1 + log ε−1). For ∆ ∈ Γε(q) and δ3 ∈ (0, 1),

we denote as S∆ the set of the directions ψ ∈ ∆ such that

min(dε
+(q, ψ), dε

−(q, ψ)) > δ, τε(q, ψ) ∈ (ε−1+δ3 ,
1

2
ε−1−δ1),
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for which the trajectory ends up on a scatterer at a distance not less than

εβ2 , with β2 ∈ (0, 1), from the nearest one. Some tedious estimates, based

on the properties of the Poisson measure, give

lim
ε→0

sup
f∈G

max
q∈ZZε

∆∈Γε(q)

µf,∆(∆ \ S∆) = 0 .

Therefore it is enough to consider the set

M̄ ε
∆(x1, x2; y1, y2) = S∆ ∩ M ε

∆(x1, x2; y1, y2).

We redefine M̄ ε
∆(x1, y1) by excluding from it those ψ that end up on

scatterers with centers at a distance between x1 − 2ε and x1 from q ,

which give a negligible contribution. Let ∆ ∈ Γε(q), q ∈ Z̄Zε. For n = 1,

the image of M̄ ε
∆(x1, y1) corresponding to the first collision is made up of

a finite number of increasing curves, each of which lies in the space S(q′)

of the scatterer that is hit. We denote this family by Γ
(1)
∆ . We work with

the relations

ψ1 = ψ + 2 arcsin b − π, cos2 ϕ1 = 1 − b2.

The length of the curves is given by the variation of b, which is asymp-

totically equal, for small ε, to d+ + d−, hence larger than δ. Moreover,

since d± > δ implies b ∈ (−1 + δ, 1 − δ), we have b2 < (1 − δ)2 and

cos ϕ1 = 1 − b2 > 2δ(1 − δ) > δ, for small ε. Therefore the density does

not become too bad, and we can apply Prop. 4.3. Moreover by (4.17a,b)

we have that the curves of Γ
(1)
∆ have a slope near 1 (dϕ1/dθ1 = 1+O(ε)),

and can be approximated by segments of the family Zε.

Let γ1 ∈ Γ
(1)
∆ , ∆γ1

be the interval of variation of ψ1, γ−1
1 the counter-

image of γ1 with respect to T ω
ε , ∆̃γ1

the corresponding angular interval,

and f1 the density induced on γ1, under T ω
ε , by the density f(q, ψ) on ∆.

We have M̄ ε(x1, y1) = ∪
γ1∈Γ

(1)
∆

∆̃γ1
and therefore

(4.19) µf,∆(M̄ ε(x1, x2, y1, y2) ) =
∑

γ1∈Γ
(1)
∆

µf,∆(∆̃γ1
) µf1,∆γ1

(M̄ ε(x1, y1) ).

The curves γ1 obtained in this way are a little bit too many: for any

q ∈ Z̄Zε they of the order κ(ε)ε−1, so that on the whole they are of the
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order (κ(ε)ε−1)ε−1
. However each of them is close to one of the segments

of the family Zε(q), associated to some scatterer center q, so that we can

use a “deterministic” approximation. In fact the approximation result

(Prop. 4.5) holds for some segment of Zε, since the slope of the curves

γ1 is close to 1.

Therefore we get, P-almost everywhere,

lim
ε→0

max
γ1∈Γ

(1)
∆

‖µf1,∆γ1
(M̄ ε

∆γ1
(x2, y2) − F (x2, y2)‖∞ = 0.

Substituting into (4.19) we get (4.18) for n = 2.

The proof for n > 2 is similar.

Th. 4.8 proves the markovian limit, and what follows is a more or

less standard proof that, given an initial measure f(q, ψ) in the class G,

its evolution is given, in the limit ε → 0, by equation (4.4). To be precise,

consider an initial measure µε on M, expressed in the variables in which

the configuration ω is fixed, with density f(εq, ψ), with f ∈ G, and let

µε,ω
t denote its evolution at the time ε−1t. Then the following theorem

holds.

Theorem 4.9. For P-q.o. ω we have in the limit ε → 0

µ̂ε,ω
t (Λ × B) =: ε2µε,ω

t (ε−1Λ × B) →
∫

Λ×B

f(q, v, t)dq dv,

where f(q, v, t) is the unique solution of the equation (4.4) with initial

data f .

Proof. The main point of the proof is the explicit construction of the

Green function, based on the knowledge of the limiting Markov process.

With the help of some obvious approximations one easily gets the result.

The details are left to the reader.

The condition that the initial function is in G can be removed, since

for any regular function the set of the points at which the condition that

defines the class G is violated has a vanishing measure as ε → 0.
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4.2 – Kinetic limits for stochastic systems

In recent years much work has been devoted to the study of kinetic

limits for systems with stochastic evolution, which lead to the so-called

“reaction-diffusion” equations. The interest of such equations lies in the

fact that they simulate the collective behavior of systems made up of a

large number of “microscopic” components which move diffusively, and

are subject to “rare” interactions, mostly in the form of creation (“birth”)

and annihilation (“death”) phenomena. Equations of such type arise

in studying the evolution of chemical reactions, and of other systems

(biological, economical, etc.).

We will consider here only particle systems. A reaction-diffusion

equation for particles of one species is written in terms of the particle

density ρ, a function of time and space, and is of the general form

(4.20)
∂

∂t
ρ =

1

2
∆ρ + F (ρ),

where ∆ denotes the laplacian. Equations of this type have been inten-

sively studied with the classical methods of analysis, and it was shown

that they exhibit a whole series of interesting phenomena, the best known

of which being perhaps the appearance of stable travelling waves.

We will consider here the simplest possible case, that of a one-di-

mensional model consisting of a stochastic lattice gas made of free (i.e.

evolving independently) particles which move on the lattice ZZ as a first

neighbor symmetric random walk (p = q = 1/2), and interact rarely and

locally by a birth and death process.

The free generator, correponding to the free motion, is

L0f(η) =
1

2

∑

|x−y|=1

η(x)
(
f(ηx,y) − f(η)

)
.

Let ε, as always, be the space rescaling parameter. The interaction works

on a time scale such that the free motion allows a particle to move a finite

macroscopic distance, hence over times of the order ε−2. We write down

the corresponding (unscaled) generator as

(Lcf)(η) =
1

2

∑

x∈bz

q+(η(x))[f(η(x,+)) − f(η)] + q−(η(x))[f(η(x,−)) − f(η)],
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where η(x,±)(y) = η(y) for x .= y, and ηx±(x) = η(y) ± 1. The functions

q± are positive and give the birth and death intensities of the particles at

a given site. In order to have finite densities it is convenient to choose q±
in such a way that, for large n, q+(n) < q−(n). We suppose for simplicity

that q+ and q− are positive polynomials, the degree of q− being larger

than that of q+.

The full generator of the process is then written as ε−2L0 +Lc, which

expresses the fact that the limit ε → 0 is a kinetic limit. As for the

Boltzmann equation, one wants to show that in the limit the particle

system is in a local equilibrum free gas state, i.e., the distribution around

any macroscopic point is Poisson with parameter ρt(εx), where ρt is the

solution of a reaction-diffusion equation.

The fundamental ideas of the proof are similar to the ones used by

Lanford in deducing the Boltzmann equation, and can be seen here at

work in a framework that is technically much simpler. We will only give

an outline of the proof, and refer the reader to the book [11] for the

details.

The first problem to be solved is that of the existence of the process,

even with a finite number of (initial) particles. In fact the situation here

differs from that of the model studied in par. 2.2.6, in that the particle

number is not a constant of the motion, and the birth process might

generate an infinite number of particles in a finite time.

The state space is Ω = INZZ. In order to prove the existence of the

process with a finite number of initial particles (which is a jump process),

we consider the “approximate” generator LA
c , obtained by replacing in the

full generator Lc the birth polynomial q+ with the function

q
(A)
+ (n) =

{
q+(n) n < A

0 otherwise.

The proof of the existence of the process with generator LA
c is easy, since

the particle number is controlled by the fact that, if the particle number

exceeds A at some site, only the death operator acts, and the particle

number can only decrease. As usual Ω0 = {η ∈ Ω :
∑

x η(x) < ∞} is the

state space of the process with a finite number of particles. The following

proposition holds.

Proposition 4.10. Let η ∈ Ω0, and denote by IPε,A
η the evolution
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law associated to the process with generator LA
c + ε−2L0. Then IPε,A

η con-

verges weakly, as A → ∞ to the law IPε
η of a jump process on Ω0 with

generator

(4.21) Lε = ε−2L0 + Lc.

Proof. The proof is based on a correlation function method. The

key point consists in the proof that, for any ε, T > 0, the following

inequality holds

(4.22) IEε,A
η

[
sup

0≤t≤T

∑

x∈ZZ

η(x))
]

< C,

where C is a constant independent of A, and IEε,A
η denotes expectation

with respect to the law of the process with generator ε−2L0 + LA
c . Ineq.

(4.22) follows from the analysis of the integral equation

(4.23)

uε,A(ξ, t|η) =
∑

ξ′
P ε

t (ξ→ξ′)uε,A(ξ′, 0|η)+

+

∫ t

0

ds
∑

ξ′
P ε

t−s(ξ→ξ′)IEε,A
η (LA

c D(ξ′, ηs)),

where the correlation functions uε,A(ξ, t|η) are the expected values of the

polynomials D as in (1.21a,b), with respect to the evolution at time t

(according to the full generator (4.21) ) of the initial measure, which is

atomic with support η at time 0. The derivation of (4.23) is done as in

§ 1.2.1, by introducing the process ξ on Ω0, evolving with the free gener-

atore L0. Let IE denote the expectation with respect to the independent

joint process (ξ, η). One finds, as in the derivation of (1.35) that the

contribution of L0 cancels:

d

ds
IE(D(ξt−s, ηs)) = IE

(
LA

c D(ξt−s, ηs)
)
,

so that by integrating in s one gets (4.23). The derivation of (4.22)

from (4.23) makes an essential use of the properties of the transition

probabilities P ε
t of the free process. We refer for this point to [11].
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The next step is the proof of the existence of the process on Ω, i.e.,

of the infinite particle process. One reasons in analogy with § 1.2.2.,

by introducing the truncated configurations η(N), and one proves the

following proposition.

Proposition 4.11. If the initial configuration η satisfies Ineq.

(1.22) for some n, c, then the following limit exists

(4.24) uε(ξ, t|η) = lim
N→∞

uε(ξ, t|η(N)).

For the proof, which is straightforward, we refer once again to [11].

Observe that one can also prove, in analogy with what we have seen

for the free gas , that the limit (4.24) is the expectation of D(ξ, ηt) with

respect to some transition probability, which defines the limiting process.

One can also see that the corresponding measure has support on the

configurations which satisfy Ineq. (1.22) for some c and n. This concludes

the proof of the existence of the infinite particle process with generator

(4.21).

Consider now an initial local equilibrium measure µε, i.e., a mea-

sure for which the variables η(x) are Poisson distributed with parameter

ρ0(εx), independently for all x ∈ ZZ. We assume also that ρ0 is uniformly

bounded and of class C2. The correlation functions relative to the initial

measure µε are

uε(ξ, t|µε) = IEµε(D(ξ, ηt)).

It is not hard to see that they satisfy an equation analogue to eq. (4.23):

(4.25)

uε(ξ, t|µε) =
∑

ξ′
P ε

t (ξ→ξ′)uε(ξ, 0|µε)+

+

∫ t

0

∑

ξ′
P ε

t−s(ξ→ξ′)IEµε(LcD(ξ′, ηs)) ,

where P ε
t is the free transition probability at the time ε−2t.

Equation (4.25) can be understood as the BBGKY hierarchy, written

in a perturbative fashion, with respect to the fast process with generator

ε−2L0.
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The method of the proof of the final result is, as we said, analogous

to the one used by Lanford in deriving the Boltzmann equation, with

the important difference that in this case we can prove the propagation

of chaos, thanks to the fact that the free stochastic motion randomizes

much more than the uniform motion of the classical free particles.

We introduce, as in § 1.2.1 the n-particle subspace Ω(n) = {η ∈ Ω0 :∑
x η(x) = n}, and the subspace Ωn,L = {η ∈ Ω(n) : η(x) = 0 for |x| > L}.

The final result is expressed by the following theorem.

Theorem 4.12. Under the hypotheses above we have, for any

L, T > 0 and for any integer n

lim
ε→0

sup
ξ∈Ωn,L

sup
0≤t≤T

|U ε(ξ, t|µε) −
∏

x∈ZZ

ρt(εx)|ξ(x)|| = 0,

where ρt is the unique solution of the equation (4.20) with initial data ρ0

and the function F is given by

F (ρ) = F+(ρ) − F−(ρ), F±(ρ) = IEρq±(·),

IEρ denoting expectation with respect to the Poisson measure with param-

eter ρ.

Proof. We will only give a sketch of the proof. The first step consists

in proving that the functions uε are bounded for any time. More precisely

one proves the inequality

uε(ξ, t|µε) ≤ C(n, t), ξ ∈ Ω(n).

The central point is the proof of equicontinuity of the rescaled func-

tions uε. Let x = Π(x1, . . . , xn), where Π denotes symmetrization, and

let ξ = [ε−1x] be the corresponding “microscopic” configuration, with

points [ε−1xi], where [·] denotes as usual the integer part. We set

γε
t (x) = uε([ε−1x], t|µε).

The following equicontinuity result holds.
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Proposition 4.13. Let T > 0 be fixed. For any ζ > 0 one finds

some δ > 0 such that

sup
|t−t′|<δ

t,t′≤T

sup
|xi−x′

i
|<δ

i=1,... ,n

|γε
t (x) − γε

t (x
′)| ≤ ζ.

Proof. Equicontinuity is proved by showing that both members of

the BBGKY equation (4.25) are equicontinuous. To do that it is enough,

roughly speaking, to make use of the equicontinuity of free diffusion, i.e.,

of the equicontinuity in x of the functions

gε(x, t) =
∑

z∈ZZ

P ε
t ([ε−1x]→z)f(z),

which, as it is seen by approximating the transition probabilities by their

asymptotic gaussian expression (by the local central limit theorem), is

valid for any function f which grows not faster than a power of |z|.
This fact, together with the upper estimate of IEµε(LcD(ξ, ηs)), which

can be obtained from the corresponding estimate of the functions uε,

completes the proof.

Equicontinuity garantees the existence of a limit for a subsequence

{εn}, which we denote as γt(x). It is not hard to see that γt(x) satisfies

some limiting equation. To find it out one separates the contribution

of LcD(ξ′, ηs) for the ξ′’s with multiplicity not exceeding 1 at all sites

(i.e., such that ξ′(x) ≤ 1), from the contribution of the other ξ′’s. The

contribution of the latter is of higher order in ε thanks to the kernel,

P ε(ξ→ξ′), which gives a probability of higher order to multiple occupation

of a site in ξ′. Using once again the estimates of the functions uε it is not

hard to see that we get a vanishing contribution in the limit ε → 0.

If ξ has multiplicity at most 1 at all sites, a simple computation shows

that

LcD(ξ, η) =
∑

x:ξ(x)=1

D(ξ \ ξ(x), η)( q+(η(x)) − q−(η(x)) ),

where ξ(x) is the configuration of a single particle at x. By expanding the

polynomials q± in terms of the Poisson polynomials (introduced in eq.
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(1.21a))

q± =
∑

-

a-
±D-,

where 5 does not of course exceed the order of the polynomial on the left,

and introducing the heat kernel, Gt, we get the equation

γt(x) =
n∏

i=1

[

∫
Gt(xi − y)ρ0(y)dy]+

∫ t

0

ds

∫ n∏

i=1

[Gt−s(xi − x′
i)ρs(x

′
i)dx′

i]
n∑

j=1

∑

-

{(A+
j,-γs)(x

′) − (A−
j,-γs)(x

′)},

where we use the notation

(A±
j,-γs)(x) = a±

- γs(xi,-),

and xi,- denotes symmetrization of the n-uple (x1, . . ., xi, . . ., xi, xi+1, . . . ,

. . . , xn), the value xi being repeated 5 times.

By a simple substitution one checks that the factorized solution (cor-

responding to propagation of chaos) γ̄t(x) =
n∏

i=1
ρt(xi) satisfies the lim-

iting equation with initial data
n∏

i=1
ρ0(xi). In particular for n = 1 one

obtains that ρt is a solution of the reaction-diffusion equation (4.20).

One is left with the proof of uniqueness of the solution of the limit-

ing hierarchy, which implies convergence to the limit not only for subse-

quences, but for ε → 0. Uniqueness is proved for small times, by introduc-

ing suitable seminorms in the space of the limiting correlation functions

γ, and estimating the action of the operator that appears on the right

in (4.20). The result is then extended to all times by the semigroup

property.

Acknowledgements

The author is grateful to C. Marchioro and A. Pellegrinotti for fruitful

discussions.



106 C. BOLDRIGHINI

REFERENCES

[1] P.M. Bleher: J. Stat. Phys., 66 (1992), 315.

[2] P. Billingseley: Convergence of Probability measures, John Wiley & sons, 1975.

[3] C. Boldrighini – L.A. Bunimovich – Ya.G. Sinai: J. Stat.Phys.,32(1983), 477.

[4] C. Boldrighini – R.L. Dobrushin – Yu.M. Sukhov: Time evolution for some
degenerate models of the evolution of infinite particle systems, Published by the
University of Camerino, 1980.

[5] C. Boldrighini – R.L. Dobrushin – Yu.M. Sukhov: J. Stat. Phys., 31, 577.

[6] C. Boldrighini – D. Wick: J. Stat. Phys, 52 (1988), 1069.

[7] C. Boldrighini – A. Pellegrinotti – L. Triolo: J. Stat. Phys.,30 (1983), 123.

[8] L.A. Bunimovich – Ya.G. Sinai: Comm. Math. Phys., 78 (1980), 247.

[9] L.A. Bunimovich – Ya.G. Sinai: Comm. Math. Phys., 78 (1981), 479-497.

[10] C. Cercignani: The Boltzmann Equation and its applications, Springer 1988.

[11] A. De Masi – E. Presutti: Mathematical methods for Hydrodynamic Limits,
Lecture Notes in Mathematics, Springer, Berlin, Heidelerg, 1991.

[12] A. De Masi – N. Ianiro – A.Pellegrinotti – E. Presutti: A survey of the
hydrodynamical behavior of many-particle systems, in: Nonequilibrium Phenom-
ena. II. From stochastics to hydrodynamics, ed. by J.L.Lebowitz, E.W.Montroll,
North-Holland, Amsterdam 1984, 123-194.

[13] R.J. Di Perna – P. L. Lions: Ann. Math., 130 (1989), 321.

[14] R.L. Dobrushin: Funct. Anal. its Appl., 3 (1969), 27.

[15] R.L. Dobrushin: Caricatures of hydrodynamics, in: IXth International Congress
on Mathematical Physics, 17-27 July, 1988, Swansea, Wales (B. Simon, A. Tru-
man and I.M. Davies, Eds). Adam Higler, Amsterdam et al (1989), 117-132.

[16] R.L. Dobrushin – J. Fritz: Comm. Math. Phys., 55 (1977), 275.

[17] R.L. Dobrushin – R.Siegmund-Schultze: Math. Nachr., 105 (1982), 199.

[18] R.L. Dobrushin – Ya.G Sinai – Yu. M. Sukhov: Dynamical systems of statis-
tical mechanics and kinetic equations, Encyclopaedia of Mathematical Sciences,
vol.2, ch. 10. Dynamical Systems, edited by Ya.G.Sinai, Spinger, Berlin, Heidel-
berg (1989).

[19] G. Gallavotti: Rigorous theory of the Boltzmann equation for the Lorentz gas,
nota interna n. 358, Preprint of Istituto di Fisica, Univ. of Rome (1972).

[20] H.O. Georgii: Prob. Theory Rel. Fields, 99 (1994), 171.

[21] H.O. Georgii: Gibbs Measures and Phase Transitions, Walter de Gruyten,
Berlin, 1988.



Macroscopic limits of microscopic systems 107

[22] I.I. Gihman – A.V. Skorohod: The Theory of Stochastic Processes, vol. I,
Springer Verlag, Berlin, 1974.

[23] J. Gleick: Chaos, making a new science, Heinemann, London, 1987.

[24] O. Kallenberg: Random measures, Academic Press, 1976.
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