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Orthogonal polynomials and Stieltjes functions:

the Laguerre-Hahn case

E. PRIANES – F. MARCELLÁN

Riassunto: In questo lavoro consideriamo i polinomi ortogonali della cosiddetta
classe di Laguerre-Hahn. Questo significa che la funzione di Stieltjes associata alla
corrispondente successione dei momenti soddisfa un’equazione differenziale di Riccati,
con coefficienti polinomiali. Introduciamo il concetto di “ordine della classe’ per una
famiglia di polinomi di Laguerre-Hahn. Inoltre, troviamo l’ordine della classe per alcune
perturbazioni finite di tale famiglia di polinomi. Infine vengono presentati alcuni esempi
relativi a polinomi classici.

Abstract: In this paper we consider orthogonal polynomials of the so-called La-
guerre-Hahn class. This means that the Stieltjes function associated with the corre-
sponding moment sequence satisfies a Riccati differential equation with polynomial co-
efficients. We introduce the concept of the order of the class for a family of Laguerre-
Hahn polynomials. Moreover, we find the order of the class for some finite perturbations
of such a family of polynomials. Finally, some examples related to classical polynomials
are given.

1 – Introduction

The study of finite perturbations of orthogonal polynomials was star-

ted by Chihara in [2]. He introduced the idea of modifying, by means of

a translation, a parameter of the recurrence relation which satisfies the
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sequence of polynomials orthogonal with respect to a certain measure

with support in the real line. Basically, the properties of algebraic type

of the new polynomials have been studied as well as the distribution of

their zeros. Extensions of the concept of co-recursivity are carried out in

[6], [10] and [11].

In [15] a physical motivation for such perturbations is presented. Let

{Pn}n≥0 be a sequence of monic orthogonal polynomials (S.M.O.P.) with

respect to a positive definite moment functional u and satisfying the

recurrence relation

(1.1)
Pn+2(x) = (x − βn+1)Pn+1(x) − γn+1Pn(x) , n ≥ 0 ,

P1(x) = x − β0 , P0(x) = 1 .

Let us consider the following modification in the recurrence relation:

P ∗
n+2(x) = (x − βn+1)P

∗
n+1(x) − γn+1P

∗
n(x) , n ≥ 0 ,

P ∗
1 (x) = αx − β0 − µ α .= 0 , P ∗

0 (x) = 1

i.e. we modify the initial condition for P1 in (1.1).

This new family of orthogonal polynomials {P ∗
n}n≥0 is called co-re-

cursive polynomials in [15], but for us, co-recursive will mean the case

α = 1.

The polynomials P ∗
n are orthogonal with respect to a functional u∗

which is positive-definite for α > 0 and quasi-definite for α < 0 and some

properties (as separation theorems for their zeros, the true interval of

orthogonality (ξ∗
1 , η∗

1), and so on) can be determined from those of the

Pn(x). An algebraic approach for such problems is presented in [4].

Comparing the explicit form of the representation in continued frac-

tions of S(u)(z) and S(u∗)(z), the Stieltjes functions corresponding to u

and u∗ respectively, we have

S(u∗)(z) =
−α

(α − 1)z − µ − 1
S(u)(z)

and for α > 0 we may write the orthogonality relation for the P ∗
n(x) in

the explicit form

∫ η∗
1

ξ∗
1

P ∗
n(x)P ∗

m(x)dΓ∗(x) = αγ1 . . . γn−1δnm for n, m = 0, 1, 2, . . .
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where Γ∗(x) is a distribution which can be determined from the Stieltjes

inversion formula, see [3] page 90.

We consider the Tchebichev polynomials of the second kind Un(x),

which satisfy the recurrence relation (1.1), with βn = 0, n ≥ 0, and

γn = 1/4, n ≥ 1.

Let u∗ be the functional corresponding to the co-recursive orthogo-

nal polynomials U∗
n(x). If u∗ is positive-definite then the corresponding

distribution function has a continuous spectrum contained in [−1, 1] and

possibly a point spectrum consisting of at most two points.

In the context of the chain model in solid-state physics, the co-

recursive Tchebichev polynomials may represent the effect (described by

the parameters α and µ) of an atom placed on a surface, which itself

corresponds to the constant chain, βn = 0, n ≥ 0, and γn = 1/4, n ≥ 1.

Co-recursive orthogonal polynomials occur in scattering theory, in

particular with the L2- technique, where a physical interpretation can be

given for their spectral properties.

Confining to the Schrodinger equation

− h2

2m

d2

dr2
Ψ + σe(1/2)λrΨ = EΨ ,

the L2- functions are Φn(r) = [λr/(n + 1)]L(1)
n (λr)e(1/2)λr, where L(1)

n (x)

is the Laguerre polynomial and Ψ =
∑

n≥0 Rn(E)Φn(r). Defining

x = [E − λ2/8]/[E + λ2/8], Rn(E) is proportional to the co-recursive

Tchebichev polynomials, with α = 1+ sσ
λ3 and µ = α− 1. Notice that the

spectrum of the Hamiltonian for this model is reflected by the spectrum of

Γ∗(x), besides the continuous spectrum [−1, 1], a discrete spectral point

appears if −4σ/λ3 > 1/2, −4σ/λ3 .= 2, which corresponds to a bound

state, (see [7]).

A study of analytic properties of the polynomials in a more general

frame is carried out in [12] and [13].

We are interested in differential properties of certain perturbations

of families of orthogonal polynomials belonging to the Laguerre-Hahn

class. Such a kind of orthogonal polynomials have been introduced in [5].

Further, in [1] a complete description of the so-called class of order 0 was

presented. There, finite perturbations of classical orthogonal polynomials

appear in a natural way. In our work, we continue these two preceding

contributions.
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The structure of this work is the following:

In Section 2 we indicate the notations and basic definitions which be

used throughout it. In Section 3 the concept of the Laguerre-Hahn class

is defined. The main result is the Theorem 3.1., where a characterization

of the family of the Laguerre-Hahn class is presented. We also introduce

the concept of order of the class. Section 4 is dedicated to the study of

certain finite perturbations of polynomials of the Laguerre-Hahn class.

A special emphasis for the co-recursive polynomials is given. To do this,

we analyze the order of the class, obtaining boundaries for it. Section 5

shows some examples related to co-recursive polynomials of the associated

polynomials of the classical ones (Hermite, Laguerre, Jacobi, Bessel).

2 – Preliminaries and notations

Let u be a linear functional on the linear space P of polynomials with

complex coefficients and let S(u)(z) be its Stieltjes function defined by:

(2.1) S(u)(z) = −
∑

n≥0

(u)n/zn+1

where (u)n = 〈u, xn〉, n ≥ 0, are the moments of u. By a convention, we

will suppose that (u)0 = 1.

Let P′ be the algebraic dual space of P.

We consider the isomorphism F : ∆ → given as follows:

For u =
∑

n≥0(u)n
(−1)n

n!
Dnδ, F (u)(z) =

∑
n≥0(u)nzn.

Then, S(u)(z) = −z−1F (u)(z−1) and S(pu)(z) = p(z)S(u)(z) +

(uθ0p)(z) where p(z) is a polynomial and 〈pu, q〉 = 〈u, pq〉 for each poly-

nomial q(z).

We introduce

(up)(z) =
n∑

m=0

( n∑

j=m

aj(u)j−m

)
zm , p(z) =

n∑

j=0

ajz
j

(θ0p)(z) =
p(z) − p(0)

z
.

We define the functional x−1u and the product of two functionals by

〈x−1u, p〉 = 〈u, θ0p〉 ; 〈uv, p〉 = 〈u, vp〉
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Then it is straightforward to prove that

i) x(x−1u) = u

ii) x−1(xu) = u − (u)0δ(2.2)

iii) x−2(x2u) = x−1(x−1u) = u − (u)0δ + (u)1Dδ .

We give the following previous results, (see [5], as well as [11] for a

more comprehensive approach).

Lemma 2.1. ∀p, q ∈ P and ∀u, v ∈ P′, we have

i) x−1(pu) + 〈u, θ0p〉δ = p(x−1u)

ii) q(uθ0p) − uθ0(qp) = −θ0[(pu)q]

iii) θ0(up) = u(θ0p)

iv) u(pq) = (pu)q + xq(uθ0p)

v) p(uv) = (pv)u + x(vθ0p)u.

In terms of the Stieltjes functions,

Lemma 2.2. ∀p ∈ P and ∀u, v ∈ P′, we have:

S′(u)(z) = S(Du)(z)

S(uv)(z) = −zS(u)(z)S(v)(z)

S(x−1u)(z) = (1/z)S(u)(z)

(1/z)(uθ0p)(z) = (1/z2)S(〈u, θ0p〉d) + (uθ2
0p)(z).

Definition 2.1. Let {Pn}n≥0 be a S.M.O.P. with respect to a

quasi-definite functional u, (see [3]). The sequence {P (1)
n }n≥0 defined by

P (1)
n (x) = 〈uξ ,

Pn+1(x) − Pn+1(ξ)

x − ξ
〉 , n ≥ 0

is called the associated sequence of first order for the sequence {Pn}n≥0.
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We shall note by u(1) the normalized functional, [(u(1))0 = 1], such

that the sequence {P (1)
n }n≥0 is the corresponding S.M.O.P.

Theorem 2.1. Let u be a linear functional. Then

(2.3) γ1u
(1) = −x2u−1 .

In a general way, the associated sequence of order r ∈ N , {P (r)
n }n≥0

is defined by the recurrence relation:

(2.4)
P

(r)
n+2(x) = (x − βn+r+1)P

(r)
n+1(x) − γn+r+1P

(r)
n (x) , n ≥ 0 ,

P
(r)
1 (x) = x − βr , P

(r)
0 (x) = 1 .

This corresponds to a shifted perturbation in the coefficients of the

three-term recurrence relation.

3 – The Laguerre-Hahn class

Definition 3.1. A linear functional u on the linear space P is

said to be of the Laguerre-Hahn class if the Stieltjes function satisfies a

Riccati equation:

(3.1) Φ(z)S′(u)(z) = B(z)S2(u)(z) + C(z)S(u)(z) + D(z)

where Φ(z), B(z), C(z) and D(z) are polynomials with complex coeffi-

cients.
[
Φ(z) .= 0, B(z) .= 0 and D(z) = [(Du)θ0Φ](z) + (uθ0C)(z) −

(u2θ2
0B)(z)

]
.

Remark. When B(z) = 0, the Stieltjes function satisfies a linear

differential equation Φ(z)S′(u)(z) = C(z)S(u)(z) + D(z) and the corre-

sponding polynomials are called affine Laguerre-Hahn polynomials. More

precisely, they are the semiclassical polynomials, (see [11]).

Definition 3.2. Let {Pn}n≥0 be a S.M.O.P. with respect to a quasi-

definite linear functional. {Pn}n≥0 belongs to the Laguerre-Hahn class if

u is a Laguerre-Hahn linear functional.
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Theorem 3.1. Let u be a quasi-definite and normalized functional

[(u)0 = 1] and let {Pn}n≥0 be the corresponding S.M.O.P. The following

propositions are equivalent:

a) u is a Laguerre-Hahn functional.

b) u verifies the functional equation D[Φu]+Ψu+B(x−1u2) = 0, where

Φ(x), B(x) and C(x) are the polynomials defined in (3.1), and

(3.2) Ψ(x) = −[Φ′(x) + C(x)] .

c) u satisfies the functional equation D[xΦu] + (xΨ − Φ)u + Bu2 = 0

with the additional condition 〈u, Ψ〉+ 〈u2, θ0B〉 = 0 where Φ(x), Ψ(x)

and B(x) are the polynomials defined in b).

d) Each polynomial Pn(x), n ≥ 0, verifies the so-called structural rela-

tion

ΦP ′
n+1(x) − BP (1)

n (x) =
n+d∑

µ=n−s

θn,µPµ(x) , n ≥ s + 1

where Φ(x) and B(x) are the polynomials defined in a) and {P (1)
n }n≥0

the sequence of associated orthogonal polynomials of first order rel-

ative to {Pn}n≥0, where t = deg Φ, p = deg Ψ ≥ 1, r = degB,

s = max(p − 1, d − 2) and d = max(t, r).

Proof. a)⇒b)

Using Lemma 2.2, in terms of the F (z) (3.1) becomes

(3.3)

− (1/z)F [ΦDu](1/z) − [(Du)θ0Φ](z) =

= B(z)(1/z2)F (u2)(1/z) − (1/z)C(z)F (u)(1/z) + D(z)−

− (1/z)F [ΦDu](1/z) − [(Du)θ0Φ](z) =

= (1/z2)F (Bu2)(1/z) + (1/z)(u2θ0B)(z)−

− (1/z)F (Cu)(1/z) − (uθ0C)(z) + D(z) .

Moreover D(uf) = (Du)f + uDf + uθ0f , ∀u ∈ P′ and ∀f ∈ P.
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Then
D(uθ0Φ) = (Du)θ0Φ + uD(θ0Φ) + uθ2

0Φ =

= (Du)θ0Φ + u[D(θ0Φ) + θ2
0Φ]

but

D(θ0Φ) − θ2
0Φ = θ0Φ

′

so

D(uθ0Φ) = (Du)θ0Φ + uθ0Φ
′

and

−[(Du)θ0Φ](z) = −D(uθ0Φ)(z) + (uθ0Φ
′)(z) .

Substituting these equations in (3.3)

(1/z)F [−D(Φu) + (Φ′ + C)u − x−1(Bu2) − 〈u2 , θ0B〉δ](1/z)+

+ [−D(uθ0Φ) + uθ0(Φ
′ + C) − (u2θ2

0B) − D](z) = 0 .

This means that the coefficients of the negative powers of z are zero, as

well as

D(z) = −D(uθ0Φ) + uθ0(Φ
′ + C) − (u2θ2

0B) .

Then −D(Φu) + (Φ′ + C)u − x−1(Bu2) − 〈u2 , θ0B〉δ = 0 and using

Lemma 2.1
D(Φu) − (Φ′ + C)u + B(x−1u2) = 0

Ψ = −(Φ′ + C) .

b)⇒ c)

Applying Lemma 2.1 to D[Φu] + Ψu + B(x−1u2) = 0 we deduce

D[Φu] + Ψu + x−1(Bu2) + 〈u2 , θ0B〉δ = 0 .

Finally, premultiplying by x on the above identity the result follows.

c)⇒ d)

Beginning with the expression ΦP ′
n+1−uθ0(BPn+1) which is a polyno-

mial of degree n+d then there exist complex numbers {θn,j}, 0 ≤ j ≤ n+d

such that

ΦP ′
n+1 − uθ0(BPn+1) =

n+d∑

j=0

θn,jPj .
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Multiplying by Pm m = 0, 1, 2, . . . , n + d and applying u

(3.4) 〈u, ΦP ′
n+1Pm〉 − 〈u, Pm(uθ0(BPn+1))〉 = θn,m〈u, P 2

m〉 .

On the other hand, if we apply xD[Φu] + xΨu + Bu2 = 0 to θ0(PmPn+1)

we have

(3.5)

− 〈u, Φ(PmPn+1)
′〉 + 〈u, ΨPmPn+1〉 + 〈u, uθ0BPmPn+1〉 = 0

〈u, ΦP ′
n+1Pm〉 = 〈u, ΨPmPn+1〉 + 〈u, uθ0BPmPn+1〉 − 〈u, ΦP ′

mPn+1〉 ,

0 ≤ m ≤ n + d .

Eliminating 〈u, ΦP ′
n+1Pm〉 from (3.4) and (3.5) we obtain

(3.6)

〈u, (ΨPm − ΦP ′
m)Pn+1〉 − 〈u, Pm[uθ0(BPn+1)]−

− uθ0(BPmPn+1)〉 = θn,m〈u, P 2
m〉

〈u, (ΨPm − ΦP ′
m)Pn+1〉 + 〈u, B[uθ0Pm]Pn+1〉 =

= θn,m〈u, P 2
m〉 ; 0 ≤ m ≤ n + d .

Studying the degrees of the polynomials concerned in (3.6) and bear-

ing in mind that {Pn(x)}n≥0 is orthogonal with respect to u, we obtain

that θn,m = 0 for n ≥ s + 1 and m ≥ n − s − 1, then

ΦP ′
n+1 − uθ0(BPn+1) =

n+d∑

j=n−s

θn,jPj , n ≥ s + 1 .

Using Lemma 2.1 and Definition 2.1 the result follows.

d)⇒a)

Let us consider the linear functional:

v = D[Φu] + B(x−1u2) + (
s+1∑

j=0

Ajx
j)u
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with Aj ∈ C, j = 0, 1, 2, . . . , s + 1; it is:

〈v, Pn〉 = 〈u, ΦP ′
n + BP

(1)
n−1〉 + 〈(

s+1∑

j=0

Ajx
j)u , Pn〉 =

− 〈u ,
n+d−1∑

j=n−s−1

θn,jPj〉 + 〈u ,
( s+1∑

j=0

Ajx
j
)
Pn〉 = 0

if n ≥ s+2 , (j ≥ 1), due to the orthogonality of {Pn(x)}n≥0 with respect

to u.

If we want 〈v, Pn〉 = 0 for any n, we shall have to make it 0 for n =

0, 1, 2, . . . , s+1 too, determining the coefficients Aj , j = 0, 1, 2, . . . , s+1.

These coefficients remain determined in a unique way.

There exists a polynomial Ψ(x) =
s+1∑
j=0

Ajx
j such that 〈v , Pn〉 = 0

∀n ≥ 0. As a consequence v vanishes. This leads to D[Φu] + B(x−1u2) +

Ψu = 0 or, equivalently, ΦDu − Cu + B(x−1u2) = 0. Applying F , eva-

luating it in (1/z) and taking into account Lemmas 2.1 and 2.2

− Φ(z)zS′(u)(z) − z[(Du)θ0Φ](z) + zC(z)S(u)(z) + z(uθ0C)(z)+

+ B(z)(1/z)F (u2)(1/z) − z[(x−1u2)θ0B] = 0 .

Dividing by z and bearing in mind (x−1u)B = uθ0B, ∀u ∈ P ′ and ∀B ∈ P

Φ(z)S′(u)(z) = B(z)S2(u)(z) + C(z)S(u)(z) + D(z)

with

D(z) = −[(Du)θ0Φ](z) + (uθ0C)(z) − (u2θ2
0B)(z) .

In the characterization (3.2), we want notice that there doesn’t exist

uniqueness in the representation. In fact it is enough to multiply by any

polynomial both members of the equation. On the other hand, uniqueness

is obtained by imposing a minimality condition as we will discuss below

Theorem 3.2. Let u be a quasi-definite linear functional verifying

(3.7) D[Φu] + Ψu + B(x−1u2) = 0
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where Φ(x) ,Ψ(x) and B(x) are the polynomials defined in Theorem 3.1.

We define d = max(t, r) and s = max(p − 1, d − 2).

The Laguerre-Hahn functional u is said to be of class s if and only if

∏

a∈Zφ

{|〈u , Ψa〉 + 〈u2 , θ0Ba〉| + |ra| + |sa|} .= 0

where ZΦ is the set of zeros of Φ(x). The polynomials Φa, Ψa and Ba as

well as the numbers ra and sa are defined by the expressions

(3.8)

Φ(x) = (x − a)Φa(x) ,

Ψ(x) + Φa(x) = (x − a)Ψa(x) + ra ,

B(x) = (x − a)Ba(x) + sa .

Proof. From (3.2) and (3.8) we have (x − a)[D(Φau) + Ψau +

Ba(x
−1u2)] + rau + sa(x

−1u2) = 0. Multiplying by (x − a)−1

D(Φau) + Ψau + Ba(x
−1u2) − 〈D(Φau) + Ψau + Ba(x

−1u2) , 1〉δa+

+ (x − a)−1rau + (x − a)−1sa(x
−1u2) = 0 .

If |〈Ψau + Ba(x
−1u2) , 1〉| + |ra| + |sa| = 0 holds for a ∈ ZΦ, then

D(Φau) + Ψau + Ba(x
−1u2) = 0 is satisfied and u is a linear functional of

Laguerre-Hahn with order of class less than s.

On the other hand, if it is fulfilled that D(Φau)+Ψau+Ba(x
−1u2) = 0

it ought to be verified that

v≡−〈D(Φau)+Ψau+Ba(x
−1u2), 1〉δa+(x−a)−1rau+(x−a)−1sa(x

−1u2)=0

〈v , 1〉 = 0 ⇒ 〈Ψau + Ba(x
−1u2) , 1〉 = 0, 〈v , (x − a)〉 = 0 ⇒ ra = 0

and 〈v , (x − a)2〉 = 0 ⇒ sa = 0 .

So that the theorem is proved.
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Let us establish an equivalent result to the Theorem 3.2, where the

condition about the class will be given in terms of the polynomials B(x),

C(x) and D(x) defined in (3.1.) using the Stieltjes function.

Corollary 3.1. Let u be a quasi-definite linear functional of

Laguerre-Hahn class verifying (3.1).

A necessary and sufficient condition for u to be of class s is
∏

a∈Zφ

{|C(a)| + |B(a)| + |D(a)|} .= 0 ,

i.e., the polynomials Φ, B, C, and D are coprime.

Proof. Following the notation of the Theorem 3.2 we have

Φ′(a) = Φa(a) ; ra = Ψ(a) + Φ′(a) = −C(a) and sa = B(a) .

We consider Φ(x) =
s+2∑

i=0

dix
i; Ψ(x) =

s+1∑

i=0

cix
i and B(x) =

s+2∑

i=0

bix
i

θ0Φ =
s+1∑

i=0

di+1x
i ;uθ0Φ =

s+1∑

n=0

( s+1∑

j=n

dj+1(u)j−n

)
xn

(uθ0Φ)′ =
s∑

n=0

(n + 1)
( s∑

j=n

dj+2(u)j−n

)
xn

uθ0Ψ =
s∑

n=0

( s∑

j=n

cj+1(u)j−n

)
xn ;

u2θ2
0B =

s∑

k=0

[ s∑

n=k

( s∑

j=n

bj+2(u)j−n

)
(u)n−k

]
xk .

On the other hand, if ra = 0 , 〈u , Ψa〉 =
s∑

j=0
(

s∑
i=j

ci+1a
i−j+

s∑
k=i

dk+2a
k−j)(u)j

and sa = 0, Ba =
s+1∑
j=0

(
s+1∑
i=j

bi+1a
i−j)xj and

〈u2 , θ0Ba〉 =
s∑

n=0

[ s∑

j=n

( s∑

k=j

bk+2a
k−j

)
(u)j−n

]
(u)n .
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Then

|D(a)| = |(uθ0Φ)′ + (uθ0Ψ) + (u2θ2
0B)|(a) = |〈u , Ψa〉 + 〈u2 , θ0Ba〉|

and from Theorem 3.2 our result follows.

4 – Finite perturbations: Co-recursive polynomials

Definition 4.1. Let {Pn}n≤0 be a S.M.O.P. satisfying (1.1).

Let us consider only a modification in the coefficient βk, in the sense

β∗
k = βk + µ , β∗

i = βi , i .= k , γ∗
i = γi .

The new resulting orthogonal polynomial family is called the sequence of

generalized co-recursive polynomials and we shall represent it by {P ∗
n}n≥0.

Then, the new recurrence relation is

(4.1)

P ∗
j (x) = Pj(x) , 0 ≤ j ≤ k

P ∗
k+1(x) = (x − βk − µ)P ∗

k (x) − γkP
∗
k−1(x) = Pk+1(x) − µPk(x)

P ∗
n+2(x) = (x − βn+1)P

∗
n+1(x) − γn+1P

∗
n(x) , n ≥ k .

The general solution of the above recurrence can be written as:

P ∗
n(x) = A0(x)Pn(x) + B0(x)P

(1)
n−1(x) or

P ∗
n(x) = Ak(x)Pn(x) + Bk(x)P

(k+1)
n−(k+1)(x) ,

n ≥ k+1, where P
(r)
n−r(x) is the rth associated polynomial of degree n−r,

and Ar and Br are polynomials computed from the two initial conditions

P ∗
k (x) and P ∗

k+1(x). Using the representation in terms of the associated

polynomials of order k + 1 we obtain:

P ∗
n(x) = Pn(x) − µPk(x)P

(k+1)
n−(k+1)(x) , n ≥ k + 1 .

P ∗
n(x) = Pn(x) , n ≤ k .
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We shall note by u (resp. u∗) the normalized linear functional (u)0 =

1 (resp. (u∗)0 = 1), such that the sequence {Pn}n≥0, (resp. {P ∗
n}n≥0), is

orthogonal.

Lemma 4.1. Let S(u)(z), (resp. Sµ,k(u
∗)(z)) be the Stieltjes func-

tion corresponding to the functional u, (resp. u∗).

Then

(4.2) Sµ,k(u
∗)(z) =

A(z)Sk+1(z) + B(z)

C(z)Sk+1(z) + D(z)

A(z) = γk+1P
(1)
k−1(z) B(z) = P

(1)
k (z) − µP

(1)
k−1(z)

C(z) = −γk+1Pk(z) D(z) = −Pk+1(z) + µPk(z)

where Sk+1(z) represents the Stieltjes function corresponding to the (k+1)

order associated functional u(k+1).

Proof.

Sµ,k = − 1

(x − β0) − γ1

(x−β1) − · · · − γk−1

(x −βk−1)−
γk

(x −βk−µ)+γk+1Sk+1

Let
Ak

Bk

= − 1

(x − β0) − γ1

(x − β1) − · · · − γk−1

(x − βk−1)

be the k th

convergent.

We know that Ak
Bk

= −P
(1)
k−1

Pk
. Now using the formulae of Wallis, (see

[3], page. 80)

Ak+1 = −γk+1P
(1)
k−1Sk+1 − P

(1)
k + µP

(1)
k−1 ,

Bk+1 = γk+1PkSk+1 + Pk+1 − µPk .
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Lemma 4.2. Let S(u)(z) be the Stieltjes function corresponding to

the functional u and let Sk+1(z) = S(u(k+1))(z) be the Stieltjes function

corresponding to the functional u(k+1), associated of order (k + 1) to the

functional u. We have

(4.3) γk+1Sk+1(z) =
−Pk+1(z)S(u)(z) − P

(1)
k (z)

Pk(z)S(u)(z) + P
(1)
k−1(z)

.

Proof. It follows from Lemma 4.1, making µ = 0.

Theorem 4.1. Let S(u)(z) and Sµ,k(u
∗)(z) be the Stieltjes functions

corresponding to the functionals u and u∗ respectively. Then

Sµ,k(u
∗)(z) =

A(z)S(z) + B(z)

C(z)S(z) + D(z)

with A(z) =
k∏

j=0
γj − µPkP

(1)
k−1; B(z) = µ(P

(1)
k−1)

2; C(z) = µ(Pk)
2; D(z) =

k∏
j=0

γj + µPkP
(1)
k−1.

Proof. Substituting (4.3) into (4.2) and bearing in mind that

P
(1)
k Pk − P

(1)
k−1Pk+1 =

k∏
j=0

γj, (see [3], page 86), the result follows.

In particular, for k = 0 it is possible to deduce an explicit relation

between the linear functionals u and u∗ as follows.

Proposition 4.1. Let {Pn}n≥0 be a S.M.O.P. Let us consider the

co-recursive family {P ∗
n}n≥0 for k = 0. Then:

u∗ = (u−1 + µDδ)−1 .
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Proof. As P (1)
n (x) = P ∗(1)

n (x) , n ≥ 0 u(1) = αu∗(1) , α ∈ C, where

α = (u(1))0
(u∗(1))0

= 1 .

From the Theorem 2.1. x2(u−1 −u∗−1) = 0 premultiplying by x−2 on

the above identity

u−1 − (u−1)0δ + (u−1)1Dδ − u∗−1 + (u∗−1)0δ − (u∗−1)1Dδ = 0 with

(u−1)0 = (u∗−1)0 = 1; (u−1)1 = −β0; (u∗−1)1 = −β0 − µ.

Then, the result follows.

Theorem 4.2. (k = 0). Let {Pn}n≥0 be a S.M.O.P. de Laguerre-

Hahn of class “s”. Let us consider the co-recursive family {P ∗
n}n≥0, for

k = 0.

β∗
0 = β0 + µ , β∗

i = βi , i > 0 , γ∗
i = γi , i ≥ 0 .

The S.M.O.P. {P ∗
n}n≥0 is a Laguerre-Hahn family of class s∗ = s.

Proof. Let S(u)(z) be the Stieltjes function relative to the functional

u, let {Pn}n≥0 the corresponding S.M.O.P. and let S∗(z) = Sµ,0(u
∗)(z)

be the Stieltjes function relative to the functional u∗.

The relation between both series is given by Theorem 4.1, with k = 0

(4.4) S∗(z) =
S(u)(z)

1 + µS(u)(z)
.

Substituting (4.4) in (3.1) S∗(z) satisfies Φ∗(z)S∗′(z) = B∗(z)S∗2(z)+

C∗(z)S∗(z) + D∗(z) where

Φ∗(z) = Φ(z) ;B∗(z) = B(z) − µC(z) + µ2D(z) ;

C∗(z) = C(z) − 2µD(z) ;D∗(z) = D(z) .

Moreover, u∗ verifies D(Φ∗u∗) + Ψ∗u∗ + B∗(x−1u∗2) = 0, where

(4.5) Ψ∗ = −C∗ − Φ∗′
.

We will prove that such an equation cannot be simplified.
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Let a be a root of Φ∗ = Φ. We know that |C(a)|+|B(a)|+|D(a)| .= 0.

D∗(a) = D(a), if D(a) .= 0, (4.5) is irreducible.

If D∗(a) = 0, C∗(a) = C(a), if C(a) .= 0 (4.5) is irreducible.

If D∗(a) = C∗(a) = 0, B∗(a) = B(a) .= 0, (4.5) is irreducible.

On the other hand and following the notation of Corollary 3.1

Φ∗(z) = ds+2z
s+2 + . . . (powers of z of degree less than s + 2)

Ψ∗(z) = cs+1z
s+1 + . . . (powers of z of degree less than s + 1)

B∗(z) = bs+2z
s+2 + . . . (powers of z of degree less than s + 2)

As ds+2, cs+1 and bs+2 cannot vanish simultaneously, then s∗ = s.

In [14] a fourth order differential equation for co-recursive polynomi-

als, when u is a classical functional, is given.

Theorem 4.3 (k = 1). Let {Pn}n≥0 be a S.M.O.P. of Laguerre-

Hahn class “s′′. Let us consider the following perturbation of the coeffi-

cients of the recurrence relation β◦
1 = β1 + µ, β◦

i = βi, i .= 1.

The resulting family of co-recursive polynomials related to such a

perturbation {P ◦
n}n≥0, is a S.M.O.P. of Laguerre-Hahn class s◦, with

s − 1 ≤ s◦ ≤ s + 1.

Proof. Let S(u)(z) be the Stieltjes function relative to the functional

u and {Pn}n≥0 the corresponding S.M.O.P.

Let S◦(z) = Sµ,1(u
◦)(z) be the Stieltjes function relative to the func-

tional u◦ and {P ◦
n}≥0 the corresponding S.M.O.P.

Following the Theorem 4.1, for k = 1, we have

(4.6) S◦(z) =
[µ(x − β0) − γ1]S(u)(z) + µ

(x − β0)[−µ(x − β0)]S(u)(z) − µ(x − β0) − γ1

.

Substituting (4.6) in (3.1), then

Φ◦(z)S◦′(z)=B◦(z)S◦2(z) + C◦(z)S◦(z) + D◦(z) ,

where Φ◦(z) = γ2
1Φ(z) ,

B◦(z) = − Φ(z)[µ2(z − β0)
2 + 2µγ1(z − β0)] + B(z)[µ(z − β0) + γ1]

2−

− C(z)µ(z − β0)
2[µ(z − β0) + γ1] + µ2D(z)(z − β0)

4 ,
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C◦(z) = − Φ(z)[2µ2(z − β0) + 2µγ1] + 2µB(z)[µ(z − β0) + γ1]−

− C(z)[2µ2(z − β0)
2 − γ2

1 ] + 2D(z)µ(z − β0)
2[µ(z − β0) − γ1] ,

D◦(z) = − Φ(z)µ2+B(z)µ2−C(z)µ[µ(z−β0)−γ1]+D(z)[µ(z−β0) −γ1]
2.

In order to fix the class of u◦ and following the notation of the Corol-

lary 3.1 deg Φ◦ ≤ s+2 ,deg Ψ◦ = deg(−C◦ −Φ◦′) ≤ s+2 ,deg B◦ ≤ s+3,

so s◦ ≤ s + 1.

On the other hand, if once the perturbation β◦
1 = β1 + µ, β◦

i = βi,

i .= 1, has taken place, we shall make a new perturbation of the form

β∗
1 = β◦

1 − µ = β1, β∗
i = β◦

i = βi, i .= 1.

In this way, the original polynomials appear. Then, necessarily in the

second perturbation the order of the class ought to come down by one

unit. From here the fluctuation of the order of class s◦ is deduced.

Remark. The coefficient of degree s + 4 of the polynomial B◦(z)

and the coefficient of degree s + 3 of the polynomial Ψ◦(z) vanish.

5 – Examples

Example 1. As an example of the case k = 0 we shall make the

perturbation to the associated polynomials of order one for the gener-

alized Hermite polynomials (H(α)
n )(1). The corresponding functional for

these polynomials which we shall note by u(1), belongs to the Laguerre-

Hahn class s = 1 and the Stieltjes function S(z) = S(u(1))(z), fulfils the

equation

zS′(z) = −(1 + 2α)zS2(z) − 2(z2 + α)S(z) − 2z .

The recurrence relation is

(H
(α)
n+1)

(1)(x) = x(H(α)
n )(1)(x) − 1

2
(n + 1 + θn)(H

(α)
n−1)

(1)(x) ,

θ2m+1 = 0 ; θ2m = 2α , n ≥ 1 , (H
(α)
1 )(1)(x) = x , (H

(α)
0 )(1)(x) = 1 .
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We shall make the perturbation β∗
0 = µ; β∗

i = 0; i .= 0.

Let v be the corresponding new functional. The Stieltjes function

S∗(z) = S(v)(z) satisfies the equation

zS∗′
(z) =[−(1 + 2α + 2µ2)z + 2µ(z2 + α)]S∗2(z)+

+[−2(z2 + α) + 4µz]S∗(z) − 2z .

The new family of co-recursive orthogonal polynomials is of Laguerre-

Hahn class s∗ = 1.

Example 2. Let H(1)
n (x) be the associated polynomials of order one

to the classical Hermite polynomials.

These polynomials belong to the Laguerre-Hahn class s = 0. The

corresponding Stieltjes function S(z) = S(u(1))(z) satisfies the equation

S′(z) = −S2(z) − 2zS − 2. In the parameters of the recurrence relation

(βi = 0 , γi = n+1
2

) let us make the perturbation β◦
1 = µ.

The new family of orthogonal polynomials belongs to the Laguerre-

Hahn class, fulfilling the corresponding function of Stieltjes S◦(z) the

equation

S◦′
(z) =(2µz3 − 2µ2z2 − 4µz − 1)S◦2(z)+

+[4µz2 − (4µ2 + 2)z − 4µ]S◦(z) + [2µz − (2µ2 + 2)] .

The order of the class of these polynomials is s◦ = 1.

If we make a new perturbation β◦◦
1 = β◦

1 − µ = 0 the new Stieltjes

function S◦◦(z) fulfils S◦◦′(z) = −S◦◦2(z) − 2zS◦◦(z) − 2. We come down

to the order of class s◦◦ = 0, recuperating the polynomials H(1)
n (x).

Example 3. The family (Lα
n(x))(1)(α .= −n , n ≥ 1), associated of

first order to the Laguerre polynomials, belongs to the Laguerre-Hahn

class s = 0. The coefficients β0 , β1 and γ1 of the recurrence relation are

β0 = α+3, β1 = α+5 and γ1 = 2(α+2). If we note with u(1) the functional

relative to these polynomials, the Stieltjes function S(z) = S(u(1))(z)

fulfils the equation

zS′(z) = −(α + 1)S2(z) + (−z + α + 2)S(z) − 1 .
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We shall study how the order of the class is modified, on carrying

out a perturbation on the coefficient βk, k = 0 and k = 1, of the form

β∗
k = βk + µ, β∗

i = βi i .= k.

In the case of k = 0, the new S.M.O.P. belongs to the Laguerre-Hahn

class s∗ = 0. The corresponding Stieltjes function S∗(z) = Sµ,0(z) fulfils

the equation

zS∗′
(z) = [µ(z −α−2)−µ2 − (α+1)]S∗2(z)+(−z +α+2+2µ)S∗(z)−1 .

An explicit representation of these co-recursive polynomials in terms

of hypergeometric functions can be seen in [8] and [9]. Furthermore, the

spectral measure is also computed as well as a fourth order differential

equation such that these polynomials satisfy.

In the case of k = 1, the polynomial coefficients of the Riccati equa-

tion which satisfies the Stieltjes function Sµ,1(z), are

Φ◦(z) = 4(α + 2)2z

B◦(z) = 2µ(α + 2)z3 − 2µ(α + 2)(µ + 3α + 10)z2 + 2µ(α + 2)[2(α+

+ 3)µ + 3α2 + 16α + 25]z − 2(α + 2)[(α + 3)2µ2+

+ (α + 3)(α2 + 3α + 4)µ + 2(α + 1)(α + 2)]

C◦(z) = 4µ(α + 2)z2 − 4(α + 2)[µ2 + (2α + 7)µ + (α + 2)]z+

+ 4(α + 2)[(α + 3)µ2 + (α2 + 5α + 8)µ + (α + 2)2]

D◦(z) = 2µ(α + 2)z − 2(α + 2)[µ2 + (α + 4)µ + 2(α + 2)] .

The new S.M.O.P. belongs to the Laguerre-Hahn class s◦ = 1.

Example 4. The family (Bα
n (x))(1)(α .= −n/2 , n ≥ 0), associated of

first order to the Bessel polynomials, belongs to the Laguerre-Hahn class

s = 0. If we note with u(1) the functional relative to these polynomials,

the Stieltjes function S(z) = S(u(1))(z) fulfils the equation

z2S′(z) = − 2α − 1

α2(2α + 1)
S2(z) + 2(αz + 1 − α−1)S(z) + (2α + 1) .
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Let us make the perturbation β∗
0 = β0+µ = 1−α

α(α+1)
+µ, β∗

i = βi , i .= 0,

γ∗
i = γi , i ≥ 1, (k = 0), in the parameters of the recurrence relation. The

new family of orthogonal polynomials belongs to the Laguerre-Hahn class

s∗ = 0, fulfilling the Stieltjes function S∗(z) = Sµ,0(z) the equation

z2S∗′
(z) =

[
− 2α − 1

α2(2α + 1)
− 2µ(αz + 1 − α−1) + µ2(2α − 1)

]
S∗2(z)+

+ [2(αz + 1 − α−1) − 2µ(2α + 1)]S∗(z) + (2α + 1) .

If we make the perturbation in the coefficient β◦
1 = β1+µ = 1−α

(α+2)(α+1)
+µ,

(k = 1), we obtain that the polynomial coefficients of the Riccati equation

which satisfies the Stieltjes function Sµ,1(z), are

Φ◦(z) =γ2
1z

2

B◦(z) = − 2µ(α + 1)γ1z
3 +

{
µ2

[
(6α + 5)β2

0 + 6(1 − 1

α
)β0−

− (2α − 1)

α2(2α + 1)

]
+ 2µγ1

[
− (1 − 1

α
) + (2α + 1)β0

]}
z2+

+
{
2µ2β0

[
(3α + 2)β2

0 + 3
(
1 − 1

α

)
β0 − 2α − 1

α2(2α + 1)

]
+

+ 2µγ1

[
− αβ2

0 + 2
(
1 − 1

α

)
β0 − 2α − 1

α2(2α + 1)

]}
z+

+
{
µ2β2

0

[
(2α + 1)β2

0 + 2
(
1 − 1

α

)
β0 − 2α − 1

α2(2α + 1)

]
−

− 2µβ0γ1

[(
1 − 1

α

)
β0 − 2α − 1

α2(2α + 1)

]
− 2α − 1

α2(2α + 1)
γ2

1

}

C◦(z) = − 4µ(α + 1)γ1z
2 +

{
2µ2

[
(4α + 3)β2

0 + 4
(
1 − 1

α

)
−

− 2α − 1

α2(2α + 1)

]
+ 4µγ1β0(2α + 1) + 2αγ2

1

}
z+

+
{

− 2µ2β0

[
(2α + 1)β2

0 + 2β0

(
1 − 1

α

)
− 2α − 1

α2(2α + 1)

]
−

− 2µγ1

[
(2α + 1)β2

0 +
2α − 1

α2(2α + 1)

]
+ 2

(
1 − 1

α

)
γ2

1

}
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D◦(z) =
{

− 2µ2
[
β0(α + 1) +

(
1 − 1

α

)]
− 2γ1µ(α + 1)

}
z+

+
{
µ2

[
(2α + 1)β2

0 + 2(1 − 1

α
)β0 − 2α − 1

α2(2α + 1)

]
+

+ 2µγ1

[
(2α + 1)β0 +

(
1 − 1

α

)]
+ (2α + 1)γ2

1

}

β0 =
1 − α

α(α − 1)
, γ1 =

−4α

(2α + 1)(α + 1)2(2α + 3)
.

The new S.M.O.P. belongs to the Laguerre-Hahn class s◦ = 1.

Example 5. In this example we shall make the perturbation

to the associated polynomials of order one to the Jacobi polynomials

(P (α,β)
n (x))(1). The corresponding functional for these polynomials which

we shall denote by u(1), belongs to the Laguerre-Hahn class s = 0 and for

the Stieltjes function S(z) = S(u(1))(z), the following differential equation

holds

(z2 − 1)S′(z) =
[4(α + 1)(β + 1)(α + β + 1)

(α + β + 3)(α + β + 2)2

]
S2(z)+

+
[
(α + β + 2)z − α2 − β2

α + β + 2

]
S(z) + (α + β + 3) .

Let us make the perturbation β∗
0 = β0 + µ = α2−β2

(α+β+2)(α+β+4)
+ µ,

β∗
i = βi i .= 0, γ∗

i = γi i ≥ 1, (k = 0). The new S.M.O.P. belongs to the

Laguerre-Hahn class s∗ = 0, fulfillig the Stieltjes function S∗(z) = Sµ,0(z)

the equation

Φ∗(z)S∗′
(z) = B∗(z)S∗2(z) + C∗(z)S∗(z) + D∗(z) , where

Φ∗(z) = (z2 − 1)

B∗(z) =
[4(α + 1)(β + 1)(α + β + 1)

(α + β + 3)(α + β + 2)2

]
− µ

[
(α + β + 2)z−

− α2 − β2

α + β + 2

]
+ µ2(α + β + 3)

C∗(z) =
[
(α + β + 2)z − α2 − β2

α + β + 2

]
− 2µ(α + β + 3)

D∗(z) = (α + β + 3) .
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As a particular case of the classical polynomials of Jacobi P (α,β)
n (x),

making α = β, the Gegenbauer polynomials appear (α .= −n , n ≥ 1),

(see [11]). The associated polynomials of the first order to the Gen-

genbauer polynomials belong to the Laguerre-Hahn class s = 0 and

S(z) = S(u(1))(z) satisfies

(z2 − 1)S′(z) =
2α + 1

2α + 3
S2(z) + 2(α + 1)zS(z) + (2α + 3) .

Carrying out a perturbation on the coefficient β0, in this way β∗
0 =

β0 + µ = µ, β0 = 0; β∗
i = βi = 0 i .= 0, (k = 0), we obtain a co-recursive

S.M.O.P. belonging to the Laguerre-Hahn class s∗ = 0, satisfying S∗(z) =

Sµ,0(z) the equation

(z2 − 1)S∗′
(z) =

[
− 2µ(α + 1)z + µ2(2α + 3) +

2α + 1

2α + 3

]
S∗2(z)+

+ [2(α + 1) − 2µ(2α + 3)]S∗(z) + (2α + 3) .

In the case of k = 1, the polynomial coefficients of the Riccati equa-

tion which satisfies the Stieltjes function Sµ,1(z) are

φ◦(z) =
[ 4(α + 1)

(2α + 3)(2α + 5)

]2

(z2 − 1)

B◦(z) =
−8µ(α + 1)(α + 2)

(2α + 3)(2α + 5)
z3 + 4

( α + 1

2α + 3

)
µ2z2+

+
32(α + 1)2

(2α + 3)2(2α + 5)
µz +

16(2α + 1)(α + 1)2)

2α + 3)3(2α + 5)2

C◦(z)=
−16µ(α+ 1)(α + 2)

(2α + 3)(2α + 5)
z2+ 8

(α + 1)

(2α + 3)

[
µ2+ 4

(α + 1)2

(2α + 3)(2α + 5)2

]
z+

+ 32µ
(α + 1)2

(2α + 3)2(2α + 1)

D◦(z) = −8µ
(α + 1)(α + 2)

(2α + 3)(2α + 5)
z + 4

(α + 1)

(2α + 3)

[
µ2 + 4

(α + 1)

(2α + 5)2

]
.
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The new co-recursive S.M.O.P. belongs to the Laguerre-Hahn class

s◦ = 1.
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par une suite de polynômes orthogonaux , Portugaliae Math., Vol. 46 Fasc. 3
(1989), 269-282.

[7] R. Haydock: The recursive solution of the Schrodinger equation, Solid State
Phys., 35 (1980), 215-294.

[8] J. Letessier: On co-recursive associated Laguerre polynomials, Journal of Comp.
and Appl. Math., 49 (1993), 127-136.

[9] J. Letessier: Some results on co-recursive associated Laguerre and Jacobi poly-
nomials, SIAM J. Math. Anal., 25 (2) (1994), 528-548.

[10] F. Marcellan–J.S. Dehesa–A. Ronveaux: On orthogonal polynomials with
perturbed recurrence relations, Journal of Comp. and Appl. Math., 30 (1990),
203-212.
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