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Diffuse and discrete semigroups of probability

measures on Abelian Hilbert-Lie groups

E. COSKUN

R1ASSUNTO: Si trattano le misure diffuse e discrete su gruppi abeliani di Hilbert-
Lie ottenendo una risposta al problema che ogni semigruppo di convoluzione Gaussiano
¢ diffuso.

ABSTRACT: In the present paper we investigate diffuse and discrete measures on
abelian Hilbert-Lie groups and give the answer to the question that each Gaussian con-
volution semigroup is diffuse.

— Introduction

In the theory of probability measures on groups the continuous con-
volution semigroup plays an important role. The basic problem is the
representation of this semigroup by a Lévy-Khinchine formula.

Let (Mt)telRi be a continuous convolution semigroup of probability
measures on a Hilbert-Lie group G and C,(G) the Banach space of all
bounded left uniformly continuous real-valued functions on G. Then there
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is associated a strongly continuous semigroup (Tut)telRi of contraction
operators on C,(G) with the infinitesimal generator (N, D(N)). The
generating functional (A, D(A)) of the convolution semigroup (,ut)tG]Ri is
defined by

Af—hm( JSe) = f(e))

for all f in its domain D(A). We obtain the Lévy-Kkinchine formula for a
class of Hilbert-Lie groups [1] and for any abelian Hilbert-Lie groups [2].
We have then the following situation: Let C(2)(G) be a subspace of C,,(G)
and let (X;);en be an orthonormal basis in the model space of the Hilbert-
Lie group. Then there exists a triple (r, s,n) such that

Zﬁ X f(e +ZZTU X, X;f(e

lel

+/f fle Zde Jdn,

holds for all f € C2)(G). Here 7 = (r;);ew is a sequence of real numbers,
s = (r4)ijen 1S a symmetric, positive-semidefinite real-valued matrix, 7
is a Lévy measure on G and (d;);en are the local canonical coordinates
with respect to (X;);en.

We obtain some applications of Lévy-Khinchine formula on an
abelian Hilbert-Lie group G as in [7].

1 — Preliminaries

Let IN and IR denote the sets of positive integers and real numbers,
respectively. Moreover, let R := {r :r > 0}, R} := {r: 7 > 0}.

Let A be a set and B a subset of A. Then by 1z we denote the
indicator function of B. Let I be a nonvoid set. ¢;; is the Kronecker
delta (i,j € I).

By G we denote a topological Hausdorff group with identity e. G is
called a Polish group, if G is a topological group with a countable basis
for its topology and with a complete left invariant metric d which induces
its topology.

For every function f:G — IR and a € G, the functions f*, R, f= f, and
Lof=af are defined by f*(b) = f(b7"), fa(b) = f(ba) and o f(b) = f(ab)
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for all b € G, respectively. Moreover, let supp(f) = {a € G : f(a) # 0}
denote the support of f. By C,(G) we denote the Banach space of all
real-valued bounded left uniformly ( or d-uniformly) continuous functions
on G furnished with the supremum norm || - ||.

An abelian Hilbert-Lie group is an abelian analytic manifold modeled
on a separable Hilbert space, whose group operations are analytic.

For the exponential mapping Exp : T, — G, there exists an in-
verse mapping log from a neighborhood U, of e onto a neighborhood
Ny of zero in T,, where T, is the tangential space in e € G [5]. By
a;(a) == (log(a), X;), i € IN, we define the maps a; from the canonical
neighborhood U, in IR. Now we call the system (a;);en of maps from U,
in IR a system of canonical coordinates of G with respect to an orthonor-
mal base (X;);en, if for all a € U,, the property a = Exp (3>-;2; a;(a)X;)
is satisfied.

By B(G) we denote the o-field of Borel subsets of G. Moreover, V(e)
denotes the system of neighborhoods of the identity e of G which are also
in B(G).

M(G) denotes the vector space of real-valued (signed) measures on
B(G). As is well known, M(G) is a Banach algebra with respect to
convolution * and the norm || - || of total variation. M, (G) is the set of
positive measures in M(G) and M'(G) = {u € M(G) : u(G) = 1} is the
set of probability measures on G.

Let f € C,(G), X € H and a € G. f is called differentiable at a € G
with respect to X (“X f(a) exists” for short), if

X f(a) == lim < (Lo f(a) — F(a)] = lim ~ (R, f(a) — f(a)]

t—0 ¢ t—0 ¢

exists. Here the one-parameter subgroup 7, (t) of G is defined by v, (t) :=
Exp(tX) for X € H and t € RR. f is called continuously differentiable, if
X f(a) exists for all a € G and X € H and if the mappings a — X f(a),
X — X f(a) are continuous. For the property of differentiability see [1].

Derivatives of higher order can be defined inductively.

Now let f € C,(G) be a twice continuously differentiable function.
Then the mapping Df(a) : X — X f(a) (D*f(a) : (X,Y) —
XY f(a)) is a continuous and linear (resp., symmetric, continuous and
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bilinear) functional on H (resp. H x H) for all a € G . We also have
(Df(a),X) = Xf(a) and (D*f(a)(X),Y) = XY f(a)

foralla € G and X,Y € H.

We write C3(G) for the space of all twice continuously differentiable
functions f € C,(G) such that the mapping a — D?f(a) is d-uniformly
continuous and

IDf == sup IDf(a)ll < oo, [D*f] = sup |1D*f(a)]| < oo.

Then C(G) is a Banach space with respect to the norm

1£llz = I+ IDFI + ID2fI, - f € Ca(G).

Now let H be a separable Hilbert space with a complete orthonormal
system (X;);exw and G an abelian Hilbert-Lie group on H. Moreover, let

H, = {X1, Xo, -+, X,,})

be the space of all linear combinations of X, Xy,---,X,, and H> the
orthogonal complement of H,, in H (for all n € IN). Then H/H} and H,

are isomorphic. Clearly
G, = Exp(H;)

is a closed subgroup of G for all n € IN. The quotient spaces G/G,, are
finite-dimensional Hilbert-Lie groups.

DEFINITION 1.1. Let G be an abelian Hilbert-Lie group on H, and
(X})iew an orthonormal basis in H. For any n € IN, we define the set

Coyn(G) = {f € C2(G) :X;f =0 for all i >n and
X:X;f=0 foral i>n or j>n}.

and the set
C2)(GQ) 1= UpnenCi2)n(G).
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Then C»)(G) is a linear subspace of Cy(G). For every u € M'(G),
we define the (contraction) operator 7}, on C,(G) by

T.f ::/fau(da) (Bochner-Integral).

It is easy to see that 7,,C,(G) C C,(G) and T),., =T, oT,. In fact we
have TMC(Q)(G) C C(Q)(G) (Cf [1])

2 — Generators of convolution semigroups on abelian Hilbert-
Lie groups

A (continuous) convolution semigroup is a family (,ut)teﬂi in M'(QG)
such that o = €, and pg * gy = psy s for all s,¢ € IRi and limy,__,q p; = €c
weakly (cf. [6]).

A continuous convolution semigroup (,ut)teRi in M'(G) admits a
Lévy measure 1), where 7 is a o-finite positive measure on B(G) such that

n({e}) =0 and
iy [ = [ fan

o t
for all f € C,(G) with e & supp(f) (cf. [§]).

To a continuous convolution semigroup (Nt)te]Rj_ of probability mea-
sures on G there is associated the (strongly) continuous semigroup
(T, t)telRi of contraction operators on C,(G) with the infinitesimal gener-
ator (N, D(N)). The generating functional (A, D(A)) of the convolution
semigroup (,ut)teRi is defined by

f s AL =l (TS (0) — f(0)

for all f in its domain D(A).
We have then the fallowing Proposition. For its proof see [1].

PROPOSITION 2.1 (Lévy-Khinchine formula).  Let (pu)iecr be a con-
tinuous convolution semigroup in M*(G) with the generating functional
A. Then
(i) C)(G) C D(A) and
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(i) there exists a triple (r,s,n) such that

Zr X f(e +ZZT” XX f(e

lel

+/ff Zde

holds for all f € C(2(G). Here r = (1;);en is a sequence of real numbers,
s = (1ij)ijen a symmetric, positive-semidefinite real-valued matriz, and
n is a Lévy measure on B(G).

NOTATIONS 2.2. For f € C(5)(G) we have

= iri - Xif(e), G(f
i=1

bllﬂg

f:” X, X, f(e

and

= Zdi - Xif(e)

The linear real-valued functionals £ and G are called the lineare part and
Gaussian part of A on C(2)(G), respectively. The Lévy-Khinchine formula
can be written in the form

A() = L)+ + [ [F = 1(e) = AlPdn

3 — Application of the Lévy-Khinchine formula

For any n-dimensional Lie group G, a convolution semigroup (,ut)tele_
of probability measure is Gaussian iff the correspending Lévy measure 7
on B(G) is zero and (7;;); j=1,2... n 7 0. Here (7i;)ij=12,.. » IS & symmet-

ric, positive-semidefinite matrix as in Lévy-Khinchine formula.

DEFINITION 3.1. Any continuous semigroup (/J/t)te]Ri in MY(G) is
called Gaussian, if
(a) (ke)iers is non-degenerete.

(b) limy o %Mt(Vc) = 0 is satisfied for all V € V(e).
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LEMMA 3.2. Let G be an abelian Hilbert-Lie group, and let y and v
two measures in M*(G) and p, the canonical projection of G on G/G,.
If po(p) = pn(v) for alln € IN, then we have p = v.

PROOF. Let K be a compact set in G. Then p,(K) is compact in
G/G,, for any n € IN. From the equation p,, (1) (pn(K)) = pn(v) (pn(K)),
we obtain

wKG,)=v(KG,) forall neN.

Since G, | {e} and since K is compact, it follows
KG, | K for n— oco.

Hence u(K) = v(K) for all compact sets K in G. This means that
w=v. 0

REMARK 3.3. For any abelian Hilbert-Lie group G, let (ut)teRi be a
continuous convolution semigroup in M*(G) with the infinitesimal gen-
erator N and (74, 7;,m): jen the triple as in the Lévy-Khinchine formula.
Moreover, let 7 = 0. Then the following assertions are equivalent:

(i) (ut)ier is non-degenerate.
(ii) The symmetric, positive-semidefinite matrix (7;); jen iS not zero

(cf. [1]).

PRPOSITION 3.4. Let (/.,Lt)te]Rjr be a continuous convolution semi-
group in M'(G) with the generating functional A and let (ri,7i;,0)i jen
be the triple as in the Lévy-Khinchine formula. Then the following as-
sertions are equivalent:

(i) The convolution semigroup (ut)teﬁi is Gaussian.

(i) 7 =0 and (ri)ijen # 0.
For the proof of this see [1] or [3].

DEFINITION 3.5. Let (Ht)tele be a continuous convolution semi-
group in M*(G) with the infinitesimal generator N. Then N is said to be
of local character, if f = 0 in a neighborhood of a € G implies N f(a) = 0,
for every f € D(N).
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We have then the following Proposition. For its poof see [1] or [3].

PROPOSITION 3.6.  Let (1u)iers be a continuous convolution semi-
group in MY (G) with the infinitesimal generator N. Then the following
assertions are aquivalent
(i) N is of local character and (r;;); jen 7 0.

(ii) (Mt)teIRi is Gaussian.

DEFINITION 3.7.  Let (1)ier+ be a convolution semigroup in MYG)
with generating functional A. The functional A is said to be semi-bounded
on C)(G), if there exist some ¢ € R such that

A(f) <c-llfll - forall f € Cp)(G) with 0= f(e) < f.

For any locally compact group G, Siebert [7] showed that, the gen-
erating functional A of a continuous convolution semigroup (,U't)telR: is
semi-bounded iff the measure (1, has for some (and hence for each) t € IR’
a discrete part.

We want to express a similar result obtained by Siebert for abelian
Hilbert-Lie groups. For this purpose we give a necessary notation: For
any f € C(2)(G), let

I() = [ (F = Fle) = AU dn,

Here the symbols A and 7 are taken from Notations 2.2. Now the Lévy-
Khinchine formula is written in the form

A=L+G+T.

DEFINITION 3.8. A measure p € M(G) is said to be discrete if

= Z p(a)e,.

acG

The measure | is said to be diffuse if

pla) =0  forall acQ@.
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Each p € M(G) admits a unique decomposition p = pup + pg in
a discrete measure pp = >, p(a)e, and a diffuse measure p4. The
measure j is said to have a discrete part if pup # 0, i.e. if there exists at
least one a € G such that pu(a) # 0. The semigroup (/.Lt)te]Rjr is said to
be diffuse (resp. discrete), if for some (and hence for each) t € IR}, the
measure (i, is diffuse (resp. discrete).

REMARK 3.9. 1) Let G be a Gaussian form on C(5)(G). Then the
functional G is zero iff G(f) = 0 for all f € Cp)(G) with 0 < f <
lg, f(e)=1and f* = f ([4], Satz 5.3).

2) Let (/,Lt)teRi be a convolution semigroup in M'(G) such that for
any t € IR} and any a € G, we have p,(a) > 0. Then it follows that
¢t = maX,eq pe(a) > 0 for all t € IR}. Then there exist, by Lemma 2 in
[7], a one-parameter semigroup (at)teRi in G such that

¢ = i (ay) for all t € R}, witht <,
and such that lim; o c; = 1. Otherwise, there exist » € IR, such that
o >e b
for all £ € RY (cf. Corollary to Lemma 3 in [7]).

LEMMA 3.10. For the generating functional A of a continuous con-
volution semigroup (,Ut)tele in MY(G) with Lévy measure 1, the following
assertions are equivalend:

(i) A is semi-bounded.
(i) G =0 and n is bounded. Furthermore, we have

A=B+(—n(G)-c) for B::E—/Adn.
PrOOF. (ii) = ( i). Using Notations 2.2, it follows that
A = £ + [17 = £&) = A dn
= [ ran<n@)- 1)

for all f € C(9)(G) with 0= f(e) < f.
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(i) =>(ii). Let the generating functional A on C(3)(G) be semi-
bounded. Then there exists ¢ € IR} such that A(f) < c- | f]| for all
[ € C(G) with 0 = f(e) < f. Since these functions f take their
minimums in e € G, it follows that £(f) = 0 and A(f) = 0. This yields

0 AW =G+ [ fan<e-Ifl.

Let especially f = ¢* with g € C(5(G), g=g¢* and 0 =g(e) < g < 1g.
Since G is a Gaussian form on Ciy)(G), we get

and thus
0< A = [Gdn<elig?l < e

Hence 7 is bounded by ¢ € IR}
Since (745)ijen is a positive-semidefinite matrix, this yields clearly
G(f) >0 for all f € C2)(G) with 0= f(e) < f. Then we have

0<G(N) =AW - [ fdn< eIl +n(G)- 1]
<2 |fI.

Let especially f = h — h" with n € IN, h € Ci5)(G) such that 0 < h <
lg, h(e) =1 and h=h*. Then 0 < h —h", (h —h")(e) = 0 and so

0<G(h—h") <2 ||h—h"|| < 2

for all n € IN. On the other side, we have (1 —n)G(h) = G(h — h") for all
n € IN. This yields G(h) < 0 and so G(h) = 0. Hence, by Lemma 3.10,
G = 0. This yields the assertion. i

ProrosITION 3.11. Let (Ht)teRi be a continuous convolution semi-
group in M'(G), and let for some (and hence for each) t € IR’ the mea-
sure p; has a discrete part. Then the generating functional A of (ut)teRi
1s semi-bounded.
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PROOF. Let the measure j, t € IRY, has a discrete part. Then there
exists, by Proposition 5.7 in [9], a one-parameter group (a;)¢cr in G with
a; = Exp(tX) for any X € H such that

(Nt)telR: = P((eat)teRj;% n),

i.e. the semigroup (Mt)tel[{j is a perturbation of the semigroup (€at)t€]R*+
by means of the measure . By Lemma 2.1 (ii) in [9], the perturbation se-
ries e 1) 3% oy (t) converges to u, with respect to the norm of M(G)
(all t € IRy). Then we have

o= DS 0y (1)
k=0
= e (e, + 0u(t) + Y 0u(t))
k=2
Now let f € C(5)(G). Then we may write down
1 1 1
2 U= s@ldue = {21 (@) = fe))+ 7 [ Fdon(v)+
+ - /fd Zak } (e)(et'"(G) - 1)
k=2
for all ¢ € IRY.. Clearly,

lim L [f(a,) — f(e)] = X f(e)

tl0 ¢

for all f € C(2)(G), and by (i) and (ii) of Corollary 2.2 in [9], we obtain

lim /fdal /fdn
and

lim — /fd =0

tl0 ¢t

respectively. Since

lim — f( )(et'”(G) — 1) =-n(G) - f(e),

tlo ¢
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this yields

Af =tim+ (17~ F@dp = X7(0) + [ fdn—n(G)- 5

= Xf(e)+ [If = f(e)dn
for all f € C(9)(G), and therefore

Af <A n(@)

for all f € C(2)(G) with 0 = f(e) < f. Hence A is semi-bounded. 0

COROLLARY 3.12. Fvery Gaussian semigroup (,ut)teRi is diffuse.

PrOOF. By Lemma 3.4, the Lévy measure n = 0, (r;;); jen # 0, and
by the Lévy-Khinchine formula the functional A is of the form

A=L+G with G#0.

Then, by Lemma 3.10, A is not semi-bounded, and so, by above Propo-
sition, A has not discrete part. Hence (,u,t),ge]R*+ is diffuse. O

COROLLARY 3.13. Let (,ut)tE]R*+ be a continuous convolution semi-
group in M*(G) with generating functional A. We assume that p; has a
discrete part for each t € RY.. We define a, € G by p(a;) = max{u.(a) :
a € G}, t € RL. Then the functional B in Lemma 3.10 (ii) takes the

form
B(f) = lim ~[f(a,) - 1(e)]

tlo ¢
for all f € C9(GQ).
PROOF. Let the measure p,, ¢ € IR} have a discrete part. Then

there exists a one-parameter group (a;)ier in G with a; = Exp(tX) for
any X € H, and we have

Af = X1(€)+ [IF = fe)dn
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for all f € C(2)(G) (cf. the proof of Proposition 3.11). Since the functional
A of (,ut)te]Ri is semi-bounded on C,)(G), Lemma 3.10 (ii) yields

Bf =Xf(e) for all f € Cp)(G).

By Remark 3.9, the assertion is valid. 0

COROLLARY 3.14. Let (,ut)te]Ri be a convolution semigroup in
M (G) with the generating functional A. We assume that each p; has a
discrete part. Then there exists, by Lemma 3.10, a linear functional B
on Ciy(G) and a measure v € M (G) such that A has the decomposi-
tion A = B+ (v — v(G) - €.). Moreover, let (ju)ier be the continuous
convolution group in M(G) extending (pi)iers  (cf. [7], Theorem 1).
Then —A is the generating functional of the semigroup (,u,t)te]Ri, and
p—e]| < 2D for all t € RY.

ProoF. By [10], IX.9 Theorem, the functional —A is clearly the
generating functional of (M—t)telRip and the second assertion follows from
Hilfsatz 2.10 in [4]. 0
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