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Diffuse and discrete semigroups of probability

measures on Abelian Hilbert-Lie groups

E. COŞKUN

Riassunto: Si trattano le misure diffuse e discrete su gruppi abeliani di Hilbert-
Lie ottenendo una risposta al problema che ogni semigruppo di convoluzione Gaussiano
è diffuso.

Abstract: In the present paper we investigate diffuse and discrete measures on
abelian Hilbert-Lie groups and give the answer to the question that each Gaussian con-
volution semigroup is diffuse.

– Introduction

In the theory of probability measures on groups the continuous con-

volution semigroup plays an important role. The basic problem is the

representation of this semigroup by a Lévy-Khinchine formula.

Let (µt)t∈IR∗
+

be a continuous convolution semigroup of probability

measures on a Hilbert-Lie group G and Cu(G) the Banach space of all

bounded left uniformly continuous real-valued functions on G. Then there
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is associated a strongly continuous semigroup (Tµt)t∈IR∗
+

of contraction

operators on Cu(G) with the infinitesimal generator (N,D(N)). The

generating functional (A, D(A)) of the convolution semigroup (µt)t∈IR∗
+

is

defined by

Af := lim
t↓0

1

t
(Tµtf(e) − f(e))

for all f in its domain D(A). We obtain the Lévy-Kkinchine formula for a

class of Hilbert-Lie groups [1] and for any abelian Hilbert-Lie groups [2].

We have then the following situation: Let C(2)(G) be a subspace of Cu(G)

and let (Xi)i∈IN be an orthonormal basis in the model space of the Hilbert-

Lie group. Then there exists a triple (r, s, η) such that

A(f) =
∞∑

i=1

ri · Xif(e) +
∞∑

i=1

∞∑

j=1

rij · XiXjf(e)+

+

∫

G∗
[f − f(e) −

∞∑

i=1

di · Xif(e)]dη,

holds for all f ∈ C(2)(G). Here r = (ri)i∈IN is a sequence of real numbers,

s = (rij)i,j∈IN is a symmetric, positive-semidefinite real-valued matrix, η

is a Lévy measure on G and (di)i∈IN are the local canonical coordinates

with respect to (Xi)i∈IN.

We obtain some applications of Lévy-Khinchine formula on an

abelian Hilbert-Lie group G as in [7].

1 – Preliminaries

Let IN and IR denote the sets of positive integers and real numbers,

respectively. Moreover, let IR+ := {r : r ≥ 0}, IR∗
+ := {r : r > 0}.

Let A be a set and B a subset of A. Then by 1B we denote the

indicator function of B. Let I be a nonvoid set. δij is the Kronecker

delta (i, j ∈ I).

By G we denote a topological Hausdorff group with identity e. G is

called a Polish group, if G is a topological group with a countable basis

for its topology and with a complete left invariant metric d which induces

its topology.

For every function f :G→ IR and a∈G, the functions f∗, Raf =fa and

Laf = af are defined by f∗(b) = f(b−1), fa(b) = f(ba) and af(b) = f(ab)



[3] Diffuse and discrete semigroups of probability etc. 191

for all b ∈ G, respectively. Moreover, let supp(f) = {a ∈ G : f(a) %= 0}
denote the support of f . By Cu(G) we denote the Banach space of all

real-valued bounded left uniformly ( or d-uniformly) continuous functions

on G furnished with the supremum norm ‖ · ‖.

An abelian Hilbert-Lie group is an abelian analytic manifold modeled

on a separable Hilbert space, whose group operations are analytic.

For the exponential mapping Exp : Te −→ G, there exists an in-

verse mapping log from a neighborhood Ue of e onto a neighborhood

N0 of zero in Te, where Te is the tangential space in e ∈ G [5]. By

ai(a) := 〈log(a), Xi〉, i ∈ IN, we define the maps ai from the canonical

neighborhood Ue in IR. Now we call the system (ai)i∈IN of maps from Ue

in IR a system of canonical coordinates of G with respect to an orthonor-

mal base (Xi)i∈IN, if for all a ∈ Ue, the property a = Exp (
∑∞

i=1 ai(a)Xi)

is satisfied.

By B(G) we denote the σ-field of Borel subsets of G. Moreover, V(e)

denotes the system of neighborhoods of the identity e of G which are also

in B(G).

M(G) denotes the vector space of real-valued (signed) measures on

B(G). As is well known, M(G) is a Banach algebra with respect to

convolution ∗ and the norm ‖ · ‖ of total variation. M+(G) is the set of

positive measures in M(G) and M1(G) = {µ ∈ M(G) : µ(G) = 1} is the

set of probability measures on G.

Let f ∈ Cu(G), X ∈ H and a ∈ G. f is called differentiable at a ∈ G

with respect to X (“Xf(a) exists” for short), if

Xf(a) := lim
t→0

1

t
[Lγ

X
(t)f(a) − f(a)] = lim

t→0

1

t
[Rγ

X
(t)f(a) − f(a)]

exists. Here the one-parameter subgroup γ
X

(t) of G is defined by γ
X

(t) :=

Exp(tX) for X ∈ H and t ∈ IR. f is called continuously differentiable, if

Xf(a) exists for all a ∈ G and X ∈ H and if the mappings a *−→ Xf(a),

X *−→ Xf(a) are continuous. For the property of differentiability see [1].

Derivatives of higher order can be defined inductively.

Now let f ∈ Cu(G) be a twice continuously differentiable function.

Then the mapping Df(a) : X *−→ Xf(a) (D2f(a) : (X, Y ) *−→
XY f(a)) is a continuous and linear (resp., symmetric, continuous and
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bilinear) functional on H (resp. H × H) for all a ∈ G . We also have

〈Df(a), X〉 = Xf(a) and 〈D2f(a)(X), Y 〉 = XY f(a)

for all a ∈ G and X, Y ∈ H.

We write C2(G) for the space of all twice continuously differentiable

functions f ∈ Cu(G) such that the mapping a *−→ D2f(a) is d-uniformly

continuous and

‖Df‖ := sup
a∈G

‖Df(a)‖ < ∞, ‖D2f‖ := sup
a∈G

‖D2f(a)‖ < ∞.

Then C2(G) is a Banach space with respect to the norm

‖f‖2 := ‖f‖ + ‖Df‖ + ‖D2f‖, f ∈ C2(G).

Now let H be a separable Hilbert space with a complete orthonormal

system (Xi)i∈IN and G an abelian Hilbert-Lie group on H. Moreover, let

Hn := 〈{X1, X2, · · · , Xn}〉

be the space of all linear combinations of X1, X2, · · · , Xn and H⊥
n the

orthogonal complement of Hn in H (for all n ∈ IN). Then H/H⊥
n and Hn

are isomorphic. Clearly

Gn := Exp(H⊥
n )

is a closed subgroup of G for all n ∈ IN. The quotient spaces G/Gn are

finite-dimensional Hilbert-Lie groups.

Definition 1.1. Let G be an abelian Hilbert-Lie group on H, and

(Xi)i∈IN an orthonormal basis in H. For any n ∈ IN, we define the set

C(2),n(G) :=
{
f ∈ C2(G) :Xif = 0 for all i > n and

XiXjf = 0 for all i > n or j > n
}
.

and the set

C(2)(G) := ∪n∈INC(2),n(G).
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Then C(2)(G) is a linear subspace of C2(G). For every µ ∈ M1(G),

we define the (contraction) operator Tµ on Cu(G) by

Tµf :=

∫
faµ(da) (Bochner-Integral).

It is easy to see that TµCu(G) ⊂ Cu(G) and Tµ∗ν = Tµ ◦ Tν . In fact we

have TµC(2)(G) ⊂ C(2)(G) (cf. [1]).

2 – Generators of convolution semigroups on abelian Hilbert-

Lie groups

A (continuous) convolution semigroup is a family (µt)t∈IR∗
+

in M1(G)

such that µ0 = εe and µs ∗ µt = µs+t for all s, t ∈ IR∗
+ and limt(−→0 µt = εe

weakly (cf. [6]).

A continuous convolution semigroup (µt)t∈IR∗
+

in M1(G) admits a

Lévy measure η, where η is a σ-finite positive measure on B(G) such that

η({e}) = 0 and

lim
t↓0

1

t

∫
f dµt =

∫
f dη,

for all f ∈ Cu(G) with e %∈ supp(f) (cf. [8]).

To a continuous convolution semigroup (µt)t∈IR∗
+

of probability mea-

sures on G there is associated the (strongly) continuous semigroup

(Tµt)t∈IR∗
+

of contraction operators on Cu(G) with the infinitesimal gener-

ator (N,D(N)). The generating functional (A, D(A)) of the convolution

semigroup (µt)t∈IR∗
+

is defined by

f *−→ Af := lim
t↓0

1

t
(Tµtf(e) − f(e))

for all f in its domain D(A).

We have then the fallowing Proposition. For its proof see [1].

Proposition 2.1 (Lévy-Khinchine formula). Let (µt)t∈IR∗
+

be a con-

tinuous convolution semigroup in M1(G) with the generating functional

A. Then

(i) C(2)(G) ⊂ D(A) and
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(ii) there exists a triple (r, s, η) such that

A(f) =
∞∑

i=1

ri · Xif(e) +
∞∑

i=1

∞∑

j=1

rij · XiXjf(e)+

+

∫

G∗
[f − f(e) −

∞∑

i=1

di · Xif(e)]dη

holds for all f ∈ C(2)(G). Here r = (ri)i∈IN is a sequence of real numbers,

s = (rij)i,j∈IN a symmetric, positive-semidefinite real-valued matrix, and

η is a Lévy measure on B(G).

Notations 2.2. For f ∈ C(2)(G) we have

L(f) :=
∞∑

i=1

ri · Xif(e), G(f) :=
∞∑

i=1

∞∑

j=1

rij · XiXjf(e)

and
Λ(f) :=

∞∑

i=1

di · Xif(e).

The linear real-valued functionals L and G are called the lineare part and

Gaussian part of A on C(2)(G), respectively. The Lévy-Khinchine formula

can be written in the form

A(f) = L(f) + G(f) +

∫

G∗
[f − f(e) − Λ(f)]dη.

3 – Application of the Lévy-Khinchine formula

For any n-dimensional Lie group G, a convolution semigroup (µt)t∈IR∗
+

of probability measure is Gaussian iff the correspending Lévy measure η

on B(G) is zero and (rij)i,j=1,2,··· ,n %= 0. Here (rij)i,j=1,2,··· ,n is a symmet-

ric, positive-semidefinite matrix as in Lévy-Khinchine formula.

Definition 3.1. Any continuous semigroup (µt)t∈IR∗
+

in M1(G) is

called Gaussian, if

(a) (µt)t∈IR∗
+

is non-degenerete.

(b) limt↓0
1
t
µt(V

c) = 0 is satisfied for all V ∈ V(e).
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Lemma 3.2. Let G be an abelian Hilbert-Lie group, and let µ and ν

two measures in M1(G) and pn the canonical projection of G on G/Gn.

If pn(µ) = pn(ν) for all n ∈ IN, then we have µ = ν.

Proof. Let K be a compact set in G. Then pn(K) is compact in

G/Gn for any n ∈ IN. From the equation pn(µ)
(
pn(K)

)
= pn(ν)

(
pn(K)

)
,

we obtain

µ(KGn) = ν(KGn) for all n ∈ IN.

Since Gn ↓ {e} and since K is compact, it follows

KGn ↓ K for n → ∞.

Hence µ(K) = ν(K) for all compact sets K in G. This means that

µ = ν.

Remark 3.3. For any abelian Hilbert-Lie group G, let (µt)t∈IR∗
+

be a

continuous convolution semigroup in M1(G) with the infinitesimal gen-

erator N and (ri, rij, η)i,j∈IN the triple as in the Lévy-Khinchine formula.

Moreover, let η = 0. Then the following assertions are equivalent:

(i) (µt)t∈IR∗
+

is non-degenerate.

(ii) The symmetric, positive-semidefinite matrix (rij)i,j∈IN is not zero

(cf. [1]).

Prposition 3.4. Let (µt)t∈IR∗
+

be a continuous convolution semi-

group in M1(G) with the generating functional A and let (ri, rij, η)i,j∈IN

be the triple as in the Lévy-Khinchine formula. Then the following as-

sertions are equivalent:

(i) The convolution semigroup (µt)t∈IR∗
+

is Gaussian.

(ii) η = 0 and (rij)i,j∈IN %= 0.

For the proof of this see [1] or [3].

Definition 3.5. Let (µt)t∈IR∗
+

be a continuous convolution semi-

group in M1(G) with the infinitesimal generator N . Then N is said to be

of local character, if f = 0 in a neighborhood of a ∈ G implies Nf(a) = 0,

for every f ∈ D(N).
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We have then the following Proposition. For its poof see [1] or [3].

Proposition 3.6. Let (µt)t∈IR∗
+

be a continuous convolution semi-

group in M1(G) with the infinitesimal generator N . Then the following

assertions are aquivalent

(i) N is of local character and (rij)i,j∈IN %= 0.

(ii) (µt)t∈IR∗
+

is Gaussian.

Definition 3.7. Let (µt)t∈IR∗
+

be a convolution semigroup in M1(G)

with generating functional A. The functional A is said to be semi-bounded

on C(2)(G), if there exist some c ∈ IR∗
+ such that

A(f) ≤ c · ‖f‖ for all f ∈ C(2)(G) with 0 = f(e) ≤ f.

For any locally compact group G, Siebert [7] showed that, the gen-

erating functional A of a continuous convolution semigroup (µt)t∈IR∗
+

is

semi-bounded iff the measure µt has for some (and hence for each) t ∈ IR∗
+

a discrete part.

We want to express a similar result obtained by Siebert for abelian

Hilbert-Lie groups. For this purpose we give a necessary notation: For

any f ∈ C(2)(G), let

I(f) :=

∫

G∗
[f − f(e) − Λ(f)] dη.

Here the symbols Λ and η are taken from Notations 2.2. Now the Lévy-

Khinchine formula is written in the form

A = L + G + I.

Definition 3.8. A measure µ ∈ M(G) is said to be discrete if

µ =
∑

a∈G

µ(a)εa.

The measure µ is said to be diffuse if

µ(a) = 0 for all a ∈ G.
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Each µ ∈ M(G) admits a unique decomposition µ = µD + µd in

a discrete measure µD =
∑

a∈G µ(a)εa and a diffuse measure µd. The

measure µ is said to have a discrete part if µD %= 0, i.e. if there exists at

least one a ∈ G such that µ(a) %= 0. The semigroup (µt)t∈IR∗
+

is said to

be diffuse (resp. discrete), if for some (and hence for each) t ∈ IR∗
+, the

measure µt is diffuse (resp. discrete).

Remark 3.9. 1) Let G be a Gaussian form on C(2)(G). Then the

functional G is zero iff G(f) = 0 for all f ∈ C(2)(G) with 0 ≤ f ≤
1G, f(e) = 1 and f∗ = f ([4], Satz 5.3).

2) Let (µt)t∈IR∗
+

be a convolution semigroup in M1(G) such that for

any t ∈ IR∗
+ and any a ∈ G, we have µt(a) > 0. Then it follows that

ct := maxa∈G µt(a) > 0 for all t ∈ IR∗
+. Then there exist, by Lemma 2 in

[7], a one-parameter semigroup (at)t∈IR∗
+

in G such that

ct = µt(at) for all t ∈ IR∗
+ with t ≤ t0,

and such that limt↓0 ct = 1. Otherwise, there exist r ∈ IR+ such that

ct ≥ e−t·r

for all t ∈ IR∗
+ (cf. Corollary to Lemma 3 in [7]).

Lemma 3.10. For the generating functional A of a continuous con-

volution semigroup (µt)t∈IR∗
+

in M1(G) with Lévy measure η, the following

assertions are equivalend:

(i) A is semi-bounded.

(ii) G = 0 and η is bounded. Furthermore, we have

A = B + (η − η(G) · εe) for B := L −
∫

Λ dη.

Proof. ( ii) =⇒ ( i). Using Notations 2.2, it follows that

A(f) = L(f) +

∫
[f − f(e) − Λ(f)] dη

=

∫
f dη ≤ η(G) · ‖f‖

for all f ∈ C(2)(G) with 0 = f(e) ≤ f .
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( i) =⇒( ii). Let the generating functional A on C(2)(G) be semi-

bounded. Then there exists c ∈ IR∗
+ such that A(f) ≤ c · ‖f‖ for all

f ∈ C(2)(G) with 0 = f(e) ≤ f . Since these functions f take their

minimums in e ∈ G, it follows that L(f) = 0 and Λ(f) = 0. This yields

0 ≤ A(f) = G(f) +

∫
f dη ≤ c · ‖f‖.

Let especially f = g2 with g ∈ C(2)(G), g = g∗ and 0 = g(e) ≤ g ≤ 1G.

Since G is a Gaussian form on C(2)(G), we get

G(f) = G(g2) = 2G(g) · g(e) = 0

and thus

0 ≤ A(f) =

∫
g2 dη ≤ c · ‖g2‖ ≤ c.

Hence η is bounded by c ∈ IR∗
+.

Since (rij)i,j∈IN is a positive-semidefinite matrix, this yields clearly

G(f) ≥ 0 for all f ∈ C(2)(G) with 0 = f(e) ≤ f . Then we have

0 ≤ G(f) = A(f) −
∫

f dη ≤ c · ‖f‖ + η(G) · ‖f‖
≤ 2c · ‖f‖.

Let especially f = h − hn with n ∈ IN, h ∈ C(2)(G) such that 0 ≤ h ≤
1G, h(e) = 1 and h = h∗. Then 0 ≤ h − hn, (h − hn)(e) = 0 and so

0 ≤ G(h − hn) ≤ 2c · ‖h − hn‖ ≤ 2c

for all n ∈ IN. On the other side, we have (1− n)G(h) = G(h − hn) for all

n ∈ IN. This yields G(h) ≤ 0 and so G(h) = 0. Hence, by Lemma 3.10,

G = 0. This yields the assertion.

Proposition 3.11. Let (µt)t∈IR∗
+

be a continuous convolution semi-

group in M1(G), and let for some (and hence for each) t ∈ IR∗
+ the mea-

sure µt has a discrete part. Then the generating functional A of (µt)t∈IR∗
+

is semi-bounded.
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Proof. Let the measure µt, t ∈ IR∗
+, has a discrete part. Then there

exists, by Proposition 5.7 in [9], a one-parameter group (at)t∈IR in G with

at = Exp(tX) for any X ∈ H such that

(µt)t∈IR∗
+

= p((εat)t∈IR∗
+
; η),

i.e. the semigroup (µt)t∈IR∗
+

is a perturbation of the semigroup (εat)t∈IR∗
+

by means of the measure η. By Lemma 2.1 (ii) in [9], the perturbation se-

ries e−t·η(G)
∑∞

k=0 σk(t) converges to µt with respect to the norm of M(G)

(all t ∈ IR+). Then we have

µt = e−t·η(G)
∞∑

k=0

σk(t)

= e−t·η(G)
(
εat + σ1(t) +

∞∑

k=2

σk(t)
)
.

Now let f ∈ C(2)(G). Then we may write down

1

t

∫
[f − f(e)] dµt = e−t·η(G)

{1

t
[f(at) − f(e)] +

1

t

∫
f dσ1(t) +

+
1

t

∫
f d

( ∞∑

k=2

σk(t)
)}

+
1

t
f(e)

(
et·η(G) − 1

)

for all t ∈ IR∗
+. Clearly,

lim
t↓0

1

t
[f(at) − f(e)] = Xf(e)

for all f ∈ C(2)(G), and by ( i) and (ii) of Corollary 2.2 in [9], we obtain

lim
t↓0

1

t

∫
f dσ1(t) =

∫
f dη

and

lim
t↓0

1

t

∫
f d

( ∞∑

k=2

σk(t)
)

= 0

respectively. Since

lim
t↓0

1

t
f(e)

(
et·η(G) − 1

)
= −η(G) · f(e),
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this yields

Af = lim
t↓0

1

t

∫
[f − f(e)] dµt = Xf(e) +

∫
f dη − η(G) · f(e)

= Xf(e) +

∫
[f − f(e)] dη

for all f ∈ C(2)(G), and therefore

Af ≤ ‖f‖ · η(G)

for all f ∈ C(2)(G) with 0 = f(e) ≤ f . Hence A is semi-bounded.

Corollary 3.12. Every Gaussian semigroup (µt)t∈IR∗
+

is diffuse.

Proof. By Lemma 3.4, the Lévy measure η = 0, (rij)i,j∈IN %= 0, and

by the Lévy-Khinchine formula the functional A is of the form

A = L + G with G %= 0.

Then, by Lemma 3.10, A is not semi-bounded, and so, by above Propo-

sition, A has not discrete part. Hence (µt)t∈IR∗
+

is diffuse.

Corollary 3.13. Let (µt)t∈IR∗
+

be a continuous convolution semi-

group in M1(G) with generating functional A. We assume that µt has a

discrete part for each t ∈ IR∗
+. We define at ∈ G by µt(at) = max{µt(a) :

a ∈ G}, t ∈ IR∗
+. Then the functional B in Lemma 3.10 (ii) takes the

form

B(f) = lim
t↓0

1

t
[f(at) − f(e)]

for all f ∈ C(2)(G).

Proof. Let the measure µt, t ∈ IR∗
+ have a discrete part. Then

there exists a one-parameter group (at)t∈IR in G with at = Exp(tX) for

any X ∈ H, and we have

Af = Xf(e) +

∫
[f − f(e)] dη
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for all f ∈ C(2)(G) (cf. the proof of Proposition 3.11). Since the functional

A of (µt)t∈IR∗
+

is semi-bounded on C(2)(G), Lemma 3.10 (ii) yields

Bf = Xf(e) for all f ∈ C(2)(G).

By Remark 3.9, the assertion is valid.

Corollary 3.14. Let (µt)t∈IR∗
+

be a convolution semigroup in

M1(G) with the generating functional A. We assume that each µt has a

discrete part. Then there exists, by Lemma 3.10, a linear functional B

on C(2)(G) and a measure ν ∈ M+(G) such that A has the decomposi-

tion A = B + (ν − ν(G) · εe). Moreover, let (µt)t∈IR be the continuous

convolution group in M(G) extending (µt)t∈IR∗
+

(cf. [7], Theorem 1).

Then −A is the generating functional of the semigroup (µ−t)t∈IR∗
+
, and

‖µ−t‖ ≤ e2ν(G)·t for all t ∈ IR∗
+.

Proof. By [10], IX.9 Theorem, the functional −A is clearly the

generating functional of (µ−t)t∈IR∗
+
, and the second assertion follows from

Hilfsatz 2.10 in [4].
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