Rendiconti di Matematica, Serie VII Volume 16, Roma (1996), 169-188

On *G*-Lie foliations with transverse CR structure

E. BARLETTA – S. DRAGOMIR

RIASSUNTO: Si studia la relazione che intercorre fra le CR strutture su algebre di Lie reali e le \mathcal{G} foliazioni di Lie (nel senso di E. FEDIDA [4]). Si mostra che la coomologia di Kohn-Rossi trasversa di una \mathcal{G} -foliazione di Lie completa \mathcal{F} a struttura CR trasversa e foglie dense è isomorfa alla coomologia di Kohn-Rossi dell'algebra di Lie strutturale di \mathcal{F} . Si classificano (a meno di omotopia) le f-strutture nel fibrato normale di una \mathcal{G} -foliazione di Lie.

ABSTRACT: We study the interplay between CR structures on real Lie algebras and \mathcal{G} -Lie foliations (in the sense of E. FEDIDA [4]). We show that the transverse Kohn-Rossi cohomology of a complete \mathcal{G} -Lie foliation \mathcal{F} with transverse CR structure and dense leaves is isomorphic to the Kohn-Rossi cohomology of the structural Lie algebra of \mathcal{F} . We classify (up to homotopy) the f-structures in the normal bundle of a \mathcal{G} -Lie foliation.

1 - Introduction

A theory of CR structures on real Lie algebras has been developed in a series of recent papers by G. GIGANTE & G. TOMASSINI [5], and S. DONNINI & G. GIGANTE [3]. If \mathcal{G} is a real q-dimensional Lie algebra, a complex subalgebra $\mathbf{a} \subset \mathcal{G} \otimes_{\mathbf{R}} \mathbf{C}$ is a *CR structure* on \mathcal{G} if $\mathbf{a} \cap \overline{\mathbf{a}} = (0)$.

On the other hand, let $\omega \in \Omega^1(M, \mathcal{G})$ be a Maurer-Cartan form on

Key Words and Phrases: Transverse CR structure – \mathcal{G} -Lie foliation – Maurer-Cartan form – Transverse Kohn-Rossi cohomology.

A.M.S. Classification: 53C12 - 32F99 - 55P99

The present investigation was partially supported by the Bulgarian Ministry of Education, Science and Technologies.

M, i.e. a \mathcal{G} -valued 1-form on M satisfying the Maurer-Cartan equation:

$$d\omega + \frac{1}{2}[\omega, \omega] = 0$$

Set $P_x = Ker(\omega_x)$ for any $x \in M$. If $\omega_x : T_x(M) \to \mathcal{G}$ is on-to for any $x \in M$ then P is a smooth involutive distribution on M and therefore gives rise to a foliation \mathcal{F} of codimension q of M. This is a \mathcal{G} -Lie foliation, a terminology owing to E. FEDIDA [4].

As a last piece of the mozaic we are going to mend, we recall the notion of a transverse CR structure (coinciding with an ordinary CR structure for the trivial foliation by points), cf. E. BARLETTA and S. DRAGOMIR [1]. The aim of the present paper is to investigate the interplay between CR structures on real Lie algebras and transverse CR structures on \mathcal{G} -Lie foliations. Given a \mathcal{G} -Lie foliation \mathcal{F} of M, any CR structure on \mathcal{G} is observed to give rise naturally to a transverse CR structure on (M, \mathcal{F}) . If \mathcal{F} has dense leaves the converse is shown to hold as well. Moreover, if \mathcal{F} is a complete \mathcal{G} -Lie foliation with dense leaves carrying the transverse CR structure \mathcal{H} arising from a CR structure **a** on \mathcal{G} then we show that the transverse Kohn-Rossi cohomology groups of $(M, \mathcal{F}, \mathcal{H})$ are isomorphic with the Kohn-Rossi cohomology groups of $(\mathcal{G}, \mathbf{a})$ (cf. Theorem 1).

With any nondegenerate transverse CR structure on a foliation \mathcal{F} one may associate a natural *f*-structure in the normal bundle of \mathcal{F} . We give a homotopy classification of *f*-structures in the normal bundle of a \mathcal{G} -Lie foliation (cf. Theorem 2).

$2-\mathcal{G}$ -Lie foliations and transverse CR structures

Let \mathcal{F} be a codimension q foliation on the C^{∞} manifold M. The notations and conventions we adopt are mainly those in P. MOLINO [8]. Let $P = T(\mathcal{F})$ and $Q = \nu(\mathcal{F})$ be respectively the tangent and normal bundles of the foliation, and let $\pi : T(M) \to Q$ be the natural bundle morphism. Let $L(M, \mathcal{F})$ be the Lie algebra of foliated vector fields on M. A foliation \mathcal{F} of M is transversally parallelizable if there are q globally defined foliated vector fields $Y_1, \dots, Y_q \in L(M, \mathcal{F})$ so that the associated transverse vector fields $\pi Y_1, \dots, \pi Y_q$ are linearly independent at any point $x \in M$. Any \mathcal{G} -Lie foliation is known to be transversally parallelizable. Indeed, let \mathcal{F} be a \mathcal{G} -Lie foliation of M and $\{E_1, \dots, E_q\}$ a basis of \mathcal{G} . The map ω_x induces a **R**-linear isomorphism:

$$\hat{\omega}_x: Q_x \to \mathcal{G}, \qquad x \in M$$

Let $s_j \in \Gamma^{\infty}(Q)$ so that $\hat{\omega}_x(s_j(x)) = E_j$ and $Y_j \in \mathcal{X}(M)$ so that $\pi Y_j = s_j$, $1 \leq j \leq q$. Then $Y_j \in L(M, \mathcal{F})$ (so that \mathcal{F} is transversally parallelizable) and:

(1)
$$\omega([Y_i, Y_j]) = [E_i, E_j] \qquad 1 \le i, j \le q$$

(Cf. e.g. Lemma 11.1 in P. TONDEUR [10], p. 145.) If the foliated vector fields Y_1, \dots, Y_q can be chosen to be complete (i.e. such that each Y_i induces a global 1-parameter group of global transformations of M) then \mathcal{F} is a *complete* \mathcal{G} -Lie foliation.

Let \mathcal{G} be a real Lie algebra and $\mathbf{a} \subset \mathcal{G} \otimes_{\mathbf{R}} \mathbf{C}$ a CR structure on \mathcal{G} . Set $A = Re\{\mathbf{a} \oplus \overline{\mathbf{a}}\}$. Throughout an overbar denotes complex conjugation. The integer $k = \dim_{\mathbf{R}} \mathcal{G}/A$ is the *codimension* of \mathbf{a} . Note that A carries the complex structure $J : A \to A$ given by $J(Z + \overline{Z}) = i(Z - \overline{Z})$ for any $Z \in \mathbf{a}$. Here $i = \sqrt{-1}$.

Let G be a Lie group. Let $T_{1,0}(G)$ be a CR structure on G (in the sense of A. BOGGESS [2], p. 120). Then $(G, T_{1,0}(G))$ is a CR Lie group if for any $h \in G$ the left translation $L_h : G \to G$, $L_h(g) = hg$, $g \in G$, is a CR map (cf. [2], p. 149).

Let \mathcal{G} be a real Lie algebra and $\mathbf{a} \subset \mathcal{G} \otimes_{\mathbf{R}} \mathbf{C}$ a CR structure. By a classical result in Lie group theory, there is a unique connected and simply connected Lie group so that its Lie algebra (of left invariant vector fields) is \mathcal{G} . Then G is a CR Lie group. Indeed, set:

$$T_{1,0}(G)_q = (d_e L_q) e v_e \mathbf{a}$$

for any $g \in G$. Here ev_e is the (**C**-linear extension to $\mathcal{G} \otimes_{\mathbf{R}} \mathbf{C}$ of the) **R**linear isomorphism $\mathcal{G} \approx T_e(G)$ given by the evaluation of invariant vector fields at e (and e is the identity in G). Then $T_{1,0}(G)$ is a left invariant CR structure on G.

We are mainly interested in CR structures (on real Lie algebras) of codimension k = 1. If this is the case, one may recover the tools of pseudohermitian geometry (in the sense of S. WEBSTER [12]). Precisely, let \mathcal{G} be a real Lie algebra and:

$$d_{\mathcal{G}}: \Lambda^s \mathcal{G}^* \to \Lambda^{s+1} \mathcal{G}^* \,, \qquad s \ge 0$$

the Chevalley-Eilenberg complex of \mathcal{G} . Let **a** be a CR structure on \mathcal{G} . A form $\theta \in \mathcal{G}^*$ is a *pseudohermitian structure* on $(\mathcal{G}, \mathbf{a})$ if $Ker(\theta) = A$. If θ, θ' are two pseudohermitian structures on $(\mathcal{G}, \mathbf{a})$ then $\theta' = \lambda \theta$ for some $\lambda \in \mathbf{R}, \lambda \neq 0$. The *Levi form* of $(\mathcal{G}, \mathbf{a})$ is given by:

$$G_{\theta}(X,Y) = (d_{\mathcal{G}}\theta)(X,JY)$$

(

for any $X, Y \in A$. Clearly $G_{\lambda\theta} = \lambda G_{\theta}$. Next $(\mathcal{G}, \mathbf{a})$ is nondegenerate if G_{θ} is nondegenerate for some pseudohermitian structure θ on $(\mathcal{G}, \mathbf{a})$ (and thus for all). If $(\mathcal{G}, \mathbf{a})$ is nondegenerate and a pseudohermitian structure θ has been fixed then there is a unique $T \in \mathcal{G}$, $T \neq 0$, so that:

$$\theta(T) = 1, \qquad T \mid d_{\mathcal{G}}\theta = 0$$

(the characteristic direction of $d_{\mathcal{G}}\theta$). Let $(\mathcal{G}, \mathbf{a})$ be a real Lie algebra carrying a CR structure and $(G, T_{1,0}(G))$ the corresponding CR Lie group. As $(G, T_{1,0}(G))$ is a CR manifold, we may consider its tangential Cauchy-Riemann complex:

$$\overline{\partial}_G: \Gamma^{\infty}(\Lambda^s T_{0,1}(G)^*) \to \Gamma^{\infty}(\Lambda^{s+1} T_{0,1}(G)^*) \ , \ s \ge 0$$

where $T_{0,1}(G) = \overline{T_{1,0}(G)}$. An element $\alpha \in \Gamma^{\infty}(\Lambda^s T_{0,1}(G)^*)$ is *left invariant* if:

(2)
$$\alpha_{ag}((d_g L_a)V_1, \cdots, (d_g L_a)V_s) = \alpha_g(V_1, \cdots, V_s)$$

for any $V_1, \dots, V_s \in T_{0,1}(G)_g$, $g \in G$, $a \in G$. The left hand side of (2) makes sense because L_a is a CR map. Let $\Gamma_{inv}^{\infty}(\Lambda^s T_{0,1}(G)^*)$ be the space of all left invariant C^{∞} sections α in $\Lambda^s T_{0,1}(G)^*$. The tangential Cauchy-Riemann operator $\overline{\partial}_G$ descends (because it commutes with the pullback of forms by left translations) to a differential operator:

$$\overline{\partial}_G: \Gamma^{\infty}_{inv}(\Lambda^s T_{0,1}(G)^*) \to \Gamma^{\infty}_{inv}(\Lambda^{s+1}T_{0,1}(G)^*).$$

There is a natural **C**-linear isomorphism:

$$I_s: \Lambda^s \overline{\mathbf{a}}^* \to \Gamma^{\infty}_{inv}(\Lambda^s T_{0,1}(G)^*) \,, \qquad s \ge 0 \,.$$

Set:

$$\overline{\partial}_{\mathcal{G}} = I_{s+1}^{-1} \circ \overline{\partial}_{G} \circ I_{s}$$

We obtain a complex:

(3)
$$\overline{\partial}_{\mathcal{G}} : \Lambda^s \overline{\mathbf{a}}^* \to \Lambda^{s+1} \overline{\mathbf{a}}^* , \ s \ge 0.$$

This is the *Cauchy-Riemann complex* of $(\mathcal{G}, \mathbf{a})$ and its cohomology:

$$H^{0,s}(\mathcal{G},\mathbf{a}) = H^s(\Lambda^{\cdot} \overline{\mathbf{a}}^*, \overline{\partial}_{\mathcal{G}})$$

is the Kohn-Rossi cohomology of $(\mathcal{G}, \mathbf{a})$. We may state the following:

THEOREM 1. Let \mathcal{F} be a \mathcal{G} -Lie foliation of M determined by the Maurer-Cartan form $\omega \in \Omega^1(M, \mathcal{G})$. Then:

1) If **a** is a CR structure on \mathcal{G} (of codimension k) then $\mathcal{H}_x = \hat{\omega}_x^{-1}(\mathbf{a}), x \in M$, is a transverse CR structure on (M, \mathcal{F}) (of transverse CR codimenssion k). If additionally \mathcal{F} has at least a dense leaf then any transverse CR structure \mathcal{H} on (M, \mathcal{F}) determines a unique CR structure **a** on \mathcal{G} . 2) Let \mathcal{F} be complete and let **a** be a CR structure on \mathcal{G} . If $(\mathcal{G}, \mathbf{a})$ is nondegenerate and \mathcal{F} has dense leaves then:

$$H^{\underline{s}}_{\overline{\partial}_Q}(M,\mathcal{F}) \approx H^{0,s}(\mathcal{G},\mathbf{a}) , \ s \ge 0$$

that is the transverse Kohn-Rossi cohomology of $(\mathcal{F}, \mathcal{H})$ is isomorphic to the Kohn-Rossi cohomology of $(\mathcal{G}, \mathbf{a})$.

We shall prove Theorem 1 in section 4. The complex (3) admits a simple description when $(\mathcal{G}, \mathbf{a})$ is nondegenerate. Indeed, if this is the case then let $T \in \mathcal{G}, T \neq 0$, so that $\theta(T) = 1$ and $T \rfloor d_{\mathcal{G}}\theta = 0$. A s-form $\alpha \in \Lambda^s \mathcal{G}^* \otimes \mathbf{C}$ is a (0, s)-form (or a form of type (0, s)) if $\mathbf{a} \rfloor \alpha = 0$ and $T \rfloor \alpha = 0$. There is a natural identification of $\Lambda^s \overline{\mathbf{a}}^*$ with the space of all (0, s)-forms on \mathcal{G} . Then one may redefine $\overline{\partial}_{\mathcal{G}}$ as follows. Let α be a (0, s)-form on \mathcal{G} . Then $\overline{\partial}_{\mathcal{G}} \alpha$ is the unique (0, s+1)-form on \mathcal{G} so that $\overline{\partial}_{\mathcal{G}} \alpha$ and $d_{\mathcal{G}} \alpha$ coincide when both are restricted to $\overline{\mathbf{a}} \otimes \cdots \otimes \overline{\mathbf{a}} (s+1 \text{ terms})$.

Let \mathcal{F} be a codimension q = 2n+1 foliation of M and \mathcal{H} a nondegenerate transverse CR structure of transverse CR dimension n on (M, \mathcal{F}) . Fix a transverse pseudohermitian structure θ and let ξ be the characteristic direction of $d_Q \theta$. We may prolongate the complex structure J_Q of the transverse Levi distribution H to a (holonomy invariant) endomorphism of Q by requesting that $J_Q\xi = 0$. Then $J_Q^3 + J_Q = 0$. A *f*-structure in Q is a bundle endomorphism $J: Q \to Q$ so that $J^3 + J = 0$ and rank(J) = 2nThen $J_Q: Q \to Q$ is a (holonomy invariant) *f*-structure in Q (induced by (\mathcal{H}, θ)). Set:

$$G = \{g \in GL(2n+1, \mathbf{R}) : g J_0 = J_0 g\}$$

where:

$$J_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -I_n \\ 0 & I_n & 0 \end{pmatrix}$$

Let $p_T^1 : B_T^1(M, \mathcal{F}) \to M$ be the principal $GL(2n + 1, \mathbf{R})$ -bundle of all transverse frames and $Y(M, \mathcal{F})$ the associated bundle with standard fibre the homogeneous space $GL(2n+1, \mathbf{R})/G$. Any *f*-structure in *Q* is a cross-section in $Y(M, \mathcal{F})$. We may state the following:

THEOREM 2. Let \mathcal{F} be a \mathcal{G} -Lie foliation of M of codimension 2n+1. Then the set of homotopy classes of f-structures in $\nu(\mathcal{F})$ is in a one-toone and on-to correspondence with the set of homotopy classes of continuous maps from M to $GL^+(2n+1, \mathbf{R})/GL_1(n, \mathbf{C})$ where $GL_1(n, \mathbf{C}) =$ $GL(n, \mathbf{C}) \cap SL(2n, \mathbf{R})$.

3 – A reminder of transverse CR geometry

Let \mathcal{F} be a codimension q = 2n + k foliation of M and $\overset{\circ}{\nabla}$ its Bott connection. Let $\mathcal{H} \subset Q \otimes \mathbf{C}$ be a complex subbundle of complex rank n. Set:

$$H = Re\{\mathcal{H} \oplus \overline{\mathcal{H}}\}$$

Then H carries the complex structure $J_Q : H \to H$ given by $J_Q(\alpha + \overline{\alpha}) = i(\alpha - \overline{\alpha})$ for any $\alpha \in \Gamma^{\infty}(\mathcal{H})$. The following notion was central for [1]. One calls \mathcal{H} a transverse almost CR structure (of transverse CR dimension n and transverse CR codimension k) if 1) $\mathcal{H} \cap \overline{\mathcal{H}} = (0), 2$) H is parallel with respect to the Bott connection of \mathcal{F} (i.e. $\overset{\circ}{\nabla}_X \Gamma^{\infty}(H) \subseteq \Gamma^{\infty}(H)$ for any $X \in \Gamma^{\infty}(P)$), and 3) $\mathcal{L}_X J_Q = 0$ for any $X \in \Gamma^{\infty}(P)$. The Lie derivatives are defined with respect to the Bott connection, for instance

 $(\mathcal{L}_X J_Q)s = \overset{\circ}{\nabla}_X J_Q s - J_Q \overset{\circ}{\nabla}_X s$ for any $s \in \Gamma^{\infty}(H)$. Also, if $\omega \in \Gamma^{\infty}(\Lambda^k Q^*)$ and $s_1, \dots, s_k \in \Gamma^{\infty}(Q)$ then:

$$(\mathcal{L}_X\omega)(s_1,\cdots,s_k) = X(\omega(s_1,\cdots,s_k)) - \sum_{j=1}^k \omega(s_1,\cdots,s_{j-1}, \overset{\circ}{\nabla}_X s_j, s_{j+1},\cdots,s_k)$$

for any $X \in \Gamma^{\infty}(P)$. We denote by $\Gamma^{\infty}_{B}(\Lambda^{k}Q^{*})$ the space of all C^{∞} sections ω in $\Lambda^{k}Q^{*}$ with $\mathcal{L}_{X}\omega = 0$ for any $X \in \Gamma^{\infty}(P)$. Let:

$$d_B: \Omega^s_B(M, \mathcal{F}) \to \Omega^{s+1}_B(M, \mathcal{F}), \qquad s \ge 0$$

be the basic complex of the foliated manifold (M, \mathcal{F}) . There exist natural isomorphisms:

$$\Phi_s: \Gamma^\infty_B(\Lambda^s Q^*) \to \Omega^s_B(M, \mathcal{F}), \qquad s \ge 0$$

and therefore an induced complex:

$$d_Q: \Gamma^{\infty}_B(\Lambda^s Q^*) \to \Gamma^{\infty}_B(\Lambda^{s+1} Q^*), \qquad s \ge 0$$

Given a transverse almost CR structure \mathcal{H} on (M, \mathcal{F}) of transverse CR codimension k = 1, a transverse pseudohermitian structure on $(\mathcal{F}, \mathcal{H})$ is a nowhere zero form $\theta \in \Gamma^{\infty}_{B}(Q^{*})$ so that $Ker(\theta) = H$. Given two transverse pseudohermitian structures θ and θ' we have $\theta' = \lambda \theta$ for some nowhere vanishing $\lambda \in \Omega^{0}_{B}(M, \mathcal{F})$. The transverse Levi form G_{θ} of $(\mathcal{F}, \mathcal{H})$ is given by:

$$G_{\theta}(s,r) = (d_Q\theta)(s, J_Qr)$$

for any $s, r \in \Gamma^{\infty}(H)$. Then $G_{\lambda\theta} = \lambda G_{\theta}$. We term \mathcal{H} nondegenerate if G_{θ} is nondegenerate for some θ (and thus for all).

As to the geometric meaning of the requirements 1)-3) in the definition of the notion of a transverse almost CR structure, let us mention that given a leaf L of \mathcal{F} and $\gamma : [0, 1] \to L$ a smooth curve in L then:

(4)
$$\tau_{\gamma} \mathcal{H}_{\gamma(0)} = \mathcal{H}_{\gamma(1)}$$

where $\tau_{\gamma}: Q_{\gamma(0)} \to Q_{\gamma(1)}$ is the holonomy map. Indeed, let s be a solution of the ODE:

(5)
$$\left(\overset{\circ}{\nabla}_{d\gamma/dt} s \right)_{\gamma(t)} = 0$$

of initial data $s(\gamma(0)) \in \mathcal{H}_{\gamma(0)}$. Then:

$$\frac{d}{dt}\{\theta(s(\gamma(t)))\} = \{(\mathcal{L}_{d\gamma/dt}\theta)s\}_{\gamma(t)} = 0$$

hence $\theta(s) \circ \gamma = const.$ on [0,1]. Since $s(\gamma(0)) \in \mathcal{H}_{\gamma(0)}$ then $0 = \theta(s)_{\gamma(0)} = \theta(s)_{\gamma(1)}$ that is $s(\gamma(1)) \in \mathcal{H}_{\gamma(1)} \otimes_{\mathbf{R}} \mathbf{C}$. In a similar way, we may show (as $\mathcal{L}_X J_Q = 0$) that:

$$J_Q \circ \tau_\gamma = \tau_\gamma \circ J_Q$$

Then $J_{Q,\gamma(1)}s(\gamma(1)) = i s(\gamma(1))$ hence $s(\gamma(1)) \in \mathcal{H}_{\gamma(1)}$.

Let $\ell(M, \mathcal{F})$ be the Lie algebra of all transverse vector fields. Let $\Gamma_B^{\infty}(Q)$ consist of all $s \in \Gamma^{\infty}(Q)$ so that $\mathcal{L}_X s = 0$ for any $X \in \Gamma^{\infty}(P)$. Note that:

$$\Gamma^{\infty}_{B}(Q) = \ell(M, \mathcal{F})$$

(so that the Lie product [s, r] of any $s, r \in \Gamma^{\infty}_{B}(Q)$ is well defined). A transverse almost CR structure $\mathcal{H} \subset Q \otimes \mathbf{C}$ is *integrable* if for any $x \in M$ there is an open neighborhood $U \subseteq M$ and a frame $\{\zeta_1, \dots, \zeta_n\}$ of \mathcal{H} on Uso that $\zeta_{\alpha} \in \Gamma_B^{\infty}(Q \otimes \mathbf{C})$ and $[\zeta_{\alpha}, \zeta_{\beta}] \in \Gamma^{\infty}(\mathcal{H})$ for any $1 \leq \alpha, \beta \leq n$. Such a (local) frame of \mathcal{H} is termed *admissible*. An integrable transverse almost CR structure is a transverse CR structure on (M, \mathcal{F}) . Let $(N, T_{1,0}(N))$ be a CR manifold of type (n, k) and $\Gamma^{\infty}_{CR}(N)$ the pseudogroup of all C^{∞} local CR automorphisms of $(N, T_{1,0}(N))$. A $\Gamma^{\infty}_{CR}(N)$ -foliation of M (in the sense of A. HAEFLIGER [6]) is a transversally CR foliation (or a CR foliation) of M of transverse CR dimension n and transverse CR codimension k. Any CR foliation \mathcal{F} is known (cf. [1]) to possess a transverse CR structure \mathcal{H} (induced by that of the model CR manifold $(N, T_{1,0}(N))$). Moreover, for any transversally orientable CR foliation \mathcal{F} of transverse CR codimension k = 1 whose transverse CR structure \mathcal{H} is nondegenerate, and for any fixed transverse pseudohermitian structure $\theta \in \Gamma^{\infty}_{B}(Q^{*})$ there is (cf. [1]) a unique nowhere zero $\xi \in \Gamma^{\infty}_{B}(Q)$ so that $\theta(\xi) = 1$ and $\xi \mid d_{\mathcal{O}}\theta = 0$ (the characteristic direction of $d_{\mathcal{O}}\theta$).

Let $(N, T_{1,0}(N))$ be a CR manifold and:

$$\overline{\partial}_N : \Gamma^{\infty}(\Lambda^s T_{0,1}(N)^*) \to \Gamma^{\infty}(\Lambda^{s+1} T_{0,1}(N)^*), \qquad s \ge 0$$

its tangential Cauchy-Riemann complex. Assume that $(N, T_{0,1}(N))$ is nondegenerate (of hypersurface type). Let θ_N be a fixed pseudohermitian structure on N and T_N the global nowhere zero tangent vector field on N so that $\theta_N T_N = 1$ and $T \mid d\theta_N = 0$. A CR map $f : N \to N$ is pseudohermitian if $f^*\theta_N = \theta_N$ and $(d_x f)T_{N,x} = T_{N,f(x)}$ for any $x \in N$. If $f: N \to N$ is pseudohermitian then $f^*\overline{\partial}_N = \overline{\partial}_N f^*$. For instance, let Gbe a CR Lie group and \mathcal{G} its Lie algebra. Let **a** be the CR structure of \mathcal{G} (associated with the left invariant CR structure of G). Let $\theta_0 \in \mathcal{G}^*$ be a pseudohermitian structure on $(\mathcal{G}, \mathbf{a})$. Then $\theta = I_1 \theta_0$ is a left invariant pseudohermitian map of (G, θ) into itself (and $L_a^* \overline{\partial}_G = \overline{\partial}_G L_a^*$).

4 – Proof of Theorem 1

Let $\mathbf{a} \subset \mathcal{G} \otimes_{\mathbf{R}} \mathbf{C}$ be a CR structure on \mathcal{G} and set:

$$\mathcal{H}_x = \hat{\omega}_x^{-1}(\mathbf{a}) \subset Q_x \otimes_{\mathbf{R}} \mathbf{C}$$

for any $x \in M$. As $\hat{\omega}_x$ is a real operator it commutes with complex conjugation. Thus $\mathcal{H}_x \cap \overline{\mathcal{H}}_x = (0)$. We need to check that H and J_Q are parallel with respect to the Bott connection of (M, \mathcal{F}) . Assume the basis $\{E_1, \dots, E_{2n+k}\}$ of \mathcal{G} is chosen so that $\{E_1, \dots, E_{2n}\} \subset A$ and $E_{\alpha+n} = JE_{\alpha}$. Let $X \in \Gamma^{\infty}(P)$ and $s \in \Gamma^{\infty}(H)$. There exist functions $f^j \in \Omega^0(M), 1 \leq j \leq 2n$, so that $s = f^j s_j$. Let $Y_s \in \mathcal{X}(M)$ so that $\pi Y_s = s$. Then:

$$Y_s = f^j Y_j + X_s$$

for some $X_s \in \Gamma^{\infty}(P)$. Since $Y_j \in L(M, \mathcal{F})$ we have $\pi[X, Y_j] = 0$ so that:

$$\overset{\circ}{\nabla}_X s = X(f^j) s_j \in \Gamma^{\infty}(H)$$

Note that:

$$(J_Q)_x = \hat{\omega}_x^{-1} \circ J \circ \hat{\omega}_x$$

for any $x \in M$. Then $J_Q s_\alpha = s_{\alpha+n}$ and $J_Q s_{\alpha+n} = -s_\alpha$. Finally $\mathcal{L}_X s_j = 0$ yields $(\mathcal{L}_X J_Q) s_j = 0$. Let us check that \mathcal{H} is integrable. Let $\zeta_\alpha \in \ell(M, \mathcal{F}) \otimes \mathbb{C}$ defined by $\zeta_\alpha(x) = \hat{\omega}_x^{-1}(E_\alpha - iE_{\alpha+n})$ for any $x \in M$, $1 \leq \alpha \leq n$. Then $\{\zeta_\alpha\}$ is a global admissible frame of \mathcal{H} . Indeed (by (1)) we have:

$$\hat{\omega}([\zeta_{\alpha},\zeta_{\beta}])_{x} = [E_{\alpha} - iE_{\alpha+n}, E_{\beta} - iE_{\beta+n}] \in \mathbf{a}$$

as **a** is an algebra. Therefore \mathcal{H} is a transverse CR structure. Viceversa, let \mathcal{H} be a transverse CR structure on (M, \mathcal{F}) . Let $\{E_1, \dots, E_{2n+k}\}$ be a

[9]

basis of \mathcal{G} and $s_j \in \Gamma^{\infty}(Q)$ so that $\hat{\omega}(s_j) = E_j$. Let $x \in M$ and let $U \subseteq M$ be an open neighborhood of x in M. Let $\{\zeta_1, \dots, \zeta_n\}$ an admissible frame of \mathcal{H} on U. Set:

$$\mathbf{a}_x = \sum_{lpha=1}^n \mathbf{C} \, \hat{\omega}(\zeta_lpha)_x \subset \mathcal{G} \otimes_{\mathbf{R}} \mathbf{C}$$

The definition of \mathbf{a}_x doesn't depend upon the choice of admissible frame $\{\zeta_1, \dots, \zeta_n\}$ on U. The resulting map $x \mapsto \mathbf{a}_x$ is locally constant. Indeed, there exist C^{∞} functions $\lambda_{\alpha}^j : U \to \mathbf{C}$ so that $\zeta_{\alpha} = \lambda_{\alpha}^j s_j$. As $s_j \in \Gamma_B^{\infty}(Q)$ then λ_{α}^j are basic functions. Since at least one leaf of \mathcal{F} is dense, each basic function is a constant. Thus $\mathbf{a}_x = \sum_{\alpha=1}^n \mathbf{C}\lambda_{\alpha}^j E_j = \text{const. on } U$. Yet M is connected so that $x \mapsto \mathbf{a}_x$ is a constant map. Set $\mathbf{a} = \mathbf{a}_x$, $x \in M$. Then \mathbf{a} is a CR structure on \mathcal{G} .

To prove the second statement in Theorem 1 we need to recall a few facts on the structure of complete \mathcal{G} -Lie foliations (cf. e.g. [8], p. 112-117). Let \mathcal{F} be a complete \mathcal{G} -Lie foliation of M. Let G be the unique connected and simply connected Lie group whose Lie algebra is \mathcal{G} . Let $M \times G \to M$ be the trivial principal G-bundle (whose right translations R_h are given by $R_h(x,g) = (x,hg)$, for any $x \in M, g, h \in G$). Let \mathcal{G}_{ω} be the real q-dimensional Lie algebra spanned (over \mathbf{R}) by $\{s_1, \dots, s_q\} \subset \Gamma_B^{\infty}(Q)$. Then \mathcal{G}_{ω} is a subalgebra of $\ell(M,\mathcal{F})$ (the inclusion $\mathcal{G}_{\omega} \subset \ell(M,\mathcal{F})$ is strict, in general) isomorphic to \mathcal{G} . Let L_{ω} be the Lie subalgebra of $L(M,\mathcal{F})$ consisting of all foliated vector fields whose associated transverse vector fields are elements of \mathcal{G}_{ω} . The lift $\tilde{Y} \in \mathcal{X}(M \times G)$ of $Y \in L_{\omega}$ is given by:

(6)
$$\tilde{Y}_{(x,g)} = (d_x \psi^g) Y_x + (d_g \psi_x) (\omega_x Y_x)_g$$

for any $(x,g) \in M \times G$. Here $\psi^g(x) = \psi_x(g) = (x,g)$. Set:

$$\Gamma_{(x,g)} = \{ \tilde{Y}_{(x,g)} \in T_{(x,g)}(M \times G) : Y \in L_{\omega} \}$$

Then Γ is a connection in the principal *G*-bundle $M \times G$ over *M*. By (4.3) in [8], p. 113, Γ is flat and the leaves of the arising foliation are the holonomy bundles of Γ . Let \tilde{M} be a leaf of the foliation determined by Γ . Let $p_1: M \times G \to M$ and $p_2: M \times G \to G$ be the natural projections and $p: \tilde{M} \to M$ and $f_{\omega}: \tilde{M} \to G$ gotten respectively as restrictions of $p_i, i = 1, 2$, to the leaf \tilde{M} . Then the central result of [4] states that $p: \tilde{M} \to M$ is a covering map, while $f_{\omega}: \tilde{M} \to G$ (the developing map of

[10]

the complete \mathcal{G} -Lie foliation \mathcal{F}) is a locally trivial bundle; moreover, the pullback $p^*\mathcal{F}$ of \mathcal{F} via $p: \tilde{M} \to M$ and the simple foliation defined by the submersion $f_{\omega}: \tilde{M} \to G$ actually coincide.

Let \mathcal{G} be a real (2n + 1)-dimensional Lie algebra. Let $\mathbf{a} \subset \mathcal{G} \otimes_{\mathbf{R}} \mathbf{C}$ be a nondegenerate CR structure on \mathcal{G} and $\theta_0 \in \mathcal{G}^*$ a pseudohermitian structure on $(\mathcal{G}, \mathbf{a})$. Let $T \in \mathcal{G}$, $T \neq 0$, be the characteristic direction of $d_{\mathcal{G}}\theta_0$. Let \mathcal{F} be a complete \mathcal{G} -Lie foliation of M. Let $\{E_1, \dots, E_{2n+1}\}$ be a basis of \mathcal{G} so that $E_{2n+1} = T$. Set:

(7)
$$\xi_x = \hat{\omega}_x^{-1}(T), \qquad x \in M$$

Then $\xi \in \Gamma^{\infty}_{B}(Q)$. Moreover, set:

$$(\theta s)_x = \theta_0 \,\hat{\omega}(s)_x \,, \qquad x \in M$$

for any $s \in \Gamma^{\infty}(Q)$. It is then straightforward that $\theta \in \Gamma^{\infty}_{B}(Q^{*})$ and:

$$\theta(\xi) = 1, \qquad \xi \rfloor d_Q \theta = 0$$

That is, as $(\mathcal{G}, \mathbf{a})$ is nondegenerate $(\mathcal{F}, \mathcal{H})$ is nondegenerate as well, and ξ is the characteristic direction of $d_Q \theta$. Let $\alpha \in \Gamma^{\infty}_B(\Lambda^s \overline{\mathcal{H}}^*)$. Set:

$$\tilde{\alpha} = p^* \Phi_s \alpha$$

As $\Phi_s \alpha \in \Omega^s_B(M, \mathcal{F}) \otimes \mathbf{C}$ we have $\tilde{\alpha} \in \Omega^s_B(\tilde{M}, p^*\mathcal{F}) \otimes \mathbf{C}$ (cf. also [10], p. 148). Let $g \in G$ and $X_1, \dots, X_s \in T_g(G)$. Consider $\tilde{x} \in f_{\omega}^{-1}(g)$ and $V_1, \dots, V_s \in T_{\tilde{x}}(\tilde{M})$ so that $(d_{\tilde{x}}f_{\omega})V_j = X_j, 1 \leq j \leq s$. We define a *s*-form $f_{\omega}\tilde{\alpha}$ on G by setting:

$$(f_{\omega}\tilde{\alpha})_g(X_1,\cdots,X_s)=\tilde{\alpha}_{\tilde{x}}(V_1,\cdots,V_s)$$

STEP 1. The definition of $(f_{\omega}\tilde{\alpha})_g(X_1, \cdots, X_s)$ doesn't depend upon the choice of $\tilde{x} \in f_{\omega}^{-1}(g)$ and $V_1, \cdots, V_s \in T_{\tilde{x}}(\tilde{M})$ so that $(d_{\tilde{x}}f_{\omega})V_j = X_j, 1 \leq j \leq s$.

For the sake of simplicity we check this statement for s = 1 only. Let $\tilde{x}, \tilde{x}' \in f_{\omega}^{-1}(g)$ and $V \in T_{\tilde{x}}(\tilde{M}), V' \in T_{\tilde{x}'}(\tilde{M})$ so that:

$$(d_{\tilde{x}}f_{\omega})V = X, \ (d_{\tilde{x}'}f_{\omega})V' = X$$

There are $x, x' \in M$ so that $\tilde{x} = (x, g)$ and $\tilde{x}' = (x', g)$. We distinguish two cases, as I) there is a connected component \tilde{L} of $f_{\omega}^{-1}(g)$ so that $\tilde{x}, \tilde{x}' \in \tilde{L}$, or II) \tilde{x} and \tilde{x}' lie in two distinct connected components of $f_{\omega}^{-1}(g)$. If case I) occurs, then \tilde{L} is a leaf of $p^*\mathcal{F}$. Also $L = p(\tilde{L})$ is a leaf of \mathcal{F} and $p: \tilde{L} \to L$ is a Galois covering. As $(d_{(x,g)}p)T(p^*\mathcal{F})_{(x,g)} = P_x$ the map $d_{(x,g)}p$ induces a **R**-linear isomorphism:

$$[d_{(x,g)}p]:\nu(p^*\mathcal{F})_{(x,g)}\to Q_x$$

It commutes with the holonomy maps. Indeed, let $\tilde{\gamma} : [0,1] \to \tilde{L}$ be a smooth curve so that $\tilde{\gamma}(0) = \tilde{x}$ and $\tilde{\gamma}(1) = \tilde{x}'$. Set $\gamma = p \circ \tilde{\gamma}$. Then γ is a smooth curve in the leaf L (connecting x and x'). Let $\tau_{\gamma} : Q_x \to Q_{x'}$ and $\tau_{\tilde{\gamma}} : \nu(p^*\mathcal{F})_{(x,g)} \to \nu(p^*\mathcal{F})_{(x',g)}$ be the corresponding holonomy maps. To show that:

$$\tau_{\gamma} \circ [d_{(x,g)}p] = [d_{(x',g)}p] \circ \tau_{\tilde{\gamma}}$$

consider the solution \tilde{s} of the ODE:

$$\left(\overset{\circ}{\nabla}_{d\tilde{\gamma}/dt}\tilde{s}\right)_{\tilde{\gamma}(t)}=0$$

with initial data $\tilde{s}((x,g)) \in \nu(p^*\mathcal{F})_{(x,g)}$ (the same symbol $\overset{\circ}{\nabla}$ denotes the Bott connection of $p^*\mathcal{F}$, as well). It suffices to show that:

$$s(\gamma(t)) = [d_{\tilde{\gamma}(t)}p]\tilde{s}(\tilde{\gamma}(t))$$

satisfies the ODE (5). Set:

$$Y_s(\gamma(t)) = (d_{\tilde{\gamma}(t)}p)Y_{\tilde{s}}(\tilde{\gamma}(t))$$

where $Y_{\tilde{s}} \in \mathcal{X}(\tilde{M})$ is chosen so that $\tilde{\pi}Y_{\tilde{s}} = \tilde{s}$ (and $\tilde{\pi} : T(\tilde{M}) \to \nu(p^*\mathcal{F})$ is the natural bundle morphism). Then $\pi Y_s = s$ and we may conduct the following computation:

$$0 = [d_{\tilde{\gamma}(t)}p] \left(\overset{\circ}{\nabla}_{d\tilde{\gamma}/dt} \tilde{s} \right)_{\tilde{\gamma}(t)} = [d_{\tilde{\gamma}(t)}p] \tilde{\pi}_{\tilde{\gamma}(t)} \left[\frac{d\tilde{\gamma}}{dt} , Y_{\tilde{s}} \right]_{\tilde{\gamma}(t)} =$$
$$= \pi_{\gamma(t)} (d_{\tilde{\gamma}(t)}p) \left[\frac{d\tilde{\gamma}}{dt} , Y_{\tilde{s}} \right]_{\tilde{\gamma}(t)} = \pi_{\gamma(t)} \left[\frac{d\gamma}{dt} , Y_{s} \right]_{\gamma(t)} = (\overset{\circ}{\nabla}_{d\gamma/dt}s)_{\gamma(t)}$$

To show that:

(8)
$$\tilde{\alpha}_{(x,g)}V = \tilde{\alpha}_{(x',g)}V'$$

we need two facts. Firstly, let $[d_{(x,g)}f_{\omega}]: \nu(p^*\mathcal{F})_{(x,g)} \to T_g(G)$ be the **R**linear isomorphism induced by $d_{(x,g)}f_{\omega}$ (as $Ker(d_{(x,g)}f_{\omega}) = T(p^*\mathcal{F})_{(x,g)}$). Then (cf. [8], p. 24) we have:

(9)
$$\tau_{\tilde{\gamma}} = [d_{(x',g)}f_{\omega}]^{-1} \circ [d_{(x,g)}f_{\omega}]$$

Next:

(10)
$$\alpha_x = \alpha_{x'} \circ \tau_{\gamma} \,.$$

Indeed, let $s_0 \in \overline{\mathcal{H}}_x$ and let $s(\gamma(t))$ be the solution of the ODE (5) with $s(\gamma(0)) = s_0$. Then $\tau_{\gamma} s_0 \in \overline{\mathcal{H}}_{x'}$ (by (4)). Moreover, as $\alpha \in \Gamma_B^{\infty}(\overline{\mathcal{H}}^*)$ we have $\mathcal{L}_{d\gamma/dt}\alpha = 0$ and therefore:

$$\frac{d}{dt}\left\{\alpha(s)_{\gamma(t)}\right\} = 0$$

i.e. $\alpha(s)_{\gamma(t)} = \text{const.}$, etc. Using (10) we may conduct the following computation:

$$\begin{split} \tilde{\alpha}_{(x',g)}V' &= (p^* \Phi_1 \alpha)_{(x',g)}V' = (\Phi_1 \alpha)_{x'} (d_{(x',g)}p)V' = \\ &= \alpha_{x'} [d_{(x',g)}p] \tilde{\pi}_{(x',g)}V' = \alpha_x \tau_{\gamma}^{-1} [d_{(x',g)}p] \tilde{\pi}_{(x',g)}V' = \\ &= \alpha_x [d_{(x,g)}p] \tau_{\tilde{\gamma}}^{-1} \tilde{\pi}_{(x',g)}V' \,. \end{split}$$

Moreover:

$$(d_{(x,g)}f_{\omega})V = (d_{(x',g)}f_{\omega})V'$$

so that (by (5)):

$$[d_{(x,g)}f_{\omega}]\tilde{\pi}_{(x,g)}V = [d_{(x',g)}f_{\omega}]\tilde{\pi}_{(x',g)}V' = [d_{(x,g)}f_{\omega}]\tau_{\tilde{\gamma}}^{-1}\tilde{\pi}_{(x',g)}V'$$

that is:

$$\tau_{\tilde{\gamma}}(\tilde{\pi}_{(x,g)}V) = \tilde{\pi}_{(x',g)}V'$$

Therefore, we may conclude with the following computation:

$$\tilde{\alpha}_{(x',g)}V' = \alpha_x [d_{(x,g)}p]\tau_{\tilde{\gamma}}^{-1}\tilde{\pi}_{(x',g)}V' = \alpha_x [d_{(x,g)}p]\tilde{\pi}_{(x,g)}V = = \alpha_x \pi_x (d_{(x,g)}p)V = (\Phi_1 \alpha)_x (d_{(x,g)}p)V = (p^* \Phi_1 \alpha)_{(x,g)}V = \tilde{\alpha}_{(x,g)}V$$

and (8) is completely proved.

If case II) occurs, let \tilde{L} be the connected component of \tilde{x} in $f_{\omega}^{-1}(g)$ (so that \tilde{L} is a leaf of $p^*\mathcal{F}$) and let $L = p(\tilde{L})$ be the corresponding leaf of \mathcal{F} . Since \mathcal{F} has at least one dense leaf one has $\Omega_B^0(M, \mathcal{F}) = \mathbf{R}$. Yet \mathcal{F} is complete so that (by Prop. 4.2 in [8]) all leaves of \mathcal{F} are dense in M. As L is dense then there is a sequence $(x_j)_{j\in\mathbf{N}}$ in L which tends to x' as $j \to \infty$. Let $\tilde{x}_j \in \tilde{L}$ so that $p(\tilde{x}_j) = x_j$, $j \in \mathbf{N}$. By the arguments in case I) we obtain:

(11)
$$\tilde{\alpha}_{\tilde{x}}V = \tilde{\alpha}_{\tilde{x}_j}V_j$$

where $V_j \in T_{\tilde{x}_j}(\tilde{M})$ are chosen so that $(d_{\tilde{x}_j}f_{\omega})V_j = X$, $j \in \mathbb{N}$. As p is a covering map, we may choose open neighborhoods $\tilde{U} \subseteq \tilde{M}$ and $U \subseteq M$ of \tilde{x}' and x' respectively so that $p: \tilde{U} \to U$ is a diffeomorphism. Then $\tilde{x}_j \in \tilde{U}$ for any $j \geq j_0$ and some $j_0 \geq 1$ (and thus $\lim_{j\to\infty} \tilde{x}_j = \tilde{x}'$). However, this remark and (11) do not yield (8) directly (since there is no natural candidate for V' there). Indeed (11) doesn't necessarily imply that $(V_j)_{j\in\mathbb{N}}$ is convergent in $T(\tilde{M})$ (by analogy, given $a_j = 1/j$ and $b_j = j$ then a_j is convergent and the product $a_j b_j$ is constant, yet b_j is divergent). We circumvent these difficulties as follows. Since $V_j \in T_{\tilde{x}_j}(\tilde{M}) = \Gamma_{\tilde{x}_j}$ (and Γ is determined by the Lie algebra L_{ω}) then there is $X_j \in T_{x_j}(M)$ so that:

$$V_j = (d_{x_j}\Psi^g)X_j + (d_g\Psi_{x_j})(\omega_{x_j}X_j)_g$$

Let $ev_g : \mathcal{G} \to T_g(G)$ be the evaluation of (invariant) fields at g (an isomorphism). Then:

$$(d_{\tilde{x}_j}p)V_j = X_j$$
$$\pi_{x_j}X_j = \hat{\omega}_{x_j}^{-1}(ev_g^{-1}X)$$

as $p \circ \Psi^g = 1$ and $p \circ \Psi_x = \text{const.}$, respectively $f_\omega \circ \Psi^g = \text{const.}$ and

 $f_{\omega} \circ \Psi_x = 1$. We may conduct the computation:

$$\tilde{\alpha}_{\tilde{x}_j} V_j = (p^* \Phi_1 \alpha)_{\tilde{x}_j} V_j = (\Phi_1 \alpha)_{x_j} (d_{\tilde{x}_j} p) V_j =$$
$$= \alpha_{x_j} \pi_{x_j} X_j = \alpha_{x_j} \hat{\omega}_{x_j}^{-1} (ev_g^{-1} X)$$

Yet $x \mapsto \alpha_x \hat{\omega}_x^{-1}(ev_g^{-1}X)$ is an element of $\Omega^0(M) \otimes \mathbb{C}$ and therefore continuous. Thus:

$$\lim_{j \to \infty} \tilde{\alpha}_{\tilde{x}_j} V_j = \alpha_{x'} \hat{\omega}_{x'}^{-1} (ev_g^{-1} X)$$

Let $s \in \mathcal{G}_{\omega}$ be defined by:

$$s(y) = \hat{\omega}_y^{-1}(ev_g^{-1}X)$$

for any $y \in M$. Choose $Y \in L_{\omega}$ so that $\pi Y = s$ and set $V'' = \tilde{Y}_{\tilde{x}'}$ where \tilde{Y} is the lift of Y (given by (6)). Then:

$$\tilde{\alpha}_{\tilde{x}'}V'' = \alpha_{x'}\pi_{x'}Y_{x'} = \alpha_{x'}s(x') = \alpha_{x'}\hat{\omega}_{x'}^{-1}(\Phi_{x'}^{-1}(ev_g^{-1}X))$$

so that:

$$\lim_{j \to \infty} \tilde{\alpha}_{\tilde{x}_j} V_j = \tilde{\alpha}_{\tilde{x}'} V''$$

Let $j \to \infty$ in (11). We obtain:

(12)
$$\tilde{\alpha}_{\tilde{x}}V = \tilde{\alpha}_{\tilde{x}'}V''$$

Note that $V'' - V' \in Ker(d_{\tilde{x}'}f_{\omega}) = T(p^*\mathcal{F})_{\tilde{x}'}$. Yet $p_*T(p^*\mathcal{F}) = P$ so that $p_*V'' = p_*V' + Y$ for some $Y \in P_{x'}$. Finally $\tilde{\alpha}V'' = \tilde{\alpha}V' + Y \rfloor \Phi_1 \alpha$ (and $\Phi_1 \alpha$ is a basic form on (M, \mathcal{F})) so that (12) may be written in the form (8). This ends the proof of Step 1.

STEP 2. $f_{\omega}\tilde{\alpha}$ is a left invariant form on G. Let $x \in M$ and $\tilde{x} \in p^{-1}(x)$. Set:

$$H = \{g \in G : R_q(\tilde{x}) \in M\}$$

Then H is a subgroup of G. Moreover, the definition of H does not depend upon the choice of $x \in M$ and $\tilde{x} \in p^{-1}(x)$ (cf. e.g. [8], p. 115). Let $a \in H, g \in G$ and $\tilde{x} \in f_{\omega}^{-1}(g)$. Let $X \in T_g(G) \otimes \mathbb{C}$. We wish to compute $(L_a^* f_\omega \tilde{\alpha})_g X$. As $f_\omega \circ R_a = L_a \circ f_\omega$ we observe that $R_a(\tilde{x}) \in f_\omega^{-1}(ag)$. Set $X' = (d_g L_a) X$ and $V' = (d_{\tilde{x}} R_a) V$ where $V \in T_{\tilde{x}}(\tilde{M}) \otimes \mathbb{C}$ is chosen so that $(d_{\tilde{x}} f_\omega) V = X$. Then:

$$(d_{R_a(\tilde{x})}f_\omega)V' = X'$$

so that (by $p \circ R_a = p$):

(13)
$$L_a^* f_\omega \tilde{\alpha} = f_\omega \tilde{\alpha}$$

for any $a \in H$. Nevertheless, as \mathcal{F} has dense leaves H is dense in G (cf. e.g. [10], p. 148) so that (13) holds at any $a \in G$. It follows that $f_{\omega}\tilde{\alpha}$ is a left invariant form. Step 2 is completely proved.

STEP 3. If $\alpha_0 = I_s^{-1}(f_\omega \tilde{\alpha})$ then $\alpha_0 \in \Lambda^s \mathbf{a}^*$.

Again, we prove Step 3 for s = 1 only. Indeed, as $\alpha \in \Gamma_B^{\infty}(\overline{\mathcal{H}}^*)$ we have $\xi \rfloor \alpha = 0$ and $\mathcal{H} \rfloor \alpha = 0$, where ξ is given by (7). Let $T \in \mathcal{G}$ be the characteristic direction of $d_{\mathcal{G}}\theta_0$. Let $\tilde{x} \in f_{\omega}^{-1}(e)$ and $V \in T_{\tilde{x}}(\tilde{M})$ so that $(d_{\tilde{x}}f_{\omega})V = T_e$. Since $T_{\tilde{x}}(\tilde{M}) = \Gamma_{(x,e)}$, $x = p(\tilde{x})$, there is $Y \in L_{\omega}$ so that $V = \tilde{Y}_{(x,e)}$ where \tilde{Y} is the lift of Y. Then:

$$(d_{\tilde{x}}p)V = Y$$
$$\pi_x Y_x = \hat{\omega}_x^{-1}(T) = \xi_x$$

so that we may conduct the following computation:

$$\alpha_0(T) = (I_1^{-1} f_\omega \tilde{\alpha}) T = (f_\omega \tilde{\alpha})_e T_e = \tilde{\alpha}_{\tilde{x}} V = (p^* \Phi_1 \alpha)_{\tilde{x}} V =$$
$$= (\Phi_1 \alpha)_x (d_{\tilde{x}} p) V = \alpha_x \pi_x Y_x = \alpha(\xi)_x = 0$$

If $Z \in \mathbf{a}$ then it may be shown in a similar way that:

$$\alpha_0(Z) = \alpha_x \hat{\omega}_x^{-1}(Z) = 0$$

(as $\hat{\omega}_x^{-1}(Z) \in \mathcal{H}_x$). Step 3 is completely proved. To end the proof of Theorem 1 we need to establish the following:

STEP 4. The map:

(14)
$$\Gamma_B^{\infty}(\Lambda^s \overline{\mathcal{H}}^*) \to \Lambda^s \overline{\mathbf{a}}^*, \qquad \alpha \mapsto \alpha_0$$

induces an isomorphism:

$$H^s_{\overline{\partial}_O}(M,\mathcal{F}) \to H^{0,s}(\mathcal{G},\mathbf{a}), \qquad [\alpha] \mapsto [\alpha_0]$$

Here brackets indicate cohomology classes. We need to recall the transverse Cauchy-Riemann complex of a CR foliation, cf. [1]. Let $(M, \mathcal{F}, \mathcal{H})$ be a CR foliation. There is a complex:

(15)
$$\overline{\partial}_Q : \Gamma^\infty_B(\Lambda^s \overline{\mathcal{H}}^*) \to \Gamma^\infty_B(\Lambda^{s+1} \overline{\mathcal{H}}^*), \qquad s \ge 0$$

which is most easily described when $(\mathcal{F}, \mathcal{H})$ is nondegenerate. Elements in $\Gamma_B^{\infty}(\Lambda^s \overline{\mathcal{H}}^*)$ are transverse (0, s)-forms (invariant by holonomy), i.e. those $\alpha \in \Gamma_B^{\infty}(\Lambda^s Q^* \otimes \mathbf{C})$ so that $\xi \rfloor \alpha = 0$ and $\mathcal{H} \rfloor \alpha = 0$. Next $\overline{\partial}_Q \alpha$ is the unique transverse (0, s+1)-form which coincides with $d_Q \alpha$ when both are restricted to $\overline{\mathcal{H}} \otimes \cdots \otimes \overline{\mathcal{H}}$ (s+1 terms). The cohomology:

$$H^{s}_{\overline{\partial}_{Q}}(M,\mathcal{F}) = H^{s}(\Gamma^{\infty}_{B}(\Lambda^{\cdot} \overline{\mathcal{H}}^{*}), \overline{\partial}_{Q}) \ , \ s \geq 0$$

of the complex (15) is the transverse Kohn-Rossi cohomology of $(\mathcal{F}, \mathcal{H})$.

As (14) is already an isomorphism, to prove Step 4 we only need to check that $[\alpha] \mapsto [\alpha_0]$ is well defined. This amounts to checking that $(\overline{\partial}_Q \beta)_0$ is a coboundary for any $\beta \in \Gamma^{\infty}_B(\Lambda^{s-1}\overline{\mathcal{H}}^*)$. Note firstly that:

(16)
$$d\tilde{\alpha} = (d_Q \alpha)^{\hat{}}$$

Indeed:

$$d\tilde{\alpha} = dp^* \Phi_s \alpha = p^* d\Phi_s \alpha = p^* \Phi_{s+1} d_Q \alpha = (d_Q \alpha)^{\sim}$$

By (16) we are entitled to consider $f_{\omega}d\tilde{\alpha}$. Moreover we have:

(17)
$$f_{\omega}d\tilde{\alpha} = df_{\omega}\tilde{\alpha}$$

for any $\alpha \in \Gamma^{\infty}_{B}(\Lambda^{s} \overline{\mathcal{H}}^{*})$ ((17) follows from Prop. 3.11 in [7], vol. I, p. 36). Finally, a computation based on (17) leads to:

$$\overline{\partial}_{\mathcal{G}}\beta_0 = (\overline{\partial}_Q\beta)_0$$

and Step 4 is completely proved.

5 - Proof of Theorem 2

Let $\varphi : B_T^1(M, \mathcal{F}) \to End(Q)$ be the bundle morphism $x \mapsto \varphi_x$ given by $\varphi_x(z) : Q_x \to Q_x$, $x = p_T^1(z)$, where $\varphi_x(z)$ is the linear map whose matrix with respect to the basis $\{z(e_1), \dots, z(e_q)\}$ is J_0 , where $\{e_1, \dots, e_q\}$ is the canonical basis in \mathbb{R}^q . We need the following:

LEMMA 1. Let $z \in B^1_T(M, \mathcal{F})$ with $x = p^1_T(z)$ and $g \in GL(q, \mathbf{R})$. Then $\varphi_x(z) = \varphi_x(zg)$ if and only if $g \in G$.

The proof is straightforward. By Lemma 1 we have:

$$Im(\varphi) \approx B_T^1(M, \mathcal{F})/G$$

On the other hand (cf. [7], vol. I, p. 57):

$$Y(M,\mathcal{F}) = \frac{B_T^1(M,\mathcal{F}) \times (GL(q,\mathbf{R})/G)}{GL(q,\mathbf{R})} \approx B_T^1(M,\mathcal{F})/G$$

Let $J \in \Gamma^{\infty}(End(Q))$ be a *f*-structure in *Q*. Then $J \in \Gamma^{\infty}(Im(\varphi))$, that is any *f*-structure in *Q* may be thought of (via $Im(\varphi) \approx B_T^1(M, \mathcal{F})/G \approx$ $Y(M, \mathcal{F})$) as a section in $Y(M, \mathcal{F})$. Let $\mathcal{Y}(M, \mathcal{F})$ be the set of all homotopy classes of C^{∞} sections in $Y(M, \mathcal{F})$. As \mathcal{F} is a *G*-Lie foliation, it is transversally parallelizable, hence:

$$B_T^1(M,\mathcal{F}) \approx M \times GL(2n+1,\mathbf{R})$$

and consequently the associated bundle $Y(M, \mathcal{F})$ is trivial as well:

$$Y(M, \mathcal{F}) \approx M \times (GL(2n+1, \mathbf{R})/G)$$

Thus (cf. [9], section 6.7) $\mathcal{Y}(M, \mathcal{F})$ is in a one-to-one and on-to correspondence with the set of homotopy classes of continuous maps from M to $GL(2n+1, \mathbf{R})/G$. Note that:

$$GL(2n+1,\mathbf{R})/G \approx GL^+(2n+1,\mathbf{R})/G^+$$

where $GL^+(2n+1, \mathbf{R}) = \{g \in GL(2n+1, \mathbf{R}) : \det(g) > 0\}$ and $G^+ = G \cap GL^+(2n+1, \mathbf{R})$. Define $GL_1(n, \mathbf{C}) = \{g \in GL(n, \mathbf{C}) : |\det(g)| = 1\}$

(e.g. $SL(n, \mathbf{C}) \subset GL_1(n, \mathbf{C})$ yet inclusion is strict). Then $GL(n, \mathbf{C}) \rightarrow GL^+(2n+1, \mathbf{R})$ induces a group monomorphism $GL_1(n, \mathbf{C}) \rightarrow GL^+(2n+1, \mathbf{R})$. We need the following:

LEMMA 2. Let $\mathbf{R}_{+} = (0, \infty)$ with ordinary multiplication. Then:

$$\frac{GL^+(2n+1,\mathbf{R})}{GL_1(n,\mathbf{C})} \to \frac{GL^+(2n+1,\mathbf{R})}{G^+}$$

is a principal \mathbf{R}^2_+ -bundle.

PROOF. The following short sequence of groups and group homomorphisms:

$$1 \to GL_1(n, \mathbf{C}) \longrightarrow G^+ \stackrel{\rho}{\longrightarrow} \mathbf{R}_+ \times \mathbf{R}_+ \to 1$$

where:

$$\rho: \begin{pmatrix} a & 0 & 0\\ 0 & A & -B\\ 0 & B & A \end{pmatrix} \longmapsto (a, |\det(A+iB)|)$$

is exact. Then Lemma 2 is gotten from the following computation:

$$\left(GL^{+}(2n+1,\mathbf{R})/GL_{1}(n,\mathbf{C}) \right) / \mathbf{R}_{+}^{2} \approx \frac{GL^{+}(2n+1,\mathbf{R})/GL_{1}(n,\mathbf{C})}{G^{+}/Ker(\rho)} \approx \frac{GL^{+}(2n+1,\mathbf{R})/GL_{1}(n,\mathbf{C})}{G^{+}/GL_{1}(n,\mathbf{C})} \approx GL^{+}(2n+1,\mathbf{R})/G^{+}$$

Cf. Theorem 5.7 in [7], vol. I, each bundle whose standard fibre diffeomorphic to \mathbf{R}^m (for some m) admits global sections (and is therefore trivial). Thus (by Lemma 2):

$$GL^+(2n+1,\mathbf{R})/GL_1(n,\mathbf{C}) \approx (GL(2n+1,\mathbf{R})/G) \times \mathbf{R}^2_+$$

Yet \mathbf{R}^2_+ is nullhomotopic so that $GL(2n+1, \mathbf{R})/G$ is homotopically equivalent to $GL^+(2n+1, \mathbf{R})/GL_1(n, \mathbf{C})$, and Theorem 2 is completely proved.

REFERENCES

- E. BARLETTA S. DRAGOMIR: Transversally CR foliations, submitted to Tohôku Math. J., 1995.
- [2] A. BOGGESS: CR manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Math., CRC Press, Boca Raton-Ann Arbor-Boston-London, 1991.
- [3] S. DONNINI G. GIGANTE: Classification of left invariant CR structures on GL⁺(3, **R**), Riv. Mat. Univ. Parma, (4) 16 (1990), 343-355.
- [4] E. FEDIDA: Sur les feuilletages de Lie, C. R. Acad. Sci. Paris, 272 (1971), 999-1002.
- [5] G. GIGANTE G. TOMASSINI: CR structures on a real Lie algebra, Rend. Mat. Acc. Lincei, (9) 2 (1991), 203-205; Advances in Math., 94 (1992), 67-81.
- [6] A. HAEFLIGER: Structures feuilletées et cohomologie à valeur dans un faisceau de groupoides, Comment. Math. Helvet., 32 (1958), 248-329.
- [7] S. KOBAYASHI K. NOMIZU: Foundations of differential geometry, John Wiley & Sons, Interscience Publishers, New York-Chichester-Brisbane-Toronto, vol. I, 1963, vol. II, 1969.
- [8] P. MOLINO: *Riemannian foliations*, Progress in Math., vol. **73**, Ed. by J. OESTERLÉ & AA. WEINSTEIN, Birkhäuser, Boston-Basel, 1988.
- [9] N. STEENROD: The topology of fibre bundles, Princeton Math. Series, 14, Ed. by L.A. CAFFARELLI & J.N. MATHER & E.M. STEIN Princeton Univ. Press, Princeton, New Jersey, 1951.
- [10] P. TONDEUR: Foliations on Riemannian manifolds, Ed. by J. EWING & F.W. GEHRING & P.R. HALMOS, Springer-Verlag, New York-Berlin-Heidelberg-London-Paris-Tokyo, 1988.
- [11] N. TANAKA: A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book Store Co., Ltd., Kyoto, 1975.
- [12] S. WEBSTER: Pseudohermitian structures on a real hypersurface, J. Diff. Geometry, 13 (1978), 25-41.

Lavoro pervenuto alla redazione il 26 giugno 1995 ed accettato per la pubblicazione il 6 dicembre 1995. Bozze licenziate il 3 aprile 1996

INDIRIZZO DEGLI AUTORI:

Elisabetta Barletta – Università della Basilicata – Dipartimento di Matematica – Via N. Sauro, 85-85100Potenza – Italia

Sorin Dragomir – Politecnico di Milano – Dipartimento di Matematica – Piazza Leonnardo Da Vinci, 32 – 20133 Milano – Italia