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The topology of convergence in distribution

of masses on the real line

B. GIROTTO – S. HOLZER

Riassunto: Si introduce, nell’ambito delle masse sulla retta reale, la topologia
della convergenza in distribuzione provandone la pseudometrizzabilità tramite due pseu-
dometriche equivalenti (ottenute modificando opportunamente le metriche di Lévy e di
Kingman-Taylor introdotte, in Letteratura, per le funzioni di ripartizione σ-additive).
Si prova poi che ogni insieme limitato di masse è relativamente compatto nello spazio
topologico della convergenza in distribuzione e che tale spazio risulta essere uno spazio
polacco localmente compatto.

Abstract: We introduce the topology of convergence in distribution of masses on
the real line and state its pseudometrizability, by introducing two equivalent pseudomet-
rics (suitable modifications of the Lévy metric and Kingman-Taylor metric, both consid-
ered, in the Literature, in the context of σ-additive probability distribution functions).
Moreover, we prove that any bounded set of masses is relatively compact w.r.t. this
topology. Finally, we show that the corresponding topological space is a locally compact
Polish space.

1 – Introduction

It is well known that, in the context of σ-additive probabilities on the

Borel sets of the real line, there is a one-to-one correspondence between

Key Words and Phrases: Polish space – Mass – µ-adherence – S-integral – Weak
convergence – Distribution function – Convergence in distribution – Lévy and Kingman-
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probability measures and related distribution functions. Moreover, every

result about weak convergence of probability measures has an analougue

about weak convergence of distribution functions (i.e. the pointwise con-

vergence to a distribution function at its continuity points), and vice

versa. Consequently, the weak convergence of probability measures is

equivalent to their convergence in distribution (i.e. the weak convergence

of the corresponding distribution functions). Therefore, the properties

of the weak convergence can be obtained by studying the topology of

convergence in distribution. In particular, the remarkable metrizability

property of the topology of weak convergence (of probability measures)

is usually proved, in the Literature, by introducing different metrics on

distribution functions (e.g. the classical Lévy metric, the modified Lévy

metric, the Kingman -Taylor metric).

On the other side, in a finitely additive setting, it is known that

the weak convergence of masses implies the convergence in distribution,

and not vice versa. Consequently, the topologies of weak convergence

and convergence in distribution are no more equivalent. Therefore, it is

interesting to link the previous metrics and these topologies (which do

not satisfy the Hausdorff property, in opposition to the σ-additive case).

In this paper, we consider suitable modifications of the Lévy metric

and the Kingman-Taylor metric in order to study the basic properties of

the topology of convergence in distribution of masses (pseudometrizabil-

ity, completeness,...).

Now, we briefly describe the contents of the following sections. In

Section two, we give some notations and definitions used in the sequel.

In Section three, we consider a pseudometric (suggested by the modified

Lévy metric) on the space ∆ of finitely additive distribution functions

and prove that the weak convergence in ∆ is equivalent to the conver-

gence w.r.t. this pseudometric. In Section four, we define a pseudometric

(suggested by the Kingman-Taylor metric) on the space of masses on

the real line and prove that the convergence in distribution of masses is

equivalent to the convergence w.r.t. this pseudometric. In Section five,

we introduce, in the set of masses on the real line, three neighborhood

systems all generating the same topology, i.e. the topology of convergence

in distribution. Moreover, we prove that this topology is pseudometriz-

able by the pseudometrics above considered and that any bounded set is

relatively compact. Finally, we state that the corresponding topological
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space is a locally compact Polish space.

2 – Notations and Definitions

Let IR =]−∞,+∞[ be the metric space of real numbers and h (with or

without indices) any strictly positive real number. Moreover, let RC(IR)

be the set of continuous real functions on IR regular at infinity (i.e. having

finite limits at −∞ and at +∞).

Denoting by A a field on IR including all intervals (bounded or not),

ba+(IR,A) is the set of masses (i.e. positive bounded charges) on A;

moreover, µ (with or without indices) is a mass on A. Given µ, we

call distribution function corresponding to µ the real map Fµ on the ex-

tended real line [−∞,+∞] such that Fµ(x) = µ(] − ∞, x]) for any real

x, Fµ(−∞) = 0 and Fµ(+∞) = µ(IR) = ‖µ‖ (the norm of µ).

We call finitely additive distribution function any bounded positive

increasing real function F on the extended real line such that F (−∞) = 0,

i.e. F is a bounded real function on [−∞,+∞] such that F (−∞) = 0

and F (u) ≤ F (v) whenever u ≤ v. Moreover, we denote by ∆ the set

of finitely additive distribution functions and by F, G and H (with or

without indices) elements from ∆. We recall that the correspondence

µ → Fµ is a mapping (not one-to-one) from ba+(IR,A) onto ∆ (see The-

orems 3.2, 3.3 and Remark 3.7 (ii) in [2]).

Finally, x (with or without indices) always denotes a real number and

F (x+), F (x−) are, as usual, the right and left limits of F at x, respectively.

3 – The set ∆ as a pseudometric space

We start with the following notation. Let Ih = ]− 1
h
, 1

h
[, for any h > 0.

Moreover, given F, G ∈ ∆ and h, we denote by (F, G;h) the following

condition:

F ((x−h)−)−h ≤ G(x−) ≤ G(x+) ≤ F ((x+h)+)+h, for any x ∈ Ih .

Finally, let d∗
S(F, G) = inf{h : (F, G;h) and (G, F ;h) hold} (note

that (F, G; max{F (+∞), G(+∞)}) and (G, F ; max{F (+∞), G(+∞)})

always hold).
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Definition 3.1. The modified Lévy-pseudometric d on ∆ is defined

as:

d(F, G) = dS(F, G) + |F (+∞) − G(+∞)| ,
where dS(F, G) = min(d∗

S(F, G), 1).

The following proposition links the previous condition (F, G;h) and

the usual one considered in the Literature (see, for example, Definition

4.2.1 in [7]).

Proposition 3.2. The following statements are equivalent:

(i) (F, G;h) ;

(ii) F ((x − h)+) − h ≤ G(x+) ≤ F ((x + h)+) + h, for any x ∈ Ih ;

(iii) F ((x − h)−) − h ≤ G(x−) ≤ F ((x + h)−) + h, for any x ∈ Ih ;

(iv) F ((x − h)+) − h ≤ G(x+) and G(x−) ≤ F ((x + h)−) + h,

for any x ∈ Ih ;

(v) If D ⊂ Ih is a dense subset of continuity points of G, then:

F (x − h) − h ≤ G(x) ≤ F (x + h) + h, for any x ∈ D .

Proof. Let Ch = {z ∈ Ih : z is a continuity point of G and z − h,

z + h are continuity points of F}. Plainly, Ch is a dense subset of Ih.

Consequently, given x ∈ Ih, there are two sequences (z(1)
n ) and (z(2)

n ) in Ch

such that z(1)
n ↑ x and z(2)

n ↓ x. On noting that, for any n, the following

statement:

F (z(i)
n − h) − h ≤ G(z(i)

n ) ≤ F (z(i)
n + h) + h (i = 1, 2)

follows from any one of (i) ÷ (iv), by taking limits as n → +∞, we easily

get the equivalence of (i)÷(iv). Therefore, we only prove (iv) ⇒ (v) ⇒ (ii).

(iv) ⇒ (v). Let x be a continuity point of G in Ih. Then we have:

F (x − h) − h ≤ F ((x − h)+) − h ≤ G(x+) =

= G(x) = G(x−) ≤ F ((x + h)−) + h ≤ F (x + h) + h .

(v) ⇒ (ii). Let x ∈ Ih and (xn) a sequence in D such that xn ↓ x.

Therefore, F (xn − h) − h ≤ G(xn) ≤ F (xn + h) + h holds for all n.

Consequently, taking limits as n → +∞, we get the validity of (ii). This

completes the proof.
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The following lemmas pave the way to prove that dS, and hence d, is

a pseudometric.

Lemma 3.3. Let d∗
S(F, G)= h >0. Then (F, G;h) and (G, F ;h) hold.

Proof. Let x ∈ Ih. Moreover, let hn ↓ h such that (F, G; hn) and

(G, F ; hn) hold for all n. Assume, without loss of generality, that x ∈ Ihn

for all n (note that Ihn ↑ Ih). Now, for any n, let hkn − h < 1
n

and

kn > n. On noting that x + 1
n

↓ x and kn → +∞, there is n′ such that

Ihkn
∩]x+hkn −h, x+ 1

n
[.= ∅ for all n > n′. Now, for any n > n′, let yn be

a continuity point of F and G such that yn ∈ Ihkn
∩]x + hkn − h, x + 1

n
[.

Then, by Proposition 3.2, we have:

F (yn − hkn) − hkn ≤ G(yn) ≤ F (yn + hkn) + hkn ,

G(yn − hkn) − hkn ≤ F (yn) ≤ G(yn + hkn) + hkn ,

for any n > n′. Consequently, taking limits as n → +∞, we get:

F ((x − h)+) − h ≤ G(x+) ≤ F ((x + h)+) + h ,

G((x − h)+) − h ≤ F (x+) ≤ G((x + h)+) + h ,

on noting that yn − hkn → x − h and yn − hkn > x − h for all n > n′.

Therefore, by Proposition 3.2, we get the thesis.

Remark 3.4. If F and G coincide on the set of common real con-

tinuity points, then F (x−) = G(x−) and F (x+) = G(x+) for all x (note

that this set is dense in IR).

Lemma 3.5. We have dS(F, G) = 0 iff F and G have the same set

of real continuity points and coincide on this set.

Proof. Assume dS(F, G) = 0, i.e. d∗
S(F, G) = 0. Given a continuity

point x of F and G, we claim that F (x) = G(x). Let hn ↓ 0 such

that (F, G;hn) and (G, F ;hn) hold for all n. Assume, without loss of

generality, that x ∈ Ihn for all n (note that Ihn ↑ IR). Now, for any n,

let yn ∈ Ihn be a continuity point of F and G such that |x − yn| < 1
n
.

Consequently, by Proposition 3.2, we have:

F (yn − hn) − hn ≤ G(yn) ≤ F (yn + hn) + hn
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for all n. Therefore, recalling that yn → x, hn → 0 and taking limits as

n → +∞, we get F (x) ≤ G(x) ≤ F (x). This proves the claim. Hence,

by Remark 3.4, F and G have the same set of continuity points.

The converse implication easily follows from Proposition 3.2. This

completes the proof.

Proposition 3.6. The function dS is a pseudometric on ∆.

Proof. We claim that dS(F, G) = 0 iff dS(F, H) = dS(G, H) for

any H. Assume dS(F, G) = 0. Then, by Lemma 3.5 and Remark 3.4,

we have F (x−) = G(x−) and F (x+) = G(x+) for all x; hence, for any

h, (F, H;h) and (H, F ; h) hold iff (G, H; h) and (H, G;h) hold. Conse-

quently, d∗
S(F, H) = d∗

S(G, H) and hence dS(F, H) = dS(G, H). The

converse implication easily follows from Lemma 3.5 (put H = G). This

proves the claim.

In order to verify the triangle inequality dS(F, H) ≤ dS(F, G) +

dS(G, H), let α = dS(F, G) and β = dS(G, H). If α + β ≥ 1 or αβ = 0,

then the triangle inequality easily follows from the definition or from

the claim, respectively. Therefore, we assume α + β < 1 and α, β > 0.

Consequently, d∗
S(F, G) = α > 0, d∗

S(G, H) = β > 0 and hence, by

Lemma 3.3, (F, G; α), (G, F ;α) and (G, H;β), (H, G;β) hold. Now, let

x ∈ Iα+β ⊂ Iα ∩ Iβ. Then, it easily follows that x − β, x + β ∈ Iα.

Therefore, we get:

F ((x − (β + α))−) − (α + β) ≤ G((x − β)−) − β ≤ H(x−) ≤

≤ H(x+) ≤ G((x + β)+) + β ≤ F ((x + (β + α))+) + (α + β)

and hence (F, H;α+β) holds. Similarly, since x−α, x+α ∈ Iβ, it follows

that (H, F ;α + β) holds. Consequently, d∗
S(F, H) ≤ α + β < 1 and hence

dS(F, H) ≤ α + β. This completes the proof.

From the previous proposition we get the following basic theorem.

Theorem 3.7. The modified Lévy-pseudometric is a pseudometric

on ∆.
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The next theorem points out a deep property linking pointwise conver-

gence in ∆ with the convergence w.r.t. the modified Lévy-pseudometric.

Theorem 3.8. The following statements are equivalent:

(i) d(Fn, F ) → 0 ;

(ii) Fn(x)→F (x) for any continuity point x of F and Fn(+∞)→F (+∞).

Proof. (i) ⇒ (ii). Since d(Fn, F ) → 0, we have Fn(+∞) → F (+∞)

and dS(Fn, F ) → 0, i.e. d∗
S(Fn, F ) → 0. Now, let x be a continuity point

of F . Given n, by definition of d∗
S, there is hn such that d∗

S(Fn, F ) ≤ hn <

d∗
S(Fn, F ) + 1

n
and (Fn, F ;hn), (F, Fn;hn) hold. Since d∗

S(Fn, F ) → 0, we

have hn → 0. Consequently, there is m such that x − hn, x + hn ∈ Ihn for

any n ≥ m; hence, for any n ≥ m, by Proposition 3.2, we have:

F (x − 2hn) − hn ≤

≤ F ((x − 2hn)+) − hn ≤ Fn((x − hn)+) ≤ Fn(x) ≤ Fn((x + hn)−) ≤

≤ F ((x + 2hn)−) + hn ≤ F (x + 2hn) + hn .

Now, taking limits as n → +∞, we get Fn(x) → F (x).

(ii) ⇒ (i). Let h < 1. Let x0 < x1 < . . . < xk be continuity points

of F such that x0 ≤ − 1
h
, xk ≥ 1

h
and xi+1 − xi < h (i = 0, 1, . . . , k − 1).

Then, there is m such that:

|Fn(xi) − F (xi)| < h (i = 0, 1, . . . , k)

for any n ≥ m. Now, let x ∈ Ih and n ≥ m. Then, x ∈ [xi, xi+1] for some

i and hence:

F ((x − h)+) − h ≤ F (xi) − h ≤ Fn(xi) ≤ Fn(x+
i ) ≤ Fn(x+)

Fn(x−) ≤ Fn(x) ≤ Fn(xi+1) ≤ F (xi+1) + h ≤ F ((x + h)−) + h .

Therefore, by Proposition 3.2, (F, Fn;h) holds. Analogously, one can

prove that (Fn, F ;h) holds for any n ≥ m. Consequently, dS(Fn, F ) =

d∗
S(Fn, F ) ≤ h for any n ≥ m. Then dS(Fn, F ) → 0 and hence, recalling

that |Fn(+∞) − F (+∞)| → 0, we get d(Fn, F ) → 0. This completes the

proof.
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Remark 3.9. (i) Going through the proof of the previous theorem,

one can see that the convergence w.r.t. the pseudometric dS is equivalent

to the pointwise convergence of finitely additive distribution functions at

all real continuity points of the limit function.

(ii) The previous theorem is a generalization of Theorem 4.2.5 in [7],

in which the authors consider the subspace of ∆ of distribution functions

F , left continuous on IR and such that F (+∞) = 1. Indeed, in this

subspace, the modified Lévy-pseudometric becomes dS; moreover, dS

is a metric (see Remark 3.4 and Lemma 3.5) and, by Proposition 3.2,

coincides with the metric dL introduced by Schweizer and Sklar.

4 – The set ba+(IR,A) as a pseudometric space

Following Kingman and Taylor ([5], Section 12.1), for any rational

numbers p and q(p < q), we consider the function φpq : IR → [0, 1] such

that:
φpq(x) = 1 , if x < p ,

=
q − x

q − p
, if p ≤ x ≤ q ,

= 0 , if x > q .

Since the set of functions φpq is countable, we can enumerate them

as Φ1, . . . ,Φn, . . . ; moreover, we put Φ0(x) = 1 for any x.

The following definition introduces a pseudometric on ba+(IR,A).

Definition 4.1. Given µ and µ′, let:

δ(µ, µ′) =
+∞∑

r=0

2−r|S
∫

Φr dµ′ − S

∫
Φr dµ| ,

where the integral is a Stieltjes type integral, in the sense of S-integral

(see Definition 4.5.5 in [1]).

In order to point out a very interesting property of this pseudometric,

we recall the following notion of convergence given in [2] (see Definition

4.1): the sequence (µn) converges in distribution to µ (notation: µn
d−→µ)

iff Fµn(+∞) → Fµ(+∞) and Fµn(x) → Fµ(x) at all continuity points x

of Fµ.
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Theorem 4.2. The following statements are equivalent:

(i) µn
d−→µ ;

(ii) δ(µn, µ)−→ 0 ;

(iii) S
∫

Φr dµn −→S
∫

Φr dµ, for all r .

Proof. (i) ⇒ (ii). By definition, we have ‖µn‖ = Fµn(+∞) →
Fµ(+∞) = ‖µ‖ and hence there is c such that I(r, n) = |S ∫

Φr dµn −
S

∫
Φr dµ| ≤ ‖µn‖ + ‖µ‖ < c, for all r and n. Let ε > 0. Then, there

is r′ such that
∑+∞

r=r′
c
2r < ε

2
. Moreover, by Characterization Theorem

4.11 in [2] (note that Φr ∈ RC(IR)), I(r, n) → 0 as n → +∞, for any

r; hence, there is n′ such that
∑r′−1

r=0 2−rI(r, n) < ε
2

for any n > n′.

Therefore, we get:

δ(µn, µ) =
+∞∑

r=0

2−r I(r, n) =
r′−1∑

r=0

2−r I(r, n) +
+∞∑

r=r′
2−r I(r, n) ≤

≤
r′−1∑

r=0

2−r I(r, n) +
+∞∑

r=r′

c

2r
<

ε

2
+

ε

2
= ε ,

for any n > n′. Consequently, δ(µn, µ) → 0.

(ii) ⇒ (iii). Given r, since I(r, n) ≤ 2rδ(µn, µ) for all n, we have

I(r, n) → 0 as n → +∞.

(iii) ⇒ (i). Going through the proof of the statement (iv) ⇒ (i)

related to Characterization Theorem 4.11 in [2], it is easy to see that this

statement can be strengthened to read: µn
d−→µ if S

∫
f dµn → S

∫
f dµ,

whenever f ∈ {Φ0,Φ1, . . . }. This completes the proof.

Remark 4.3. (i) We recall (see [2], p.55) that a sequence (µn) weakly

converges to µ iff S
∫

f dµn → S
∫

f dµ for any bounded continuous real

function f on IR which is S-integrable w.r.t. µ and µn for all n. It is then

interesting to note that this convergence is not, in general, equivalent to

the convergence w.r.t. the pseudometric δ (see Example 4.3 in [2]). On

the other side, by Corollary 4.13 in [2], the two convergences coincide in

the subspace of tight masses, i.e. masses µ without adherences at −∞ and

at +∞ (precisely, such that limx→−∞ Fµ(x) = 0 and limx→+∞ Fµ(x) =

‖µ‖). Consequently, in a σ-additive setting, the pseudometric δ is an

adequate tool to describe the weak convergence, as well.
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(ii) The previous theorem is a generalization of Theorem 12.2 in [5], in

which the authors consider the subspace ∆′ of ∆ of distribution functions

f , right continuous on IR and such that limx→−∞ F (x) = F (−∞) and

limx→+∞ F (x) = F (+∞) = 1 (i.e. σ-additive probability distribution

functions). Indeed, let A = B, with B the Borel σ-field on IR. Then the

map µ → Fµ determines a one-to-one correspondence between the subset

of probability measures in ba+(IR,B) and the subspace ∆′; moreover we

have S
∫

Φr dµ = L
∫

Φr dFµ for all r. Consequently, δ can be seen as

a pseudo-metric in ∆′ that coincides with the metric ρ considered by

Kingman and Taylor.

(iii) The previous theorem is a generalization of Theorem 5 in [8],

in which the author considers the subspace ∆′′ of distribution functions

F ∈ ∆, right continuous on IR and such that F (+∞) = 1. Indeed,

let M = {µ : Fµ = F, for some F ∈ ∆′′}, i.e. the set of prob-

ability masses without adherences at any real point. Then the map-

ping µ → Fµ determines a correspondence between M and ∆′′ such that

S
∫

Φr dµ = limx→−∞ Fµ(x) + RS
∫ +∞

−∞ Φr dFµ for all r. Consequently,

δ can be seen as pseudometric in ∆′′ that coincides with the metric dF

considered by Sempi.

5 – The topology of convergence in distribution

In order to use the machinery of general topology to investigate the

properties of the convergence in distribution, we introduce the following

suitable neighborhood systems for the set ba+(IR,A).

Definition 5.1. Given µ let:

- N (1)(µ) be the family of basic neighborhoods of µ of the form:

N (1)
ε,J1,... ,Jk

(µ) = {µ′ : |µ′(Ji) − µ(Ji)| < ε, i = 1, . . . , k} ,

where ε > 0 and J1, . . . , Jk are intervals such that µ∗(∂Ji) = 0

(i = 1, . . . , k) (recall that µ∗(A) = inf {µ(U) : U ∈ A, U open

and U ⊃ A}).
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- N (2)(µ) be the family of basic neighborhoods of µ of the form:

N (2)
ε,f1,... ,fk

(µ) = {µ′ : |S
∫

fi dµ′ − S

∫
fi dµ| < ε, i = 1, . . . , k} ,

where ε > 0 and f1, . . . , fk ∈ RC(IR).

- N (3)(µ) be the family of basic neighborhoods of µ of the form:

N (3)
ε,r1,... ,rk

(µ) = {µ′ : |S
∫

Φri
dµ′ − S

∫
Φri

dµ| < ε, i = 1, . . . , k} ,

where ε > 0 and Φr1
, . . . ,Φrk

are elements of the set {Φ0,Φ1, . . . }
introduced in the previous section.

The following basic theorem assures that these three neighborhood

systems determine the same topology on ba+(IR,A), called the topology

of convergence in distribution.

Theorem 5.2. The neighborhood systems {N (i)(µ)}(i = 1, 2, 3)

determine the same topology.

Proof. Since N (3)(µ) ⊂ N (2)(µ) for all µ, the proof is carried out in

the following two steps.

1◦. We claim that, given µ, any basic neighborhood in N (2)(µ) con-

tains a basic neighborhood in N (1)(µ). Let ε > 0 andf ∈ RC(IR). Con-

sider ε′ > 0 such that ε′‖µ‖ < ε
4
. Then, by Remark 3.7 (i) in [2], there

are a, b such that µ∗({a}) = µ∗({b}) = 0 and :

sup
x,y∈]−∞,a]

|f(x) − f(y)| < ε′, sup
x,y∈[b,+∞[

|f(x) − f(y)| < ε′ .

Moreover, by the uniform continuity of f on [a, b], there is δ > 0 such

that |f(x) − f(x′)| < ε′ for all x, x′ ∈ [a, b] and |x − x′| < δ.

Of course, by Remark 3.7 (i) in [2], we can choose x0, x1, . . . , xm such

that a = x0 < x1 < . . . < xm = b and:

xh+1 − xh < δ (h = 0, . . . , m − 1)

µ∗({xh}) = 0 (h = 0, . . . , m) .
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Finally, let:

Jh = ] − ∞, a[, if h = 0

= [xh−1, xh[, if h = 1, . . . , m − 1 ,

= [xm−1, xm], if h = m ,

= ]b, +∞[, if h = m + 1 .

Now, let µ′ ∈ N (1)
ε′′,IR,J0,... ,Jm+1

(µ), with ε′′ > 0 such that ε′′[ε′ + (m +

2) sup |f |] < ε
2
. Then, define the simple function:

fε′(x) = f(a), if x ∈ J0 ,

= f(xh−1), if x ∈ Jh (h = 1, . . . , m) ,

= f(b), if x ∈ Jm+1 .

Therefore, we have |f(x)−fε′(x)| < ε′ for all x. Consequently, keeping in

mind that |µ′(IR)−µ(IR)|<ε′′ and |µ′(Jh)−µ(Jh)| < ε′′(h = 0, . . ., m+1),

we get:

∣∣S
∫

f dµ − S

∫
f dµ′∣∣ ≤

∣∣S
∫

f dµ − S

∫
fε′ dµ

∣∣ +
∣∣S

∫
fε′ dµ +

− S

∫
fε′ dµ′∣∣ +

∣∣S
∫

fε′ dµ′ − S

∫
f dµ′∣∣ <

< ε′‖µ‖ +
∣∣f(a)[µ(J0) − µ′(J0)] +

m∑

h=1

f(xh−1)[µ(Jh) − µ′(Jh)]+

+ f(b)[µ(Jm+1) − µ′(Jm+1)]
∣∣ + ε′‖µ′‖ <

< ε′‖µ‖ + (m + 2)ε′′ sup |f | + ε′‖µ′‖ <

< ε′(ε′′ + 2‖µ‖) + (m + 2)ε′′ sup |f | < ε .

Thus N (1)
ε′′,IR,J0,... ,Jm+1

(µ) ⊂ N (2)
ε,f (µ). This proves the claim.

2◦. We claim that, given µ, any basic neighborhood in N (1)(µ) contains

a basic neighborhood in N (3)(µ). Let ε > 0 and J an interval with

end points a, b (a ≤ b) such that µ∗(∂J) = 0. First, assume that J is
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bounded and a < b. Then there are rational numbers ai, a
′
i, bi, b

′
i (i =

1, 2) such that a1 < a2 < a < a′
1 < a′

2 < b′
1 < b′

2 < b < b1 < b2

and µ([a1, a
′
2]) < ε

4
, µ([b′

1, b2]) < ε
4
. Let φ1 = φa1a2

, φ′
1 = φa′

1
a′
2

and

φ′
2 = φb′

1
b′
2
, φ2 = φb1b2 . Then, denoting by IJ the indicator function of J ,

we have φ′
2 − φ′

1 ≤ IJ ≤ φ2 − φ1 and hence:

S

∫
(φ′

2 − φ′
1)dµ′ ≤ µ′(J) ≤ S

∫
(φ2 − φ1)dµ′ ,

S

∫
(φ′

2 − φ′
1)dµ ≤ µ(J) ≤ S

∫
(φ2 − φ1)dµ .

Now, let µ′ ∈ N (3)
ε
8 ,φ1,φ′

1
,φ2,φ′

2
(µ). Then we have:

∣∣S
∫

(φ′
2 − φ′

1)dµ′ − S

∫
(φ′

2 − φ′
1)dµ

∣∣ ≤

≤
∣∣S

∫
φ′

2 dµ′ − S

∫
φ′

2dµ
∣∣ +

∣∣S
∫

φ′
1 dµ′ − S

∫
φ′

1 dµ
∣∣ <

ε

4
,

∣∣S
∫

(φ2 − φ1)dµ′ − S

∫
(φ2 − φ1)dµ

∣∣ ≤

≤
∣∣S

∫
φ2 dµ′ − S

∫
φ2 dµ

∣∣ +
∣∣S

∫
φ1 dµ′ − S

∫
φ1 dµ

∣∣ <
ε

4
,

S

∫
(φ2 − φ1)dµ − S

∫
(φ′

2 − φ′
1)dµ = S

∫
(φ′

1 − φ1)dµ + S

∫
(φ2 − φ′

2)dµ ≤

≤ µ([a1, a
′
2]) + µ([b′

1, b2]) <
ε

2

and hence |µ′(J) − µ(J)| ≤ ε
4

+ ε
2

+ ε
4

= ε.

Thus, N (3)
ε
8 ,φ1,φ′

1
,φ2,φ′

2
(µ) ⊂ N (1)

ε,J (µ).

Now, let a = b. The proof is similar to the previous one (consider

only the functions φ1 and φ2 with µ([a1, b2]) < ε
2
).

Finally, let J be unbounded. The proof in this case may be carried

out in a similar way:if a = −∞ and b ∈ IR, consider only the functions

φ2 and φ′
2; if b = +∞ and a ∈ IR, consider only the functions φ1, φ

′
1 and

Φ0; if J = IR, consider only the function Φ0. This proves the claim. This

completes the proof.
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The following theorem links convergence in distribution, the modified

Lévy pseudometric, the pseudometric δ and the topology of convergence

in distribution.

Theorem 5.3. The following statements are equivalent:

(i) µn
d−→µ;

(ii) d(Fµn , Fµ) → 0;

(iii) δ(µn, µ) → 0;

(iv) µn converges to µ under the topology of convergence in distribution.

Proof. The statements (i) ⇔ (ii) and (i) ⇔ (iii) immediately follow

from Theorems 3.8 and 4.2, respectively. The statement (i) ⇔ (iv) eas-

ily follows from Characterization Theorem 4.11 in [2] and Theorem 5.2

(consider the neighborhood system {N (1)(µ)}).

Since the topology of convergence in distribution satisfies the first

axiom of countability (consider the basic neighborhoods N (3)
1/n,r1,... ,rk

(µ)

for any µ) from the previous theorem we get the following basic result.

Theorem 5.4. The topology of convergence in distribution is pseu-

dometrizable (e.g. by the pseudometric δ).

In the next theorem, regarding the relative compactness in ba+(IR,A),

a set of masses is called bounded if it is bounded w.r.t. the pseudometric

δ (or, equivalently, w.r.t. the norm ‖ · ‖).

Theorem 5.5. Any bounded set of masses is relatively compact

w.r.t. the topology of convergence in distribution. In particular, any

closed ball in (ba+(IR,A), δ) is compact and hence (ba+(IR,A), δ) is locally

compact.

Proof. Given a bounded sequence (µn), we consider the correspond-

ing equibounded sequence (Fµn) of finitely additive distribution functions.

Now, as in the proof of Helly’s first theorem, we can select, following the

well known diagonal procedure, a subsequence (Fµkn
) converging to a

finitely additive distribution function F at +∞ and at all real continuity

points of F . Consequently, µkn

d−→µ, where µ is any mass such that
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F = Fµ (the existence of µ follows from Theorem 3.3 in [2]). Therefore,

by Theorem 5.3, (µkn) converges to µ under the topology of convergence

in distribution. This completes the proof.

Theorem 5.6. The pseudometric space (ba+(IR,A), δ) is a σ-

compact Polish space.

Proof. The σ-compactness follows from Theorem 5.5, on noting that

ba+(IR,A) = ∪nBn with Bn = {µ : δ(µ, 0) ≤ n} for all n. Moreover, since

any Cauchy sequence is bounded, from the previous theorem we get the

completeness. Finally, since any closed ball is compact (see Theorem 5.5)

and hence separable, we can select in Bn a denumerable dense subset Dn

for all n. Consequently, the set ∪nDn is a denumerable dense subset of

ba+(IR,A). This completes the proof.
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