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On G-Lie foliations with transverse CR structure

E. BARLETTA – S. DRAGOMIR

Riassunto: Si studia la relazione che intercorre fra le CR strutture su algebre
di Lie reali e le G foliazioni di Lie (nel senso di E. Fedida [4]). Si mostra che la
coomologia di Kohn-Rossi trasversa di una G-foliazione di Lie completa F a struttura
CR trasversa e foglie dense è isomorfa alla coomologia di Kohn-Rossi dell’algebra di
Lie strutturale di F . Si classificano (a meno di omotopia) le f-strutture nel fibrato
normale di una G-foliazione di Lie.

Abstract: We study the interplay between CR structures on real Lie algebras and
G-Lie foliations (in the sense of E. Fedida [4]). We show that the transverse Kohn-
Rossi cohomology of a complete G-Lie foliation F with transverse CR structure and
dense leaves is isomorphic to the Kohn-Rossi cohomology of the structural Lie algebra
of F . We classify (up to homotopy) the f-structures in the normal bundle of a G-Lie
foliation.

1 – Introduction

A theory of CR structures on real Lie algebras has been developed

in a series of recent papers by G. Gigante & G. Tomassini [5], and S.

Donnini & G. Gigante [3]. If G is a real q-dimensional Lie algebra, a

complex subalgebra a ⊂ G ⊗R C is a CR structure on G if a ∩ a = (0).

On the other hand, let ω ∈ Ω1(M, G) be a Maurer-Cartan form on
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M , i.e. a G-valued 1-form on M satisfying the Maurer-Cartan equation:

dω +
1

2
[ω, ω] = 0

Set Px = Ker(ωx) for any x ∈ M . If ωx : Tx(M) → G is on-to for any

x ∈ M then P is a smooth involutive distribution on M and therefore

gives rise to a foliation F of codimension q of M . This is a G-Lie foliation,

a terminology owing to E. Fedida [4].

As a last piece of the mozaic we are going to mend , we recall the

notion of a transverse CR structure (coinciding with an ordinary CR

structure for the trivial foliation by points), cf. E. Barletta and S.

Dragomir [1]. The aim of the present paper is to investigate the in-

terplay between CR structures on real Lie algebras and transverse CR

structures on G-Lie foliations. Given a G-Lie foliation F of M , any CR

structure on G is observed to give rise naturally to a transverse CR struc-

ture on (M, F). If F has dense leaves the converse is shown to hold

as well. Moreover, if F is a complete G-Lie foliation with dense leaves

carrying the transverse CR structure H arising from a CR structure a

on G then we show that the transverse Kohn-Rossi cohomology groups

of (M, F ,H) are isomorphic with the Kohn-Rossi cohomology groups of

(G,a) (cf. Theorem 1).

With any nondegenerate transverse CR structure on a foliation F
one may associate a natural f-structure in the normal bundle of F . We

give a homotopy classification of f -structures in the normal bundle of a

G-Lie foliation (cf. Theorem 2).

2 – G-Lie foliations and transverse CR structures

Let F be a codimension q foliation on the C∞ manifold M . The

notations and conventions we adopt are mainly those in P. Molino [8].

Let P = T (F) and Q = ν(F) be respectively the tangent and normal

bundles of the foliation, and let π : T (M) → Q be the natural bundle

morphism. Let L(M, F) be the Lie algebra of foliated vector fields on M .

A foliation F of M is transversally parallelizable if there are q globally

defined foliated vector fields Y1, · · · , Yq ∈ L(M, F) so that the associated

transverse vector fields πY1, · · · , πYq are linearly independent at any point

x ∈ M . Any G-Lie foliation is known to be transversally parallelizable.
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Indeed, let F be a G-Lie foliation of M and {E1, · · · , Eq} a basis of G.

The map ωx induces a R-linear isomorphism:

ω̂x : Qx → G , x ∈ M

Let sj ∈ Γ∞(Q) so that ω̂x(sj(x)) = Ej and Yj ∈ X (M) so that πYj =

sj , 1 ≤ j ≤ q. Then Yj ∈ L(M, F) (so that F is transversally paralleliz-

able) and:

(1) ω([Yi, Yj]) = [Ei, Ej] 1 ≤ i, j ≤ q .

(Cf. e.g. Lemma 11.1 in P. Tondeur [10], p. 145.) If the foliated vector

fields Y1, · · · , Yq can be chosen to be complete (i.e. such that each Yi

induces a global 1-parameter group of global transformations of M) then

F is a complete G-Lie foliation.

Let G be a real Lie algebra and a ⊂ G ⊗R C a CR structure on G. Set

A = Re{a ⊕ a}. Throughout an overbar denotes complex conjugation.

The integer k = dimR G/A is the codimension of a. Note that A carries

the complex structure J : A → A given by J(Z + Z) = i(Z − Z) for any

Z ∈ a. Here i =
√

−1.

Let G be a Lie group. Let T1,0(G) be a CR structure on G (in the

sense of A. Boggess [2], p. 120). Then (G, T1,0(G)) is a CR Lie group

if for any h ∈ G the left translation Lh : G → G , Lh(g) = hg , g ∈ G, is

a CR map (cf. [2], p. 149).

Let G be a real Lie algebra and a ⊂ G ⊗R C a CR structure. By a

classical result in Lie group theory, there is a unique connected and simply

connected Lie group so that its Lie algebra (of left invariant vector fields)

is G. Then G is a CR Lie group. Indeed, set:

T1,0(G)g = (deLg)evea

for any g ∈ G. Here eve is the (C-linear extension to G ⊗R C of the) R-

linear isomorphism G ≈ Te(G) given by the evaluation of invariant vector

fields at e (and e is the identity in G). Then T1,0(G) is a left invariant

CR structure on G.

We are mainly interested in CR structures (on real Lie algebras) of

codimension k = 1. If this is the case, one may recover the tools of
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pseudohermitian geometry (in the sense of S. Webster [12]). Precisely,

let G be a real Lie algebra and:

dG : ΛsG∗ → Λs+1G∗ , s ≥ 0

the Chevalley-Eilenberg complex of G. Let a be a CR structure on G. A

form θ ∈ G∗ is a pseudohermitian structure on (G,a) if Ker(θ) = A. If

θ, θ′ are two pseudohermitian structures on (G,a) then θ′ = λθ for some

λ ∈ R , λ .= 0. The Levi form of (G,a) is given by:

Gθ(X, Y ) = (dGθ)(X, JY )

for any X, Y ∈ A. Clearly Gλθ = λGθ. Next (G,a) is nondegenerate if

Gθ is nondegenerate for some pseudohermitian structure θ on (G,a) (and

thus for all). If (G,a) is nondegenerate and a pseudohermitian structure

θ has been fixed then there is a unique T ∈ G , T .= 0, so that:

θ(T ) = 1 , T A dGθ = 0

(the characteristic direction of dGθ). Let (G,a) be a real Lie algebra

carrying a CR structure and (G, T1,0(G)) the corresponding CR Lie group.

As (G, T1,0(G)) is a CR manifold, we may consider its tangential Cauchy-

Riemann complex:

∂G : Γ∞(ΛsT0,1(G)∗) → Γ∞(Λs+1T0,1(G)∗) , s ≥ 0

where T0,1(G) = T1,0(G). An element α ∈ Γ∞(ΛsT0,1(G)∗) is left invari-

ant if:

(2) αag((dgLa)V1, · · · , (dgLa)Vs) = αg(V1, · · · , Vs)

for any V1, · · · , Vs ∈ T0,1(G)g , g ∈ G , a ∈ G. The left hand side of (2)

makes sense because La is a CR map. Let Γ∞
inv(Λ

sT0,1(G)∗) be the space

of all left invariant C∞ sections α in ΛsT0,1(G)∗. The tangential Cauchy-

Riemann operator ∂G descends (because it commutes with the pullback

of forms by left translations) to a differential operator:

∂G : Γ∞
inv(Λ

sT0,1(G)∗) → Γ∞
inv(Λ

s+1T0,1(G)∗) .

There is a natural C-linear isomorphism:

Is : Λsa∗ → Γ∞
inv(Λ

sT0,1(G)∗) , s ≥ 0 .
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Set:

∂G = I−1
s+1 ◦ ∂G ◦ Is

We obtain a complex:

(3) ∂G : Λsa∗ → Λs+1a∗ , s ≥ 0 .

This is the Cauchy-Riemann complex of (G,a) and its cohomology:

H0,s(G,a) = Hs(Λ· a∗, ∂G)

is the Kohn-Rossi cohomology of (G,a). We may state the following:

Theorem 1. Let F be a G-Lie foliation of M determined by the

Maurer-Cartan form ω ∈ Ω1(M, G). Then:

1) If a is a CR structure on G (of codimension k) then Hx = ω̂−1
x (a), x ∈

M , is a transverse CR structure on (M, F) (of transverse CR codimens-

sion k). If additionally F has at least a dense leaf then any transverse

CR structure H on (M, F) determines a unique CR structure a on G.

2) Let F be complete and let a be a CR structure on G. If (G,a) is

nondegenerate and F has dense leaves then:

Hs
∂Q

(M, F) ≈ H0,s(G,a) , s ≥ 0

that is the transverse Kohn-Rossi cohomology of (F ,H) is isomorphic to

the Kohn-Rossi cohomology of (G,a).

We shall prove Theorem 1 in section 4. The complex (3) admits a

simple description when (G,a) is nondegenerate. Indeed, if this is the

case then let T ∈ G, T .= 0, so that θ(T ) = 1 and T A dGθ = 0. A s-form

α ∈ ΛsG∗ ⊗ C is a (0, s)-form (or a form of type (0, s)) if a A α = 0 and

T A α = 0. There is a natural identification of Λsa∗ with the space of

all (0, s)-forms on G. Then one may redefine ∂G as follows. Let α be a

(0, s)-form on G. Then ∂Gα is the unique (0, s+1)-form on G so that ∂Gα

and dGα coincide when both are restricted to a ⊗ · · · ⊗ a (s + 1 terms).

Let F be a codimension q = 2n+1 foliation of M and H a nondegen-

erate transverse CR structure of transverse CR dimension n on (M, F).

Fix a transverse pseudohermitian structure θ and let ξ be the characteris-

tic direction of dQθ. We may prolongate the complex structure JQ of the
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transverse Levi distribution H to a (holonomy invariant) endomorphism

of Q by requesting that JQξ = 0. Then J3
Q+JQ = 0. A f-structure in Q is

a bundle endomorphism J : Q → Q so that J3 +J = 0 and rank(J) = 2n

Then JQ : Q → Q is a (holonomy invariant) f -structure in Q (induced

by (H, θ)). Set:

G = {g ∈ GL(2n + 1,R) : g J0 = J0 g}

where:

J0 =




0 0 0

0 0 −In

0 In 0




Let p1
T : B1

T (M, F) → M be the principal GL(2n + 1,R)-bundle of all

transverse frames and Y (M, F) the associated bundle with standard fibre

the homogeneous space GL(2n+1,R)/G. Any f -structure in Q is a cross-

section in Y (M, F). We may state the following:

Theorem 2. Let F be a G-Lie foliation of M of codimension 2n+1.

Then the set of homotopy classes of f-structures in ν(F) is in a one-to-

one and on-to correspondence with the set of homotopy classes of con-

tinuous maps from M to GL+(2n+1,R)/GL1(n,C) where GL1(n,C) =

GL(n,C) ∩ SL(2n,R).

3 – A reminder of transverse CR geometry

Let F be a codimension q = 2n + k foliation of M and
◦
∇ its Bott

connection. Let H ⊂ Q ⊗ C be a complex subbundle of complex rank n.

Set:

H = Re{H ⊕ H}

Then H carries the complex structure JQ : H → H given by JQ(α+α) =

i(α−α) for any α ∈ Γ∞(H). The following notion was central for [1]. One

calls H a transverse almost CR structure (of transverse CR dimension n

and transverse CR codimension k) if 1) H ∩ H = (0), 2) H is parallel

with respect to the Bott connection of F (i.e.
◦
∇XΓ∞(H) ⊆ Γ∞(H) for

any X ∈ Γ∞(P )), and 3) LXJQ = 0 for any X ∈ Γ∞(P ). The Lie

derivatives are defined with respect to the Bott connection, for instance
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(LXJQ)s =
◦
∇XJQs − JQ

◦
∇Xs for any s ∈ Γ∞(H). Also, if ω ∈ Γ∞(ΛkQ∗)

and s1, · · · , sk ∈ Γ∞(Q) then:

(LXω)(s1,· · ·, sk)=X(ω(s1,· · ·, sk)) −
k∑

j=1

ω(s1,· · ·, sj−1,
◦
∇Xsj, sj+1,· · ·, sk)

for any X ∈ Γ∞(P ). We denote by Γ∞
B (ΛkQ∗) the space of all C∞ sections

ω in ΛkQ∗ with LXω = 0 for any X ∈ Γ∞(P ). Let:

dB : Ωs
B(M, F) → Ωs+1

B (M, F) , s ≥ 0

be the basic complex of the foliated manifold (M, F). There exist natural

isomorphisms:

Φs : Γ∞
B (ΛsQ∗) → Ωs

B(M, F) , s ≥ 0

and therefore an induced complex:

dQ : Γ∞
B (ΛsQ∗) → Γ∞

B (Λs+1Q∗) , s ≥ 0

Given a transverse almost CR structure H on (M, F) of transverse CR

codimension k = 1, a transverse pseudohermitian structure on (F ,H)

is a nowhere zero form θ ∈ Γ∞
B (Q∗) so that Ker(θ) = H. Given two

transverse pseudohermitian structures θ and θ′ we have θ′ = λθ for some

nowhere vanishing λ ∈ Ω0
B(M, F). The transverse Levi form Gθ of (F ,H)

is given by:

Gθ(s, r) = (dQθ)(s, JQr)

for any s, r ∈ Γ∞(H). Then Gλθ = λGθ. We term H nondegenerate if Gθ

is nondegenerate for some θ (and thus for all).

As to the geometric meaning of the requirements 1)-3) in the defi-

nition of the notion of a transverse almost CR structure, let us mention

that given a leaf L of F and γ : [0, 1] → L a smooth curve in L then:

(4) τγ Hγ(0) = Hγ(1)

where τγ : Qγ(0) → Qγ(1) is the holonomy map. Indeed, let s be a solution

of the ODE:

(5)
( ◦
∇dγ/dts

)
γ(t)

= 0
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of initial data s(γ(0)) ∈ Hγ(0). Then:

d

dt
{θ(s(γ(t)))} = {(Ldγ/dtθ)s}γ(t) = 0

hence θ(s) ◦ γ = const. on [0, 1]. Since s(γ(0)) ∈ Hγ(0) then 0 =

θ(s)γ(0) = θ(s)γ(1) that is s(γ(1)) ∈ Hγ(1) ⊗R C. In a similar way, we may

show (as LXJQ = 0) that:
JQ ◦ τγ = τγ ◦ JQ

Then JQ,γ(1)s(γ(1)) = i s(γ(1)) hence s(γ(1)) ∈ Hγ(1).

Let 5(M, F) be the Lie algebra of all transverse vector fields. Let

Γ∞
B (Q) consist of all s ∈ Γ∞(Q) so that LXs = 0 for any X ∈ Γ∞(P ).

Note that:

Γ∞
B (Q) = 5(M, F)

(so that the Lie product [s, r] of any s, r ∈ Γ∞
B (Q) is well defined). A

transverse almost CR structure H ⊂ Q⊗C is integrable if for any x ∈ M

there is an open neighborhood U ⊆ M and a frame {ζ1, · · · , ζn} of H on U

so that ζα ∈ Γ∞
B (Q⊗C) and [ζα, ζβ] ∈ Γ∞(H) for any 1 ≤ α, β ≤ n. Such

a (local) frame of H is termed admissible. An integrable transverse almost

CR structure is a transverse CR structure on (M, F). Let (N,T1,0(N))

be a CR manifold of type (n, k) and Γ∞
CR(N) the pseudogroup of all C∞

local CR automorphisms of (N,T1,0(N)). A Γ∞
CR(N)-foliation of M (in

the sense of A. Haefliger [6]) is a transversally CR foliation (or a CR

foliation) of M of transverse CR dimension n and transverse CR codi-

mension k. Any CR foliation F is known (cf. [1]) to possess a transverse

CR structure H (induced by that of the model CR manifold (N,T1,0(N))).

Moreover, for any transversally orientable CR foliation F of transverse

CR codimension k = 1 whose transverse CR structure H is nondegener-

ate, and for any fixed transverse pseudohermitian structure θ ∈ Γ∞
B (Q∗)

there is (cf. [1]) a unique nowhere zero ξ ∈ Γ∞
B (Q) so that θ(ξ) = 1 and

ξ A dQθ = 0 (the characteristic direction of dQθ).

Let (N, T1,0(N)) be a CR manifold and:

∂N : Γ∞(ΛsT0,1(N)∗) → Γ∞(Λs+1T0,1(N)∗) , s ≥ 0

its tangential Cauchy-Riemann complex. Assume that (N,T0,1(N)) is

nondegenerate (of hypersurface type). Let θN be a fixed pseudohermitian

structure on N and TN the global nowhere zero tangent vector field on
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N so that θNTN = 1 and T A dθN = 0. A CR map f : N → N is

pseudohermitian if f∗θN = θN and (dxf)TN,x = TN,f(x) for any x ∈ N . If

f : N → N is pseudohermitian then f∗∂N = ∂Nf∗. For instance, let G

be a CR Lie group and G its Lie algebra. Let a be the CR structure of

G (associated with the left invariant CR structure of G). Let θ0 ∈ G∗ be

a pseudohermitian structure on (G,a). Then θ = I1θ0 is a left invariant

pseudohermitian structure on G. Consequently any left translation La is

a pseudohermitian map of (G, θ) into itself (and L∗
a ∂G = ∂G L∗

a).

4 – Proof of Theorem 1

Let a ⊂ G ⊗R C be a CR structure on G and set:

Hx = ω̂−1
x (a) ⊂ Qx ⊗R C

for any x ∈ M . As ω̂x is a real operator it commutes with complex

conjugation. Thus Hx ∩ Hx = (0). We need to check that H and JQ

are parallel with respect to the Bott connection of (M, F). Assume the

basis {E1, · · · , E2n+k} of G is chosen so that {E1, · · · , E2n} ⊂ A and

Eα+n = JEα. Let X ∈ Γ∞(P ) and s ∈ Γ∞(H). There exist functions

f j ∈ Ω0(M) , 1 ≤ j ≤ 2n, so that s = f jsj. Let Ys ∈ X (M) so that

πYs = s. Then:

Ys = f jYj + Xs

for some Xs ∈ Γ∞(P ). Since Yj ∈ L(M, F) we have π[X, Yj] = 0 so that:

◦
∇Xs = X(f j)sj ∈ Γ∞(H)

Note that:

(JQ)x = ω̂−1
x ◦ J ◦ ω̂x

for any x ∈ M . Then JQsα =sα+n and JQsα+n =−sα. Finally LXsj = 0

yields (LXJQ)sj = 0. Let us check that H is integrable. Let ζα ∈
5(M, F) ⊗ C defined by ζα(x) = ω̂−1

x (Eα − iEα+n) for any x ∈ M , 1 ≤
α ≤ n. Then {ζα} is a global admissible frame of H. Indeed (by (1)) we

have:

ω̂([ζα, ζβ])x = [Eα − iEα+n, Eβ − iEβ+n] ∈ a

as a is an algebra. Therefore H is a transverse CR structure. Viceversa,

let H be a transverse CR structure on (M, F). Let {E1, · · · , E2n+k} be a
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basis of G and sj ∈ Γ∞(Q) so that ω̂(sj) = Ej. Let x ∈ M and let U ⊆ M

be an open neighborhood of x in M . Let {ζ1, · · · , ζn} an admissible frame

of H on U . Set:

ax =
n∑

α=1

C ω̂(ζα)x ⊂ G ⊗R C

The definition of ax doesn’t depend upon the choice of admissible frame

{ζ1, · · · , ζn} on U . The resulting map x 0→ ax is locally constant. Indeed,

there exist C∞ functions λj
α : U → C so that ζα = λj

αsj. As sj ∈ Γ∞
B (Q)

then λj
α are basic functions. Since at least one leaf of F is dense, each

basic function is a constant. Thus ax =
∑n

α=1 Cλj
αEj = const. on U . Yet

M is connected so that x 0→ ax is a constant map. Set a = ax , x ∈ M .

Then a is a CR structure on G.

To prove the second statement in Theorem 1 we need to recall a few

facts on the structure of complete G-Lie foliations (cf. e.g. [8], p. 112-117).

Let F be a complete G-Lie foliation of M . Let G be the unique connected

and simply connected Lie group whose Lie algebra is G. Let M ×G → M

be the trivial principal G-bundle (whose right translations Rh are given

by Rh(x, g) = (x, hg), for any x ∈ M, g, h ∈ G). Let Gω be the real

q-dimensional Lie algebra spanned (over R) by {s1, · · · , sq} ⊂ Γ∞
B (Q).

Then Gω is a subalgebra of 5(M, F) (the inclusion Gω ⊂ 5(M, F) is strict,

in general) isomorphic to G. Let Lω be the Lie subalgebra of L(M, F)

consisting of all foliated vector fields whose associated transverse vector

fields are elements of Gω. The lift Ỹ ∈ X (M × G) of Y ∈ Lω is given by:

(6) Ỹ(x,g) = (dxψ
g)Yx + (dgψx)(ωxYx)g

for any (x, g) ∈ M × G. Here ψg(x) = ψx(g) = (x, g). Set:

Γ(x,g) = {Ỹ(x,g) ∈ T(x,g)(M × G) : Y ∈ Lω}

Then Γ is a connection in the principal G-bundle M × G over M . By

(4.3) in [8], p. 113, Γ is flat and the leaves of the arising foliation are the

holonomy bundles of Γ. Let M̃ be a leaf of the foliation determined by

Γ. Let p1 : M × G → M and p2 : M × G → G be the natural projections

and p : M̃ → M and fω : M̃ → G gotten respectively as restrictions

of pi , i = 1, 2, to the leaf M̃ . Then the central result of [4] states that

p : M̃ → M is a covering map, while fω : M̃ → G (the developing map of
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the complete G-Lie foliation F) is a locally trivial bundle; moreover, the

pullback p∗F of F via p : M̃ → M and the simple foliation defined by

the submersion fω : M̃ → G actually coincide.

Let G be a real (2n + 1)-dimensional Lie algebra. Let a ⊂ G ⊗R C

be a nondegenerate CR structure on G and θ0 ∈ G∗ a pseudohermitian

structure on (G,a). Let T ∈ G , T .= 0, be the characteristic direction of

dGθ0. Let F be a complete G-Lie foliation of M . Let {E1, · · · , E2n+1} be

a basis of G so that E2n+1 = T . Set:

(7) ξx = ω̂−1
x (T ) , x ∈ M

Then ξ ∈ Γ∞
B (Q). Moreover, set:

(θs)x = θ0 ω̂(s)x , x ∈ M

for any s ∈ Γ∞(Q). It is then straightforward that θ ∈ Γ∞
B (Q∗) and:

θ(ξ) = 1 , ξ A dQθ = 0

That is, as (G,a) is nondegenerate (F , H) is nondegenerate as well, and

ξ is the characteristic direction of dQθ. Let α ∈ Γ∞
B (ΛsH∗

). Set:

α̃ = p∗Φsα

As Φsα ∈ Ωs
B(M, F) ⊗ C we have α̃ ∈ Ωs

B(M̃, p∗F) ⊗ C (cf. also [10],

p. 148). Let g ∈ G and X1, · · · , Xs ∈ Tg(G). Consider x̃ ∈ f−1
ω (g) and

V1, · · · , Vs ∈ Tx̃(M̃) so that (dx̃fω)Vj = Xj , 1 ≤ j ≤ s. We define a

s-form fωα̃ on G by setting:

(fωα̃)g(X1, · · · , Xs) = α̃x̃(V1, · · · , Vs)

Step 1. The definition of (fωα̃)g(X1, · · · , Xs) doesn’t depend upon

the choice of x̃ ∈ f−1
ω (g) and V1, · · · , Vs ∈ Tx̃(M̃) so that (dx̃fω)Vj =

Xj , 1 ≤ j ≤ s.

For the sake of simplicity we check this statement for s = 1 only. Let

x̃, x̃′ ∈ f−1
ω (g) and V ∈ Tx̃(M̃) , V ′ ∈ Tx̃′(M̃) so that:

(dx̃fω)V = X , (dx̃′fω)V ′ = X
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There are x, x′ ∈ M so that x̃ = (x, g) and x̃′ = (x′, g). We distinguish

two cases, as I) there is a connected component L̃ of f−1
ω (g) so that

x̃, x̃′ ∈ L̃, or II) x̃ and x̃′ lie in two distinct connected components of

f−1
ω (g). If case I) occurs, then L̃ is a leaf of p∗F . Also L = p(L̃) is a leaf

of F and p : L̃ → L is a Galois covering. As (d(x,g)p)T (p∗F)(x,g) = Px the

map d(x,g)p induces a R-linear isomorphism:

[d(x,g)p] : ν(p∗F)(x,g) → Qx

It commutes with the holonomy maps. Indeed, let γ̃ : [0, 1] → L̃ be a

smooth curve so that γ̃(0) = x̃ and γ̃(1) = x̃′. Set γ = p ◦ γ̃. Then γ is a

smooth curve in the leaf L (connecting x and x′). Let τγ : Qx → Qx′ and

τγ̃ : ν(p∗F)(x,g) → ν(p∗F)(x′,g) be the corresponding holonomy maps. To

show that:

τγ ◦ [d(x,g)p] = [d(x′,g)p] ◦ τγ̃

consider the solution s̃ of the ODE:

( ◦
∇dγ̃/dts̃

)
γ̃(t)

= 0

with initial data s̃((x, g)) ∈ ν(p∗F)(x,g) (the same symbol
◦
∇ denotes the

Bott connection of p∗F , as well). It suffices to show that:

s(γ(t)) = [dγ̃(t)p]s̃(γ̃(t))

satisfies the ODE (5). Set:

Ys(γ(t)) = (dγ̃(t)p)Ys̃(γ̃(t))

where Ys̃ ∈ X (M̃) is chosen so that π̃Ys̃ = s̃ (and π̃ : T (M̃) → ν(p∗F) is

the natural bundle morphism). Then πYs = s and we may conduct the

following computation:

0 = [dγ̃(t)p]
( ◦
∇dγ̃/dts̃

)
γ̃(t)

= [dγ̃(t)p]π̃γ̃(t)

[dγ̃

dt
, Ys̃

]
γ̃(t)

=

= πγ(t)(dγ̃(t)p)
[dγ̃

dt
, Ys̃

]
γ̃(t)

= πγ(t)

[dγ

dt
, Ys

]
γ(t)

= (
◦
∇dγ/dts)γ(t)
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To show that:

(8) α̃(x,g)V = α̃(x′,g)V
′

we need two facts. Firstly, let [d(x,g)fω] : ν(p∗F)(x,g) → Tg(G) be the R-

linear isomorphism induced by d(x,g)fω (as Ker(d(x,g)fω) = T (p∗F)(x,g)).

Then (cf. [8], p. 24) we have:

(9) τγ̃ = [d(x′,g)fω]−1 ◦ [d(x,g)fω] .

Next:

(10) αx = αx′ ◦ τγ .

Indeed, let s0 ∈ Hx and let s(γ(t)) be the solution of the ODE (5) with

s(γ(0)) = s0. Then τγs0 ∈ Hx′ (by (4)). Moreover, as α ∈ Γ∞
B (H∗

) we

have Ldγ/dtα = 0 and therefore:

d

dt

{
α(s)γ(t)

}
= 0

i.e. α(s)γ(t) = const., etc. Using (10) we may conduct the following

computation:

α̃(x′,g)V
′ = (p∗Φ1α)(x′,g)V

′ = (Φ1α)x′(d(x′,g)p)V ′ =

= αx′ [d(x′,g)p]π̃(x′,g)V
′ = αxτ

−1
γ [d(x′,g)p]π̃(x′,g)V

′ =

= αx[d(x,g)p]τ−1
γ̃ π̃(x′,g)V

′ .

Moreover:

(d(x,g)fω)V = (d(x′,g)fω)V ′

so that (by (5)):

[d(x,g)fω]π̃(x,g)V = [d(x′,g)fω]π̃(x′,g)V
′ = [d(x,g)fω]τ−1

γ̃ π̃(x′,g)V
′

that is:

τγ̃(π̃(x,g)V ) = π̃(x′,g)V
′
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Therefore, we may conclude with the following computation:

α̃(x′,g)V
′ = αx[d(x,g)p]τ−1

γ̃ π̃(x′,g)V
′ = αx[d(x,g)p]π̃(x,g)V =

= αxπx(d(x,g)p)V = (Φ1α)x(d(x,g)p)V = (p∗Φ1α)(x,g)V = α̃(x,g)V

and (8) is completely proved.

If case II) occurs, let L̃ be the connected component of x̃ in f−1
ω (g)

(so that L̃ is a leaf of p∗F) and let L = p(L̃) be the corresponding leaf

of F . Since F has at least one dense leaf one has Ω0
B(M, F) = R. Yet F

is complete so that (by Prop. 4.2 in [8]) all leaves of F are dense in M .

As L is dense then there is a sequence (xj)j∈N in L which tends to x′ as

j → ∞. Let x̃j ∈ L̃ so that p(x̃j) = xj , j ∈ N. By the arguments in case

I) we obtain:

(11) α̃x̃V = α̃x̃j
Vj

where Vj ∈ Tx̃j
(M̃) are chosen so that (dx̃j

fω)Vj = X , j ∈ N. As p is a

covering map, we may choose open neighborhoods Ũ ⊆ M̃ and U ⊆ M

of x̃′ and x′ respectively so that p : Ũ → U is a diffeomorphism. Then

x̃j ∈ Ũ for any j ≥ j0 and some j0 ≥ 1 (and thus limj→∞ x̃j = x̃′).

However, this remark and (11) do not yield (8) directly (since there is

no natural candidate for V ′ there). Indeed (11) doesn’t necessarily imply

that (Vj)j∈N is convergent in T (M̃) (by analogy, given aj = 1/j and bj = j

then aj is convergent and the product ajbj is constant, yet bj is divergent).

We circumvent these difficulties as follows. Since Vj ∈ Tx̃j
(M̃) = Γx̃j

(and

Γ is determined by the Lie algebra Lω) then there is Xj ∈ Txj
(M) so that:

Vj = (dxj
Ψg)Xj + (dgΨxj

)(ωxj
Xj)g

Let evg : G → Tg(G) be the evaluation of (invariant) fields at g (an

isomorphism). Then:

(dx̃j
p)Vj = Xj

πxj
Xj = ω̂−1

xj
(ev−1

g X)

as p ◦ Ψg = 1 and p ◦ Ψx = const., respectively fω ◦ Ψg = const. and
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fω ◦ Ψx = 1. We may conduct the computation:

α̃x̃j
Vj = (p∗Φ1α)x̃j

Vj = (Φ1α)xj
(dx̃j

p)Vj =

= αxj
πxj

Xj = αxj
ω̂−1

xj
(ev−1

g X)

Yet x 0→ αxω̂
−1
x (ev−1

g X) is an element of Ω0(M) ⊗ C and therefore con-

tinuous. Thus:

lim
j→∞

α̃x̃j
Vj = αx′ω̂−1

x′ (ev−1
g X)

Let s ∈ Gω be defined by:

s(y) = ω̂−1
y (ev−1

g X)

for any y ∈ M . Choose Y ∈ Lω so that πY = s and set V ′′ = Ỹx̃′ where

Ỹ is the lift of Y (given by (6)). Then:

α̃x̃′V ′′ = αx′πx′Yx′ = αx′s(x′) = αx′ω̂−1
x′ (Φ−1

x′ (ev−1
g X))

so that:

lim
j→∞

α̃x̃j
Vj = α̃x̃′V ′′

Let j → ∞ in (11). We obtain:

(12) α̃x̃V = α̃x̃′V ′′ .

Note that V ′′ − V ′ ∈ Ker(dx̃′fω) = T (p∗F)x̃′ . Yet p∗T (p∗F) = P so that

p∗V
′′ = p∗V

′ + Y for some Y ∈ Px′ . Finally α̃V ′′ = α̃V ′ + Y A Φ1α (and

Φ1α is a basic form on (M, F)) so that (12) may be written in the form

(8). This ends the proof of Step 1.

Step 2. fωα̃ is a left invariant form on G.

Let x ∈ M and x̃ ∈ p−1(x). Set:

H = {g ∈ G : Rg(x̃) ∈ M̃}

Then H is a subgroup of G. Moreover, the definition of H does not depend

upon the choice of x ∈ M and x̃ ∈ p−1(x) (cf. e.g. [8], p. 115). Let

a ∈ H, g ∈ G and x̃ ∈ f−1
ω (g). Let X ∈ Tg(G) ⊗ C. We wish to compute
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(L∗
afωα̃)g X. As fω ◦ Ra = La ◦ fω we observe that Ra(x̃) ∈ f−1

ω (ag). Set

X ′ = (dgLa)X and V ′ = (dx̃Ra)V where V ∈ Tx̃(M̃) ⊗ C is chosen so

that (dx̃fω)V = X. Then:

(dRa(x̃)fω)V ′ = X ′

so that (by p ◦ Ra = p):

(13) L∗
afωα̃ = fωα̃

for any a ∈ H. Nevertheless, as F has dense leaves H is dense in G (cf.

e.g. [10], p. 148) so that (13) holds at any a ∈ G. It follows that fωα̃ is

a left invariant form. Step 2 is completely proved.

Step 3. If α0 = I−1
s (fωα̃) then α0 ∈ Λs a∗.

Again, we prove Step 3 for s = 1 only. Indeed, as α ∈ Γ∞
B (H∗

) we

have ξ A α = 0 and H A α = 0, where ξ is given by (7). Let T ∈ G be the

characteristic direction of dGθ0. Let x̃ ∈ f−1
ω (e) and V ∈ Tx̃(M̃) so that

(dx̃fω)V = Te. Since Tx̃(M̃) = Γ(x,e) , x = p(x̃), there is Y ∈ Lω so that

V = Ỹ(x,e) where Ỹ is the lift of Y . Then:

(dx̃p)V = Y

πxYx = ω̂−1
x (T ) = ξx

so that we may conduct the following computation:

α0(T ) = (I−1
1 fωα̃)T = (fωα̃)eTe = α̃x̃V = (p∗Φ1α)x̃V =

= (Φ1α)x(dx̃p)V = αxπxYx = α(ξ)x = 0

If Z ∈ a then it may be shown in a similiar way that:

α0(Z) = αxω̂
−1
x (Z) = 0

(as ω̂−1
x (Z) ∈ Hx). Step 3 is completely proved. To end the proof of

Theorem 1 we need to establish the following:

Step 4. The map:

(14) Γ∞
B (ΛsH∗

) → Λs a∗ , α 0→ α0
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induces an isomorphism:

Hs
∂Q

(M, F) → H0,s(G,a) , [α] 0→ [α0]

Here brackets indicate cohomology classes. We need to recall the

transverse Cauchy-Riemann complex of a CR foliation, cf. [1]. Let

(M, F ,H) be a CR foliation. There is a complex:

(15) ∂Q : Γ∞
B (ΛsH∗

) → Γ∞
B (Λs+1H∗

) , s ≥ 0

which is most easily described when (F ,H) is nondegenerate. Elements in

Γ∞
B (ΛsH∗

) are transverse (0, s)-forms (invariant by holonomy), i.e. those

α ∈ Γ∞
B (ΛsQ∗ ⊗ C) so that ξ A α = 0 and H A α = 0. Next ∂Qα is the

unique transverse (0, s+1)-form which coincides with dQα when both are

restricted to H ⊗ · · · ⊗ H (s + 1 terms). The cohomology:

Hs
∂Q

(M, F) = Hs(Γ∞
B (Λ· H∗

), ∂Q) , s ≥ 0

of the complex (15) is the transverse Kohn-Rossi cohomology of (F ,H).

As (14) is already an isomorphism, to prove Step 4 we only need to

check that [α] 0→ [α0] is well defined. This amounts to checking that

(∂Qβ)0 is a coboundary for any β ∈ Γ∞
B (Λs−1H∗

). Note firstly that:

(16) dα̃ = (dQα)∼

Indeed:

dα̃ = dp∗Φsα = p∗dΦsα = p∗Φs+1dQα = (dQα)∼

By (16) we are entitled to consider fωdα̃. Moreover we have:

(17) fωdα̃ = dfωα̃

for any α ∈ Γ∞
B (ΛsH∗

) ((17) follows from Prop. 3.11 in [7], vol. I, p. 36).

Finally, a computation based on (17) leads to:

∂Gβ0 = (∂Qβ)0

and Step 4 is completely proved.
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5 – Proof of Theorem 2

Let ϕ : B1
T (M, F) → End(Q) be the bundle morphism x 0→ ϕx

given by ϕx(z) : Qx → Qx , x = p1
T (z), where ϕx(z) is the linear map

whose matrix with respect to the basis {z(e1), · · · , z(eq)} is J0, where

{e1, · · · , eq} is the canonical basis in Rq. We need the following:

Lemma 1. Let z ∈ B1
T (M, F) with x = p1

T (z) and g ∈ GL(q,R).

Then ϕx(z) = ϕx(zg) if and only if g ∈ G.

The proof is straightforward. By Lemma 1 we have:

Im(ϕ) ≈ B1
T (M, F)/G

On the other hand (cf. [7], vol. I, p. 57):

Y (M, F) =
B1

T (M, F) × (GL(q,R)/G)

GL(q,R)
≈ B1

T (M, F)/G

Let J ∈ Γ∞(End(Q)) be a f -structure in Q. Then J ∈ Γ∞(Im(ϕ)), that

is any f -structure in Q may be thought of (via Im(ϕ) ≈ B1
T (M, F)/G ≈

Y (M, F)) as a section in Y (M, F). Let Y(M, F) be the set of all homo-

topy classes of C∞ sections in Y (M, F). As F is a G-Lie foliation, it is

transversally parallelizable, hence:

B1
T (M, F) ≈ M × GL(2n + 1,R)

and consequently the associated bundle Y (M, F) is trivial as well:

Y (M, F) ≈ M × (GL(2n + 1,R)/G)

Thus (cf. [9], section 6.7) Y(M,F) is in a one-to-one and on-to corre-

spondence with the set of homotopy classes of continuous maps from M

to GL(2n + 1,R)/G. Note that:

GL(2n + 1,R)/G ≈ GL+(2n + 1,R)/G+

where GL+(2n + 1,R) = {g ∈ GL(2n + 1,R) : det(g) > 0} and G+ =

G ∩ GL+(2n + 1,R). Define GL1(n,C) = {g ∈ GL(n,C) : |det(g)| = 1}
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(e.g. SL(n,C) ⊂ GL1(n,C) yet inclusion is strict). Then GL(n,C) →
GL+(2n+1,R) induces a group monomorphism GL1(n,C) → GL+(2n+

1,R). We need the following:

Lemma 2. Let R+ = (0,∞) with ordinary multiplication. Then:

GL+(2n + 1,R)

GL1(n,C)
→ GL+(2n + 1,R)

G+

is a principal R2
+-bundle.

Proof. The following short sequence of groups and group homomor-

phisms:

1 → GL1(n,C) −→ G+ ρ−→R+ × R+ → 1

where:

ρ :




a 0 0

0 A −B

0 B A


 0−→ (a, |det(A + iB)|)

is exact. Then Lemma 2 is gotten from the following computation:

(
GL+(2n + 1,R)/GL1(n,C)

)
/R2

+ ≈ GL+(2n + 1,R)/GL1(n,C)

G+/Ker(ρ)
≈

≈ GL+(2n + 1,R)/GL1(n,C)

G+/GL1(n,C)
≈ GL+(2n + 1,R)/G+

Cf. Theorem 5.7 in [7], vol. I, each bundle whose standard fibre dif-

feomorphic to Rm (for some m) admits global sections (and is therefore

trivial). Thus (by Lemma 2):

GL+(2n + 1,R)/GL1(n,C) ≈ (GL(2n + 1,R)/G) × R2
+ .

Yet R2
+ is nullhomotopic so that GL(2n+1,R)/G is homotopically equiv-

alent to GL+(2n+1,R)/GL1(n,C), and Theorem 2 is completely proved.
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