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On the Hausdorff-Young theorem for Hilbert

vector valued Besicovitch a.p. functions spaces

A.M. BERSANI

Riassunto: In questa breve nota viene data l’estensione del teorema di Hausdorff-
Young per funzioni Lp periodiche a funzioni quasi periodiche secondo Besicovitch, de-
finite in IRs e a valori in uno spazio di Hilbert IH a valori vettoriali. Viene inoltre
fornita la generalizzazione del teorema di Riesz-Fischer.

Abstract: We give the extension of the classical H-Y theorem for periodic Lp-
functions to Besicovitch almost periodic functions, defined on IRs and with values in a
vector-valued Hilbert Space IH. The generalization of the Riesz-Fischer theorem is also
given.

1 – Introduction

Recently, the Hausdorff-Young (H-Y) theorem for Lp periodic func-

tions has been extended to almost periodic functions, in the Besicovitch

sense (Bq
ap spaces), defined on IR and with values in IR ([4]).

The theorem has been proved again in [2] in a more straightforward

way, by means of the method of complex interpolation. This method has

been used also in [5], to prove the theorem for a.p. functions defined on

IR and with values in a complex Hilbert space.

Key Words and Phrases: Almost periodic functions – Bohr transform – Fourier
series
A.M.S. Classification: 42A75 – 42A16



144 A.M. BERSANI [2]

In this short note, following the same method, we generalize the

theorem to Hilbert vector-valued a.p. functions, defined on IRs.

We want to underline the importance of the H-Y theorem for regu-

larity results for the Besicovitch spaces Bq
ap and the Besicovitch-Sobolev

spaces (see [2, 4, 11]) and, in particular, for the study of their embedding

properties, and moreover, for the study of partial differential equations,

with coefficients in Bq
ap.

2 – Notations, definitions and properties

Let (IH, 〈·|·〉) be an arbitrary complex Hilbert space, with norm as-

sociated with the scalar product

‖u‖ :=
√

〈u|u〉 ∀u ∈ IH .

Recall that, ∀u ∈ IH,

signu =

{
0 if u = 0
u

‖u‖ if u ∈ IH/{0} .

Let P(IH) denote the complex vector space of all trigonometric poly-

nomials P (x) so defined

P (x) =
ω∑

j=1

cje
iλj ·x ∀x ∈ IRs

where cj ∈ IH, λj ∈ IRs (λi .= λj if i .= j); ω ∈ IN.

If every cj (j = 1, . . . , ω) is different from the null element of IH, the

set σ(P ) = {λ1, λ2, . . . , λω} with |λ1| ≤ |λ2| ≤ . . . ≤ |λω| is called the

spectrum of P .

Defined in the usual way (see [3], [6], [12]) the spaces Ck
ap(IR

s, IH) of

the functions f : IRs → IH which are uniformly almost periodic with their

first k derivatives, and the spaces Bq
ap(IR

s, IH) (q ≥ 1); using the notation

∫
f(x)dx := lim

T→+∞

1

|QT |

∫

QT

f(x)dx
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where QT = [−T, T ]s and we use the Bochner integral (see [14]), we

introduce the functions

a(λ, P ) =

∫
P (x)e−iλ·xdx =

{
cj if λ = λj ; j = 1, . . . , ω

0 if λ /∈ σ(P )
∀P ∈ P

a(λ, f) =

∫
f(x)e−iλ·xdx

that are respectively called the Bohr transform of P and f , and the scalar

product

(f |g) =

∫ 〈
f(x)|g(x)

〉
dx f ∈ Bq

ap ; g ∈ Bq′
ap .

The subset of IRs

σ(f) = {λ ∈ IRs
∣∣a(λ, f) .= 0}

is called the spectrum of f .

Let us recall that σ(f) is at most a countable set. In what follows we

will suppose that the elements of the spectrum can be ordered according

to the increasing values of their moduli, i.e.

|λ1| ≤ |λ2| ≤ . . . .

The formal series
∞∑

j=1

a(λj, f)eiλj ·x

is called the Bohr-Fourier series of f .

Clearly, if f ∈ P, its Bohr-Fourier series coincides with f .

In what follows, we will use the following

Proposition 1.1. If (Pn)n∈IN, with Pn ∈ P, converges to f in Bq
ap,

then

a) there exists

(∫ ∥∥f(x)
∥∥q

dx

)1/q

=: ‖|f‖|q
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and the following relation holds true

‖|f‖|q = lim
n→∞

‖|Pn‖|q ;

b) we have, uniformly with respect to λ ∈ IRs,

lim
n→∞

a(λ, Pn) = a(λ, f) .

Given the generic polynomial P (x) and introduced the polynomials

Q(x) =
r∑

-=1

d-e
−iλ'·x ; Qz(x) =

r∑

-=1

‖d-‖
1+z
1+t (sign d-)e

−iλ'·x ; z ∈ C

whose spectrum is symmetric with respect to σ(P ), we define a particular

holomorphic function

ψ(z) =

∫ {∥∥P (x)
∥∥

1+z
1+t

(
sign

(
P (x)

))( r∑

-=1

‖d-‖
1+z
1+t (sign d-)e

−iλ'·x
)}

dx .

Applying the Parseval equality to Qz(x) and the theorem of the three

lines to interpolate
∣∣ψ(z)

∣∣ on the strip

Σ = {z ∈ C
∣∣0 ≤ :z ≤ 1}

we arrive at the inequality

∣∣∣∣
r∑

j=1

〈
cj|dj

〉∣∣∣∣ ≤ ‖|P‖| 2
1+t

( r∑

-=1

‖d-‖
2

1+t

) 1+t
2 ∀ t ∈]0, 1[

which, together with the properties ([2,5])

( r∑

j=1

‖Cj‖q′
)1/q′

= sup

{∣∣∣∣
r∑

j=1

〈
Cj|dj

〉∣∣∣∣ , where
r∑

-=1

‖d-‖q ≤ 1

}

‖|P‖|q′ = sup
‖|Q‖|q≤1

∣∣∣∣
∫ 〈

P (x)
∣∣Q(x)

〉
dx

∣∣∣∣
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and ([1], p. 29)
∫ 〈

P (x)
∣∣Q(x)

〉
=

r∑

j=1

〈
cj

∣∣dj

〉

gives the following Hausdorff-Young theorem for trigonometric polyno-

mials.

Lemma 1.1. ∀P (x) ∈ P and ∀ q ∈]1, 2[, we have

( ω∑

j=1

‖Cj‖q′
)1/q′

≤ ‖|P‖|q(1.1)

‖|P‖|q′ ≤
( ω∑

j=1

‖Cj‖q

)1/q

(1.2)

where q′ =
q

q − 1
.

Furthermore, we shall need some characterizations of the Bq
ap-norm,

with q ∈]1, +∞[, whose proofs are similar to those ones included in [3], [5].

Theorem 1.1. ∀ q ∈]1,+∞[, ∀P ∈ P one has

‖|P‖|q = sup
{∣∣(P |g)

∣∣ ; g ∈ C0
ap , ‖|g‖|q′ ≤ 1

}
.

Theorem 1.2. ∀ q ∈]1,+∞[, ∀P ∈ P, one has

‖|P‖|q = sup
{∣∣(P |Q) , Q ∈ P , ‖|Q‖|q ≤ 1

}
.

Theorem 1.3. ∀ f ∈ Bq
ap; q ∈]1,+∞[, one has

‖|f‖|q = sup
{∣∣(f |Q)

∣∣ ;Q ∈ P , ‖|Q‖|q ≤ 1
}

.
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3 – The Hausdorff-Young Theorem for Besicovitch spaces of

vector-valued a.p. functions

The result that now we are going to prove, is the extension of the

Hausdorff-Young theorem for periodic functions to almost periodic func-

tions defined on IRs with values in a complex vector-valued Hilbert space.

Theorem (Hausdorff-Young). Let f ∈ Bq
ap(IR

s, IH) and σ(f) =

{λ1, . . . , λω, . . . }; one has

( ∞∑

j=1

∥∥a(λj; f)
∥∥q′)1/q′

≤ ‖|f‖|q if q ∈]1, 2](2.1)

‖|f‖|q ≤
( ∞∑

j=1

∥∥a(λj, f)
∥∥q′)1/q′

if q ∈ [2,+∞[(2.2)

and the series occurring in (2.2) may be divergent.

The proof is quite similar to that one used in [4] in the case of

Bq
ap(IR, C)-spaces. However, we give the principal steps for reader’s con-

venience.

Proof. If ‖|f‖|q = 0 the proof is trivial. Let us suppose ‖|f‖|q .=0.

Since σ(f) ⊆ {λ1, . . . , λn, . . . }, there exists some index k such that

a(λk, f) .= 0, with λk ∈ {λ1, . . . , λn, . . . }.

i) Let q ∈]1, 2],and let ε > 0 and n ∈ IN arbitrarily fixed.

Consider a sequence (Pm)m∈IN of trigonometric polynomials converg-

ing to f in Bq
ap.

Using Proposition 1.1 and applying Lemma 1.1 to Pm, by means

of (1.1), we have that there exists mε such that

(2.3)

( n∑

j=1

∥∥a(λj, f)
∥∥q′)1/q′

< ‖|P‖|q + ε ≤ ‖|f‖|q + 2ε ∀m > mε .

Since ε > 0 and n ∈ IN are arbitrary, (2.1) follows from (2.3).

ii) Let q ∈ [2,+∞[. Setting

Pn(x) =
n∑

j=1

a(λj, f)eiλj ·x ,
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we have

(2.4) Pn

B2
ap−−−−−−→f ,

since f ∈ Bq
ap ↪→ B2

ap.

On the other hand, ∀Q ∈ P such that σ(f) ∩ σ(Q) .= ∅, by Hölder

inequality and (1.1) , applied to Q, we have

∣∣(Pn|Q)
∣∣ =

∣∣∣∣
n∑

j=1

〈
a(λj, f)

∣∣a(λj, Q)
〉∣∣∣∣ ≤

( ∞∑

j=1

∥∥a(λj, f)
∥∥q′)1/q′

‖|Q‖|q′ .

Passing to the limit, taking into account (2.4) and the continuity of

the scalar product, we obtain

∣∣(f |Q)
∣∣ ≤

( ∞∑

j=1

∥∥a(λj, f)
∥∥q′)1/q′

‖|Q‖|q′

∀Q ∈ P such that σ(f) ∩ σ(Q) .= ∅.

Recalling the characterization Theorem 1.3, we finally write

‖|f‖|q = sup
{∣∣(f |Q)

∣∣ , Q ∈ P ; ‖|Q‖|q′ ≤ 1
}

≤
( ∞∑

j=1

∥∥a(λj, f)
∥∥q′)1/q′

and the proof is complete.

Remark 2.1 The series appearing in (2.1) and (2.2) are multiple

series, and it is well known that, in general, the convergence of such

series and the value of the sum depend on the summation method.

In the present case, the convergence does not depend on that, because

the series appearing in (2.1) and (2.2) have positive terms (which are

ordered according to the increasing values of the moduli of vectors λ ∈
σ(f)), and we can apply the result on multiple series which states that if

the series is absolutely Ω-convergent with respect to a summation method

Ω, then it is unconditionally convergent, that is to say it converges with

respect to any other summation method.

We can complete the H-Y theorem with the generalization of the

Riesz-Fischer theorem.
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Theorem 2.2. For any fixed countable set of real vectors

Λ = {λ1, λ2, . . . , λn, . . . }

with |λ1| ≤ |λ2| ≤ . . . and for any fixed sequence (cj)j∈IN, cj ∈ IH which

is q′-summable with q′ ∈]1, 2], there exists a function f ∈ Bq
ap(IR

s, IH)

verifying

σ(f) ⊆ Λ and cj = a(λj, f) ;

furthermore, such a f is the sum in Bq
ap of its Fourier series.

Moreover, one has

‖|f‖|q ≤
( ∞∑

j=1

‖cj‖q′
)1/q′

.

Proof. Let us consider the sequence

Pn(x) =
n∑

j=1

cje
iλj ·x .

Since q′ ∈]1, 2], by Lemma 1.1 we have

‖|Pn+s − Pn‖|q ≤
( n+s∑

j=n+1

‖cj‖q′
)1/q′

n , s ∈ IN .

This inequality implies that the sequence (Pn) converges in Bq
ap(IR

s, IH)

to some f .

By Proposition 1.1 and Lemma 1.1 we have the thesis.

It is finally very easy to show the following result.

Corollary 2.1. If f ∈ B1
ap, σ(f) = {λ1, λ2, . . . } and

∞∑

j=1

∥∥a(λj; f)
∣∣|q′

< +∞ q′ ∈]1, 2]

then f ∈ Bq
ap and

(2.5) ‖|f‖|q′
q ≤

∞∑

j=1

∥∥a(λj, f)
∥∥q′

.
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Proof. By Theorem 2.2, there exists g ∈ Bq
ap s.t.

a(λj, f) = a(λj, g) ∀ j ∈ IN

and

(2.6) ‖|g‖|q′
q ≤

∞∑

j=1

∥∥a(λj, f)
∥∥q′

so that

f ≡ g in Bq
ap

and the thesis follows from (2.6).
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