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On the Gevrey regularity for weakly hyperbolic

equations with space-time degeneration of Oleinik type

R. MANFRIN – F. TONIN

Riassunto: Si considera il problema della regolarità alla Gevrey delle soluzioni
delle equazioni quasi-lineari debolmente iperboliche. Assumendo una condizione di tipo
Oleinik sul termine non lineare, si stabilisce una stima dell’energia che permette di
dimostrare che la regolarità alla Gevrey si propaga dalle condizioni iniziali alle soluzioni
di classe C2.

Abstract: We are concerned with the problem of global Gevrey regularity of solu-
tions of quasi-linear weakly hyperbolic equations. Assuming a Oleinik’s type condition
on the nonlinear term, we establish a suitable energy estimate which permits to prove
the propagation of the Gevrey regularity of the C2 solutions.

1 – Introduction

In this paper we shall investigate the propagation of the analytic and

Gevrey regularity of the smooth (i.e. C2) solutions of a class of second

order quasi-linear weakly hyperbolic on IRt × IRn
x.

More precisely, let us consider the following equation

(1) L(u) ≡ utt −
n∑

i,j=1

(aij(t, x)uxi
)xj

= f(t, x, u, Du) on IRt × IRn
x ,
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Gevrey regularity
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where Du = (ut, ux1
, . . . , uxn) and the linear operator L(u), defined in

the right hand side of (1), is of weakly hyperbolic type, i.e.

(2) aij(t, x) = aji(t, x), 0 ≤
n∑

i,j=1

aij(t, x)ξiξj ≤ λ|ξ|2, ∀ξ ∈ IRn (λ ≥ 0)

for any (t, x) ∈ IRt × IRn
x. We will assume that the following condition

holds: ∀ K ! IRt × IRn
x × IRn+2 there exist constants AK , BK > 0 such

that

(3)

BK

( n∑

i=1

fpi
(t, x, u, p) · ξi

)2 ≤ AK

n∑

i,j=1

aij(t, x)ξiξj+

+
n∑

i,j=1

∂taij(t, x)ξiξj ∀ ξ ∈ IRn

for any (t, x, u, p) ∈ K, where p = (p0, p1, . . . , pn).

It is not difficult to see that the above hypotheses ensure the global

solvabilty and uniqueness, in the class of C∞ functions, of the Cauchy

problem for the linearized of eq. (1): (where bi = fpi
)

vtt =
n∑

i,j=1

(aij(t, x)vxi
)xj

+
n∑

i=1

bi(t, x)vxi
+b0(t, x)vt+c(t, x)v+g(t, x),(4)

v(0, x) = v0(x), vt(0, x) = v1(x), v0(x), v1(x) ∈ C∞
0 (IRn

x) .(5)

Besides, from (2) it follows that the unique solution u(t, x) of Pb. (4), (5)

enjoys the finite speed of propagation property, with speed not greater

than
√

λ.

Indeed, (2) and the inequality (3) imply that the linearized equa-

tion (4) (at any regular function u(t, x)) satisfies, at least locally in

IRt × IRn
x, a classical sufficient condition, introduced by O.A. Oleinik in

[19], for the well-posedness in C∞ of the Cauchy problem for second order

weakly hyperbolic equations. See (14), (15) and the estimate (16) below.

Under these assumptions, we shall prove the following:

Theorem 1. Let u ∈ C2 be a solution of eq. (1) in the stripe

[0, T ) × IRn
x and suppose that (2), (3) are satisfied. Besides, let assume



[3] On the Gevrey regularity for weakly hyperbolic etc. 205

that the coefficients aij(t, x) and the non-linear term f(t, x, u, p) are in a

Gevrey space γ(s) for same s ≥ 1 namely

(6)
aij(t, x) ∈ C0([0, T ); γ(s)(IRn

x)) ,

f(t, x, u, p) ∈ C1([0, T ); γ(s)(IRn
x × IRn+2)) .

Then we have

(7) u(0, x), ut(0, x) ∈ γ(s)(IRn
x) =⇒ u ∈ C2([0, T ); γ(s)(IRn

x)) .

Notations. For s ≥ 1, we will denote by γ(s)(IRn
x) the space of

Gevrey functions of order s, that is of C∞ functions of IRn
x such that:

|∂α
x v(x)| ≤ CKΛ

|α|
K |α|!s, ∀x ∈ K, ∀α ∈ INn

for any compact subset K ⊂ IRn
x. As usual, for s = 1 we will write A(IRn

x)

instead of γ(1)(IRn
x) to denote the space of the real analytic function on

IRn
x. We furthermore use the notations Du = (ut, ux1

, . . . , uxn), ∇u =

(ux1
, . . . , uxn) and Dα

x = ∂α1
x1

. . . ∂αn
xn

for any α ∈ INn. Finally, we will

often write f(t, x, u, p) for f(t, x, u, p0, . . . , pn) with p = (p0, . . . , pn).

2 – Some Remarks

When aij(t, ·) ∈ A(IRn
x), f(t, ·) ∈ A(IRn

x × IRn+2) and the linear oper-

ator L(u) in eq. (1) is of strictly hyperbolic type, namely

(8)
η|ξ|2 ≤ a(t, x; ξ)

def
=

n∑

i,j=1

aij(t, x)ξiξj ≤ λ|ξ|2,

∀ξ ∈ IRn on IRt × IRn
x ,

with 0 < η ≤ λ, it is well-known that every sufficiently smooth solution

u(t, x) of eq. (1), with analytic initial data u(0, x), ut(0, x), is also analytic

in the variable x.

Indeed, the propagation of the analytic regularity follows from the

classical energy estimates and was proved in the general case in [1] and

[12] for non linear strictly hyperbolic systems.
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On the other hand, when eq. (1) is only of weakly hyperbolic type, i.e.

η = 0 in (8), some difficulties arise because in the C∞ class the Cauchy

problem for weakly hyperbolic equations may presents phenomena of non-

existence and non-uniqueness. See e.g. [5], [7].

For instance, in [5] it was shown that the simple Cauchy problem on

IRt × IRx:

(9) utt = a(t, x)uxx , u(0, x) = φ(x), ut(0, x) = ψ(x) ,

with a(t, x) ≥ 0, a(t, x) ∈ C∞ is not, in general, locally solvable in the

class of C∞ functions. But, as it is well-known, under the hypotheses

of weak hyperbolicity , Pb. (9) is well posed in the class of real analytic

functions if a(t, ·) ∈ A(IRx) and also in the Gevrey classes γ(s), of order

1 ≤ s < 2, if we assume for example that a(t, x) ∈ C2(IRt; γ
(s)(IRx)).

See [2], [6], [11].

Besides, similar problems arise when we add lower order terms as in

eq. (1) or eq. (4). In fact, from the theory of weakly hyperbolic equations,

it is known that lower order terms should satisfy suitable Levi conditions.

See e.g. [10], see also [18] for a complete study of the case of second order

equations in one space dimension and with real analytic coefficients.

Later, analyzing the oscillating behavior of the coefficient a(t, x) near

its zeroes, in [8] it was proved that the Cauchy problem on IRt × IRx:

(10)
utt = a(t, x)uxx + b(t, x)ux + c(t, x)u + g(t, x)

u(0, x) = φ(x), ut(0, x) = ψ(x) ,

is globally well posed in C∞ provided

(11)

{
a(t, x) ∈ A(IRt × IRx), 0 ≤ a(t, x) ≤ λ ,

|b(t, x)|2 ≤ L a(t, x) ∀(t, x) ∈ IRt × IRn
x (Levi condition) ,

for some L , λ ≥ 0. Unfortunately, it is not known if a similar result

still holds in more than one space dimension for a linear second order

operator like utt =
∑n

i,j=1 aij(t, x)uxixj
, when the coefficients aij(t, x) are

real analytic and the quadratic form a(t, x; ξ), defined in (8), is only semi-

definite positive. Anyway, if we take the coefficients aij(t, x) independent
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of x, i.e. aij(t, x) = aij(t), the problem:

(12)
utt =

n∑

i,j=1

aij(t)uxixj

u(0, x) = u0(x), ut(0, x) = u1(x), u0(x), u1(x) ∈ C∞
0 (IRn

x)

is globally solvable in the C∞ class (and in the Sobolev spaces Hm, for

m ≥ 0 large enough) in the stripe [0, T ] × IRn
x (T > 0), if a logarithmic

condition holds, namely

(13)

T∫

0

|at(s; ξ)|
a(s; ξ) + 1

ds ≤ C + N ln(1 + |ξ|) ∀ξ ∈ IRn ,

for some constants C, N . See [6], [20].

Another sufficient condition, ensuring the well posedness in C∞ of a

linear equation of second order, was proposed by O.A. Oleinik in [19].

More precisely, the initial value problem on IRt × IRn
x:

(14)
utt =

n∑

i,j=1

(aij(t, x)uxi
)xj

+
n∑

i=1

bi(t, x)uxi
+b0(t, x)ut+c(t, x)u+g(t, x)

u(0, x) = u0(x), ut(0, x) = u1(x) ,

where aij(t, x) = aji(t, x) and 0 ≤ a(t, x; ξ) ≤ λ|ξ|2, is solvable in C∞ if

for some constants A, B > 0

(15)

B
( n∑

i=1

bi(t, x)ξi

)2

≤ A
n∑

i,j=1

aij(t, x)ξiξj+

+
n∑

i,j=1

∂taij(t, x)ξiξj, ∀ξ ∈ IRn
ξ ,

for any (t, x) ∈ IRt × IRn
x. In fact, if (15) holds, it is possible to prove

(see [19], see also [9]) that the solution u(t, x) of Pb. (14) satisfies, for

m ≥ 0, the following estimates

(16) ‖u(t, ·)‖2
Hm+‖ut(t, ·)‖2

Hm−1 ≤Cm

(
‖u0‖2

Hm+‖u1‖2
Hm+

t∫

0

‖g(s, ·)‖2
Hmds

)
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(without ‖ut(t, ·)‖Hm−1 for m = 0). Moreover, the constant Cm appearing

in (16) depends only on m, t, A, B and the following L∞ norms of the

coefficients: ‖Dα
x c‖L∞ for |α| ≤ m and

(17)

{‖Dα
xaij‖L∞ , for |α| ≤ max{m + 1, 3} and ‖∂taij‖L∞(1 ≤ i, j ≤ n) ,

‖Dα
x bi‖L∞ , for |α| ≤ m and ‖∂xi

bi‖L∞ (0 ≤ i ≤ n) ,

(where ∂x0
= ∂t) in a neighborhood of the support of u(t, x). Finally,

u(t, x) enjoys the finite speed of propagation property, with speed not

greater than
√

λ. Thus, if we have for example g(t, x) = 0, then

u0(x) = u1(x) = 0 for |x| ≥ R ⇒ u(t, x) = 0 for |x| ≥ R +
√

λ|t| .

Regularity in dimension n ≥ 1. The question of the analytic or

Gevrey regularity of the solutions of non-linear weakly hyperbolic equa-

tions was considered by S. Spagnolo in [24], [25]. In particular, in [25] it

was proved for the classical (i.e. C2) solutions u(t, x) of the second order

semi-linear weakly hyperbolic equation on IRt × IRn
x

(18) utt −
n∑

i,j=1

(aij(t, x)uxi
)xj

= f(t, x, u) ,

where aij(t, x) = aji(t, x) , 0 ≤ a(t, x; ξ) ≤ λ|ξ|2, that

u(0, x) , ut(0, x) ∈ A(IRn
x) =⇒ u(t, ·) ∈ A(IRn

x)

if the coefficients aij(t, x) have the special form

(19) aij(t, x) = a(t)αij(x), with a(t) ∈ A(IRt), αij(x) ∈ A(IRn
x) .

Then, a similar result was proved in [13] for the semi-linear equation

(20) utt −
n∑

i,j=1

(aij(t, x)uxi
)xj

+
n∑

i=1

bi(t, x)uxi
+ b0(t, x)ut = f(t, x, u) ,

in the case the Oleinik’s condition (15) holds. More precisely, fixed any

s ≥ 1, if we assume (15), that the coefficients aij, bi, ∂tb0 belong to
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C0([0, T ); γ(s)(IRn
x)) and that f(t, x, u) ∈ C0([0, T ); γ(s)(IRn

x × IR)), then

every C2 solution u(t, x) to eq. (20) satisfies

(21) u(0, x) , ut(0, x) ∈ γ(s)(IRn
x) =⇒ u(t, x) ∈ C0([0, T ); γ(s)(IRn

x)) .

In the present paper, proving Theorem 1, we will extend the above re-

sults to the class of quasi-linear weakly hyperbolic equations of type (1)

satisfying a non-linear Oleinik’s condition like (3). Clearly, condition (3)

generalize in a natural way the inequality (15) to the case of the quasi-

linear equation (1).

Regularity in dimension n = 1. In one space dimension we

are able to prove these results under weaker assumptions on the second

order terms. This is “essentially” a consequence of the corresponding

well-posedness result in the C∞ class established in [8] for the Cauchy

problem (10).

More precisely, assuming a priori that u(t, x) ∈ C∞, the propagation

of the analytic regularity of the solution of the semi-linear equation on

IRt × IRx

(22) utt − (a(t, x)ux)x = f(t, x, u) ,

was proved in [14] requiring only the weakly hyperbolicity of the linear

operator in the left hand side of (22) and the analyticity of the coefficient

a(t, x), i.e.

(23) 0 ≤ a(t, x) ≤ λ, a(t, x) ∈ A(IRt × IRx) .

Besides, we recall that the regularity in the Gevrey classes γ(s)(IRn
x), s > 1,

was considered in [21] for the quasi-linear equation

(24) utt − (a(t, x)ux)x = f(t, x, u, ut, ux)

assuming the following non-linear Levi conditions: for any compact sub-

set K ⊂ IRt × IRx × IR3 there exist constants CK , MK such that ∀ l ∈ IN

(25)
| ∂l

∂pl
1

f(t, x, u, p0, p1)| ≤ CK M l
K l!s

′
√

a(t, x)

∀(t, x, u, p0, p1) ∈ K (s′ < s) ;
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furthermore, the coefficient a(t, x) in (24) satisfies:

(26) 0 ≤ a(t, x) ≤ λ, ∂ta(t, x) ≤ A a(t, x) ∀(t, x) ∈ IRt × IRx ,

for a suitable constant A ≥ 0. See also [22].

Finally, the result of [14] was extended in [15] to the quasi-linear

equation (24). Namely, assuming only (23) and the non-linear Levi con-

dition

(27) | ∂f

∂p1

(t, x, u, p0, p1)| ≤ LK

√
a(t, x) ∀(t, x, u, p0, p1) ∈ K

(for a suitable LK ≥ 0), for any compact subset K ⊂ IRt × IRx × IR3, it

was proved that any C∞ solution on IRt × IRx of eq. (24), with analytic

initial data u(0, x), ut(0, x), is analytic.

3 – Local Solvability in C∞

Before proving Theorem 1, we will show that conditions (2) and (3)

ensure the local solvability and uniqueness in the C∞ class of the non-

linear Cauchy problem on IRt × IRn
x:

(28)





utt −
n∑

i,j=1

(aij(t, x)uxi
)xj

= f(t, x, u, Du) ,

u(0, x) = φ(x), ut(0, x) = ψ(x), φ(x), ψ(x) ∈ C∞
0 (IRn

x) ,

assuming that f(t, x, u, p) ∈ C∞ and

supp{f(t, x, 0, 0)} ⊆ {|x| ≤ R + η|t|} ,

for some R, η > 0. Here, we will only sketch the proof of this fact. The

well-posedness of Pb. (28) is also an easy consequence of the more refined

estimates written in the proof of Theorem 1. See Lemmas 2, 3, 4.

Proof. Thank to (3) and the estimate (16) we know that the Cauchy

problem for the linearized of the equation in (28) is well-posed. This

easily gives (using also the finite speed of propagation property) that the

solution u(t, x) of Pb. (28), if exists, is unique.
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To solve the Cauchy problem (28) in a stripe [0, T ) × IRn
x for some

T > 0, we will consider the family {Pε}ε>0 of approximating problems on

IRt × IRn
x:

(29)





Lε(u) ≡ utt − ε∆u −
n∑

i,j=1

(aij(t, x)uxi
)xj

= f(t, x, u, Du) ,

u(0, x) = φ(x), ut(0, x) = ψ(x) .

Since the linear operators Lε(u), for ε > 0, are strictly hyperbolic, we

know from the theory of non-linear strictly hyperbolic equations that

each problem Pε is locally solvable. Namely, there exists a unique local

solution

uε(t, x) ∈ ([0, Tε) × IRn
x) (Tε > 0)

where with Tε we denote the life span of the solution uε(t, x):

Tε = sup
{
τ > 0

∣∣∃u(t, x) ∈ C∞([0, τ) × IRn
x) solution of Pε

}
.

Moreover, from (2) it follows that the solution uε(t, x) enjoys the finite

speed of propagation property, with speed not greater than

√
λ + ε .

Thus, if φ(x) = ψ(x) = 0 for |x| ≥ R and the support of the function

f(t, x, 0, 0), for t ≥ 0, is contained in the subset {|x| ≤ R + η t} for some

R, η > 0, we can show that

(30) uε(t, x) = 0 for |x| ≥ R + max
(
η,

√
λ + ε

)
t (t ≥ 0) .

Using the inequalities (16), it will be possible to give a priori estimates

for {uε} and prove that

{
Tε > T0 for very ε ∈ (0, 1], for a suitable T0 = T0(φ, ψ) > 0 ,

uε → u in C∞([0, T0] × IRn
x) when ε → 0 .

Clearly, u(t, x) will be the desired solution of the Cauchy problem (28).

To begin with, let us introduce the energy functionals:

(31) Ek(t) = Ek(u, t)
def
= ‖u(t)‖2

Hk+1 + ‖ut(t)‖2
Hk for k ≥ 0
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(where H0 ≡ L2) and let us define

(32) µ(u, t)
def
= sup

0≤s≤t
Eq(u, s), with q = n + 2 .

In the following, we will often write Eε
k(t) to denote Ek(u

ε, t) and µε(t)

for µ(uε, t).

Besides, let us fix a real number M such that

M ≥ 1 + µ .

where µ = µ(φ, ψ)
def
= ‖φ‖2

Hq+1 + ‖ψ‖2
Hq . Then we can define:

T ′
ε = sup

{
τ < min(1, Tε/2)

∣∣µε(t) ≤ M on [0, τ ]
}

.

Clearly, we will have 0 < T ′
ε ≤ min(1, Tε/2) for any ε > 0, since uε(0, x) =

φ(x), uε
t(0, x) = ψ(x). Thanks to the assumption (3) and the above ar-

guments, we may assume that the linearized of the quasi-linear equation

(33) utt − ε∆u −
n∑

i,j=1

(aij(t, x)uxi
)xj

= f(t, x, u, Du) ,

at u(t, x) = uε(t, x), satisfies in the stripe [0, T ′
ε]×IRn

x the Oleinik’s condi-

tion (15) with fixed constants A, B > 0 independent of ε. More precisely,

we can suppose that, for any ε > 0,

(15′)

B
( n∑

i=1

f ε
pi

(t, x)ξi

)2 ≤ A
n∑

i,j=1

aij(t, x)ξiξj+

+
n∑

i,j=1

∂taij(t, x)ξiξj on [0, T ′
ε] × IRn

x ,

where f ε(t, x) = f(t, x, uε(t, x), Duε(t, x)).

Now, let us apply the operators Dα
x to both side of (33). We obtain

the relations:

(34)

(Dα
xu)tt − ε∆(Dα

xu) −
n∑

i,j=1

(
aij(D

α
xu)xi

)
xj

−

−
n∑

i=1
γ≤α,|γ|=1

(
α

γ

)
(
∂γ

xaij(D
α−γ
x u)xi

)
xj

−

−
n∑

i=1

fpi
(Dα

u)xi
− fp0

(Dα
xu)t = Gα, for |α| ≥ 1 ,
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where

Gα def
=

n∑

i,j=1
γ≤α,|γ|>1

(
α

γ

)
(
∂γ

xaij(D
α−γ
x u)xi

)
xj

+Dα
xf−

n∑

i=1

fpi
(Dα

xu)xi
−fp0

(Dα
xu)t .

Thus the functions Gα(t, x), for |α| = k ≥ 1, represent terms with deriva-

tives of order ≤ k in the equation Dα
xLε(u) = Dα

xf(t, x, u, Du), i.e.

Dβ
x∂l

tu for |β| + l ≤ k, l = 0, 1 .

To continue, let us introduce the simplified notation:

‖Dku‖2
∗ =

∑

|α|=k

‖Dα
xu‖2

∗ .

Besides, we will assume in the following that ε ∈ (0, 1] and we will denote

with Φk : [0, ∞) → [0,∞) various continuous non-decreasing functions

depending only on the functions aij(t, x) , f(t, x, u, p) and their deriva-

tives, of order at most k + 3, in the bounded set K defined by

(35) t ∈ [0, 1], |x| ≤ R +
√

λ + 1 and |u| + |p| ≤ C(n)M .

Setting u(t, x) = uε(t, x), let us apply the inequality (16) for m = 1 to

the relations (34) for all multi-indices α with |α| = k ≥ 1. For t ∈ [0, T ′
ε],

we easily have

‖Dkuε(t)‖2
H1 + ‖Dkuε

t(t)‖2
L2 ≤

≤ C
(
‖Dkφ‖2

H1 + ‖Dkψ‖2
H1 +

t∫

0

‖Dk−1uε(s)‖2
L2 ds

)
+

+ C

t∫

0

∑

|α|=k

‖Gε,α(s)‖2
H1 ds

where the constant C depends only on k, A, B and the L∞ norms of the

derivatives of the coefficients

aij(tx), ∂xk
aij(t, x), fpi

(t, x, uε(t, x), Duε(t, x)) ,

up to the orders in (17), in the set K defined in (35).
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Hence, taking into account of (30), (31), (32) and using the equation

(33), we may write

C ≤ Φk(µε(t)) for t ∈ [0, T ′
ε] ,

for a suitable Φk. Besides, with a similar constant C, we easily have

Eε
0(t) ≤ C

(
E0(0) +

t∫

0

‖f ε(s)‖2
H1 ds

)
for 0 ≤ t ≤ T ′

ε .

Thus, we can summarize the above estimates in the following:

(36) Eε
k(t) ≤ Φk(µε(t))

(
Ek(0)+

t∫

0

‖f ε(s)‖2
H1 ds+

t∫

0

∑

|α|≤k

‖Gε,α‖2
H1 ds

)
,

for k ≥ 0, t ∈ [0, T ′
ε].

Now, let us estimate the integrals in the right hand side of (36). For

the first one, we easily see that

‖f ε(s)‖H1 ≤ Φ(µε(t)) for 0 ≤ t ≤ T ′
ε

where the non-decreasing function Φ : [0,∞) → [0, ∞) depends only on

the derivatives of f(t, x, u, p) in the bounded set defined in (35).

To continue, let us fix

k ≥ q + 1 = n + 3 .

Form Leibnitz’s formula and the definition of the functions Gε,α, in the

estimate of the quantity ‖Gε,α‖2
H1 it will be sufficient to consider the L2

norms of terms like

(37) (∂ω
u,p∂

β
xf)(t, x, uε, Duε) ·

|ω|∏

i=1

Dαi
x (Dγi

t,xu
ε)

where αi, β ∈ INn, γi ∈ INn+1, ω ∈ INn+2; besides |αi| > 0, |γi| ≤ 1, 0 ≤
|ω| ≤ k + 1 and the multi-indices αi, β, γi satisfy the following relations:

∑

i

|αi| ≤ k + 1 − |β| ≤ k + 1, |αi| + |γi| ≤ k + 1 ∀i .
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Hence we can group the terms in (37) in two classes:

{
(a) |αi| ≤ [n/2] + 1 ∀i ,

(b) ∃αi such that |αi| < [n/2] + 1 .

Case (a). Taking into account that q = n + 2 in the definition of µ(u, t),

we can easily estimate the contribute of all these terms as

Φk(µε(t)) .

Case (b). Let us choose a multi-index αi0 such that |αi0 | ≥ |αi| for all

1 ≤ i ≤ |ω|. Then, we will have: |αi0 | > [n/2] + 1, |αi0 | ≤ k if |γi0 | = 1

and

|αi| ≤ k − [n/2] − 1 for i %= i0 .

Thus, using Sobolev embedding theorem, we can estimates the L2 norm as

‖
|ω|∏

i=1

Dαi
x (Dγi

t,xu
ε(t))‖L2 ≤

∏

1≤i≤|ω| ,i +=i0

‖Dαi
x (Dγi

t,xu
ε(t))‖L∞ ·

· ‖D
αi0
x (D

γi0
t,x uε(t))‖L2 ≤

≤ C(k, n)
(‖uε(t)‖Hk+1 + ‖uε

t(t)‖Hk

)|ω|
.

In conclusion, we find that

∑

|α|≤k

‖Gε,α‖H1 ≤ Φk(µε(t))
[
1 +

(‖uε(t)‖Hk+1 + ‖uε
t(t)‖Hk

)k]
,

for a suitable non-decreasing function Φk : [0,∞) → [0,∞).

Hence, having µε(t) ≤ M , from the previous estimates it follows that

Eε
k(t) ≤ Φk(M)

(
1 + Ek(0) +

t∫

0

Eε
k(s)

k ds
)

on t ∈ [0, T ′
ε] .

To conclude the proof, let us observed that for µε(t) ≤ M we have

d

dt
Eε

q(t) = 2〈uε(t), uε
t(t)〉Hq+1 + 2〈uε

t(t), u
ε
tt(t)〉Hq ≤ Ck(M)Eε

k(t)
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if k ≥ q + 1, and recalling that M ≥ µε(0) + 1 ∀ε > 0 we deduce that

µε(t) ≤ M if Ck(M)

t∫

0

Eε
k(s)ds ≤ 1 .

Thus, putting together the above inequalities and using the classical

Growall’s lemma, we can immediately find T0 > 0 such that for every

ε ∈ (0, 1]

T ′
ε ≥ T0 and µε(t) ≤ M, Eε

k(t) ≤ Φ(M,Ek(0)) on [0, T0] .

Finally, by standard methods, it is now simple to show that ∀k ≥ 0

Eε
k(t) ≤ Ck in [0, T0], ∀ε ∈ (0, 1]

for a suitable Ck ≥ 0 and that uε(t, x) → u(t, x) in C∞([0, T0]× IRn
x) when

ε → 0.

In fact, for any ε, δ ∈ (0, 1], the difference w = uε − uδ solves the

linear problem





wtt−ε∆w−
n∑

i,j=1

(aij(t, x)wxi
)xj

=(ε − δ)∆uδ+〈g(t, x), Dw〉+h(t, x)w ,

w(0, x) = wt(0, x) = 0 ,

in the stripe [0, T0) × IRn
x for suitable C∞ functions g = (g0, . . . , gn), h.

Now, from the explicit expressions of the gi(t, x), for 1 ≤ i ≤ n, it

easy to see that the Oleinik’s condition (15) is satisfied. Thus, we can

apply to w(t, x) the energy estimates (16) and prove that w(t, x) → 0 in

C∞ when ε, δ → 0. This completes the proof.

4 – Proof of Theorem 1

In proving Theorem 1 it is not restrictive to assume that the following

facts hold.

a) We can suppose that u(t, x) be a C∞ solution of equation (1). More

precisely, if u(t, x) ∈ C2([0, T ) × IRn
x) is a solution of (1) with initial
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data u(0, x) , ut(0, x) ∈ C∞(IRn
x) then it is possible to show (in exactly

the same way as the semi-linear case considered in [13], see Appendix)

that u ∈ C2([o, T ); C∞(IRn
x)). See [3] for more general results on the

propagation of the singularities for non-linear differential equations.

b) By standard arguments it is not restrictive to prove Theorem 1 in

the following situation:

(38)





utt −
n∑

i,j=1

(aij(t, x)uxi
)xj

= f(t, x, u, Du)

u(0, x) = 0, ut(0, x) = 0 ,

where f ∈ C1([0, T ); γ(s)(IRn
x × IRn+2)).

c) Let us also suppose that u ∈ C∞([0, T );H∞(IRn
x)). Besides, we way

assume that the coefficients aij(t, x), for 1 ≤ i, j ≤ n and the function

f(t, x, u, p) verify condition (3) for fixed constants A, B > 0 and (for

suitable constants C0,Λ0, M0, P0) the following estimates:

(39) |∂α
x aij(t, x)| ≤ C0Λ

|α|
0 |α|!s ,

(40)
|∂α

x ∂β
p ∂i

tf(t, x, u, p)| ≤ C0M
|α|
0 P

|β|
0 |α|!s|β|!s ,

‖∂α
x f(t, x, 0, 0)‖L2 ≤ C0M

|α|
0 |α|!s ,

where α ∈ INn, β ∈ INn+2, i = 0, 1. In fact, after having proved the

Gevrey regularity in this particular case, we can obtain the claim of

Theorem 1 applying the technique of “localization” of [13, Ch. 5].

d) Finally, let us suppose for simplicity that f(t, x, u, DU) does not de-

pend on u, ut. The general case is analogous.

Remark 1. Let us give here just an idea of the way we can achieve

the “localization” in point c) above. For s > 1, fixed any point (t0, x0) ∈
[0, T ) × IRn

x and using a suitable compactly supported Gevrey function

χ, such that χ(t, x) = 1 in a neighborhood of (t0, x0), we can replace

the equation L(u) = f(t, x, u, Du) with a new one L̃(ũ) = f̃(t, x, ũ, Dũ),

satisfying the hypotheses of Theorem 1, such that the functions ũ(t, x),

f̃(t, x, u, p) have compact support and

L ≡ L̃, u ≡ ũ, f ≡ f̃

in a neighborhood of (t0, x0). See [13].
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To consider the analytic case, i.e. s = 1, it is not possible to obtain

the previous “localization” using a fixed cut-off function. But we can

resort to a family {χN}N≥1 of suitable C∞ compactly supported functions

satisfying the conditions: 0 ≤ χN ≤ 1, χN(t, x) = 1 near (t0, x0),

|DαχN(t, x)| ≤ C |α|N |α|, if |α| ≤ N ,

where C does not depend on N . Then, we can apply the above arguments

using for every N ≥ 1 the cut-off function χN in the estimate of the

derivatives Dα
xu for |α| = N . See [1, Ch. 3].

Remark 2. After applying simplifications a), b), c), d) we can reduce

ourselves to prove the Gevrey regularity for solutions of

(41)





utt −
n∑

i,j=1

(aij(t, x)uxi
)xj

= f(t, x,∇u)

u(0, x) = ut(0, x) = 0 ,

where the coefficient aij(t, x) for 1 ≤ i, j ≤ n and f(t, x,∇u) verify (2) and

condition (3) with fixed constants A, B > 0; inequalities (39) and (40) are

satisfied and the function u(t, x) belongs to the space C2([0, T );Hm(IRn
x)),

∀m ≥ 0. Finally, we remark that if the non-linear term in eq. (1),

f(t, x, u, Du), does not depend on ut, it will be sufficient to assume that

f(t, x, u, p) belongs to C0([0, T ); γ(s)(IRn
x × IRn+1)).

Following notations introduced in [19], we give the definitions:

Gτ = [0, τ) × IRn
x (τ > 0)(42)

w(t, x) =

τ∫

t

u(σ, x)dσ .(43)

Then, defining for j ≥ 1 and 0 < τ ≤ T the energies:

(44)

Fj(τ) =
∑

|α|=j−1

∫∫

Gτ

(
(Dα

xu)2 + j2(Dα
xw)2

)
ejθtdx dt

+
∑

|α|=j−2

∫∫

Gτ

(Dα
xut)

2ejθtdx dt
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where the second summand is void if j = 1 and θ ≥ 0 is a constant, it is

possible to prove the following three Lemmas. We refer to [13], Lemmas 1

to 5, for a detailed proof.

Lemma 1. Let u(t, x) ∈ C1([0, T );H∞(IRn
x)) be such that u(0, x) = 0,

then for 0 ≤ θ, 0 < τ ≤ T and for any integer h ≥ 0, we have

(45)
∑

|α|=h

‖Dα
xu ehθt/2‖L∞(Gτ ) ≤ Γh(τ)

def
= Cn,θ(1 + h)n/2

p+2∑

i=1

√
Fh+i(τ) ,

where p is the Sobolev’s exponent, p
def
=[n/2] + 1.

Lemma 2. Assume that the above conditions on the coefficients

aij(t, x) and f(t, x, u, p) hold and let u(t, x) ∈ C2([0, T );H∞(IRn
x)) be the

(unique) solution of the Cauchy problem (41). Then, there exists θ0 ≥ 0

such that, with θ = θ0 in definition (44) of the energies, for any j ≥ 2

the following estimate holds:

(46)

d

dτ
Fj ≤ C1j!

sjσ
j−1∑

h=0

Λj−h

h!s(h + 1)2σ

√
Fh+1

√
Fj+

+ 4
∑

|α|=j−1

∫∫

Gτ

D̃α
xf · Dα

xwejθtdx dt+

+ 2
∑

|α|=j−2

∫∫

Gτ

D̃α
xf · Dα

xute
jθtdx dt ,

where σ = s−1, Λ = 2Λ0e
θT/2; the constants θ0, C1 in (46) do not depend

on j and D̃α
xf = f for |α| = 0, while for |α| ≥ 1

D̃α
xf(t, x,∇u) = Dα

xf(t, x,∇u) −
n∑

i=1

fpi
(t, x,∇u) · Dα

xuxi
.
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Sketch of the proof Lemma 2. Let us define the operator A0 =

− ∑n
i,j=1 ∂xj

(aij(t, x)∂xi
); taking |α| ≥ 1, we can write:

(47) (∂2
t + A0)D

α
xu = [A0, D

α
x ]u + Dα

xf(t, x,∇u)

where [A0, D
α
x ] is the commutator. We then obtain the equation

(48) (∂2
t + A0)D

α
xu −

n∑

i=1

fpi
∂xi

(Dα
xu) = [A0, D

α
x ]u + D̃α

xf(t, x,∇u)

which is linear in Dα
xu and satisfies Oleinik’s condition, thanks to (3) (see

[19, Lemma 1]). Then we can apply the estimate of [13, Lemmas 1, 2, 3]

obtaining (46).

To continue the proof of Theorem 1, we have to estimate the two

following quantities (j ≥ 2):

(49)

Ij =
∑

|α|=j−1

∫∫

Gτ

D̃α
xf(t, x,∇u)Dα

xw ejθtdx dt ,

IIj =
∑

|α|=j−2

∫∫

Gτ

D̃α
xf(t, x,∇u)Dα

xut ejθtdx dt .

Let us start with the estimate of Ij and IIj.

By Leibnitz’s Formula (see Appendix) and tanks to hypothesis (40)

on the derivatives of f(t, x, p) we have for a suitable constant P > 0 that

(50) ‖∇ν∂α
x f(t, x, p)‖ ≤ C0 M

|α|
0 pν |α|!sν!s

∀ν ≥ 0, α ∈ INn. Hence, we can prove the following:

Lemma 3. Assume the f(t, x, p) satisfies the conditions (40), and

let u(t, x) ∈ C1([0, T );H∞(IRn
x)) such that u(0, x) = 0, then there exist

constants M,P > 0 such that for any j ≥ 3, we have:

(51)

Ij, IIj ≤ Mjj!s
√

Fj + (j − 2)!
√

Fj

( ∑

1≤h≤j−2

Mj−h(j − h − 1)!σ
√

Fh+2

h!
+

+
∑

2≤ν≤h≤j−1

Mj−hPν(j−h−1)!σν!σ
∑

h1+...+hν=h
0<hi≤hν

Γh1+1

h1!
. . .

Γhν−1+1

hν−1!

√
Fhν + 2

hν !

)
.
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where σ = s − 1 and the terms Γh are the same as (45). The Constants

M,P do not depend on j.

Sketch of the proof of Lemma 3. Thanks to the assumptions

(40) and the estimate (50), for |α| ≥ 2, we have

|D̃α
xf(t, x,∇u)| ≤(52)

≤ |∂α
x f(t, x,∇u)| + C0P

∑

0<µ<α

(
α

µ

)
M

|α−µ|
0 |α − µ|!s|∂µ

x∇u|+

+ C0

∑

2≤ν≤|µ|
µ≤α

(
α

µ

)
M

|α−µ|
0 pν |α − µ|!sν!s

ν!

∑

β1+...+βν=µ
βi>0

µ!

β1! . . . βν !
|∂β1

x ∇u| . . .

. . . |∂βν
x ∇u| .

Taking into account of (52) and using Lemma 1 to estimate the L∞

norms of ∂βi
x ∇u, it is enough to follow the same computation as in the

estimates of the terms Ej(f) and Ẽj(f) in [13] (formulae 62 to 87) in order

to deduce (51).

Taking θ = θ0 as in the statements of Lemma 2, let us now introduce

for N ≥ k + 1 the Gevrey energies

(53) EN(τ)
def
= ρ(τ) +

N∑

j=k+1

ρ(τ)j−k

j!s
jks

√
Fj(τ)

where ρ(τ) : [0, T ) → IR is a strictly positive decreasing function which

will be chosen later, k is a fixed integer. We shall prove that for any

T ′ < T it is possible to choose ρ(τ) and k such that,

(54) sup
N≤k+1

sup
0≤τ≤T ′

EN(τ) < ∞ .

This clearly implies that u(t, ·), ut(t, ·) ∈ γ
(s)

L2 (IRn
x) and then, by stan-

dard arguments, we have the thesis of Theorem 1, thanks to Remark 2.

Differentiating termwise the expression of EN(τ), we have

(55)
d

dτ
EN = ρ′+

N∑

j=k+1

ρj−k−1

(j − 1)!s
jk s−σ j − k

j
ρ′

√
Fj+

N∑

j=k+1

ρj−k

j!s
jks

(√
Fj

)′
.
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Now, introducing the estimate of
(√

Fj

)′
given in Lemma 2, we can easily

see that for ρ > 0 sufficiently small (for example ρ ≤ 1/2(Λ + 1)),

(56)

d

dτ
EN ≤ ρ′ + C2ρ +

N∑

j=k+1

ρj−k−1

(j − 1)!s
jks−σ

{
j − k

j
ρ′ + C2ρ

}√
Fj+

+
N∑

j=k+1

ρj−k

j!s
jks 2Ij + IIj√

Fj

,

where the constant C2 depends only on C1, k, s and
√

Fi for 1 ≤ i ≤ k.

Lemma 4. Let u(t, x) ∈ C1
(
[0, T );H∞(IRn

x)
)
be such that u(0, x) = 0

and assume that f(t, x, p) satisfies (40). Moreover let us take the integer

k in the definition on of EN as

k =
n

2s
+ p + 4

and suppose the energies
√

Fi, for 1 ≤ i ≤ k + p + 3, are uniformly

bounded in the interval [0, T ). Then, there exist ρ0, E0 > 0 (independent

of N) such that , for ρ ≤ ρ0 and EN ≤ E0, one has

(57)
n∑

j=k+1

ρj−k

j!s
jks 2Ij + IIj√

Fj

≤ C3ρ(t) + Φ(EN(t)) (N ≥ k + 1)

where Φ is an analytic function (defined in a neighborhood of 0) vanishing

at zero; C3 and Φ are independent of N .

Proof of Lemma 4. We shall prove this Lemma by using the

estimate (51) of the terms Ij, IIj; moreover, in what follows we will always

assume that 0 ≤ ρ, ρM ≤ 1/2.

Let consider the first term in (51), it is immediate that:

(58)
∞∑

j=k+1

ρj−k

j!s
jks · Mj j!s ≤ C ρ .

Besides, for the second group of terms in (51), taking into account of

the elementary inequalities: (j −h−1)!(h+1)! ≤ (j −1)! if 0 ≤ h ≤ j −2
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and
∞∑

j=m

δj jq ≤ cqδ
m mq if 0 ≤ δ ≤ 1/2, we have

(59)

N∑

j+k+1

ρj−k

j!s
jks(j − 2)!

∑

1≤h≤j−2

Mj−h(j − h − 1)!σ
√

Fh+2

h!s
≤

≤
N−2∑

h=1

√
Fh+2

h!s(h + 1)σ

∞∑

j=max{k+1,h+2}
Mj−hρj−kjks−s−1 ≤ c(ρ + EN) ,

where the constant C appearing in (59) depends only on M, k, s and
√

Fi

for 1 ≤ i ≤ k.

Finally, it remains to estimate the contribute of the third group of

terms in (51). Here, using the elementary inequality:

(60)
(j − h − 1)!h1! . . . hν−1!(hν + 1)!

(j − 1)!
ν! ≤ 2

for ν ≥ 2, h1 + . . . + hν = h ≤ j − 1, hi > 0, we can restrict ourselves to

estimate the following quantity

(61)

N∑

j=k+1

ρj−kjks−s−1
∑

2≤ν≤h≤j−1

Mj−h−1 Pν
∑

h1+...+hν=h
0<h1≤hi≤hν

Γh1
+ 1

h1!s
. . .

. . .
Γhν−1

+ 1

hν−1!s

√
Fhν+2

hν !shσ
ν

.

Now we can write the above expression as

(62)
∑

(1) +
∑

(2) +
∑

(3) ,

where the terms
∑(1),

∑(2),
∑(3) represent the three possible cases:





(1) hν < k ,

(2) h1 ≤ k ≤ hν ,

(3) h1 > k and consequently k < h1 ≤ hi ≤ hν .
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In the first case, having hν < k, we can prove that, taking ρ suffi-

ciently small, one has:

(63)
∑(1) ≤ C ρ

where C depends only on M,P, k, s and on the energies
√

Fi for 1 ≤ i ≤
k + p + 3. This follows easily from the definition of Γh in Lemma 1.

Let us consider the second case, h1 ≤ k ≤ hν . Here, we can estimate

the corresponding terms in the third sum in (61) in the following way:

(64)
∑

h1+...+hν=h
0<h1≤hi≤k

{ ∗ }
h1≤k≤hν

≤ C
k∑

m=1

∑

h2+...+hν=h−m
m≤hi≤hν

Γh2+1 . . .Γhν−1+1

h2!s . . . hν−1!s
·

√
Fhν+2

hν !shσ
ν

where again C = C(
√

Fi, k) for 1 ≤ i ≤ k + p + 3.

Moreover, keeping the variables ν, h1 . . . , hν , h fixed and performing

the sum in j, for j ≥ h+1, thanks to the above mentioned inequality, we

have
N∑

j=h+1

ρj−kMj−h−1jks−s−1 ≤ C ρh−k+1(h + 1)ks−s−1 ;

hence, noting that in (64) we have

ν · (hν +1) > h+1 and h− k +1 = h2 + . . .+hν−1 +(hν +m− k +1) ,

we find

(65)

∑(2) ≤ C
∑

2≤ν≤h≤N−1

Pν νks−s−1
k∑

m=1

∑

h2+...+hν=h−m
m≤hi≤hν

Γh2+1

h2!s
ρh2 . . .

. . .
Γhν−1+1

hν−1!s
ρhν−1 ·

√
Fhν+2 ρhν+m−k+1

hν !s hσ
ν

(hν + 1)ks−s−1.

Now, we will estimate the terms Γhi+1 using the energies
√

Fi, 1 ≤
i ≤ N . To proceed, we introduce the following notations

(66) η(j) =
ρj−k

j!s
jks

√
Fj for j ≥ k + 1, η(j) =

ρ

k
for 1 ≤ j ≤ k ,
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thus EN = η(1) + . . . + η(N). Observing that for r ≤ 1,

(1 + h)n/2

√
Fh+r

h!s
ρh ≤ η(h + r)ρk−r(1 + h)n/2 (h + r)s . . . (h + 1)s

(h + r)ks
(67)

if h + r > k

(68) (1+h)n/2

√
Fh+r

h!s
ρh ≤ η(h+r)

k1+n/2ρh−1

h!s
max
1≤j≤k

√
Fj if h+r ≤ h ,

we easily see that, if we define

(69) k
def
=

n

2s
+ p + 4

then, having ρ ≤ 1, there exists a constant C = C(k,
√

Fi) with 1 ≤ i ≤ k,

which does not depend on h, such that:

Γh+1

h!s
ρh ≤ C

p+3∑

i=2

η(h + i), ∀h ≥ 1 .

Moreover, since m ≥ 1 in (65), it is easy to see that

ρhν+m−k+1

hν !shσ
ν

(hν + 1)ks−s−1
√

Fhν+2 ≤ η(hν + 2) .

Summarizing up we have:

∑(2) ≤ C
∑

2≤ν≤h≤N−1

Pν Cν−2 νks−s−1
k∑

m=1

∑

h2+...+hν=h−m
m≤hi≤hν

( p+3∑

i=2

η(h2 + i)
)
. . .

(70)

. . .
( p+3∑

i=2

η(hν−1 + i)
) · η(hν + 2) .

Now, having p + 3 ≤ k ≤ hν , it follows that

hi + p + 3 ≤ hi + hν ≤ h − m ≤ N − m − 1 ≤ N − 2

hν + 2 ≤ N
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hence, summing over the variables h, h1, . . . , hν , we find

(71)

N−1∑

h=(ν−1)m+k

∑

h2+...+hν=h−m
m≤hi≤hν

p+3∑

i=2

η(h2 + i) . . .

. . .
p+3∑

i=2

η(hν−1 + i) · η(hν + 2) ≤ (
(p + 2)EN

)ν−1

and we conclude that

(72)
∑(2) ≤ C k

∑

2≤ν≤∞
Pν Cν−2 νks−s−1

(
(p + 2)EN

)ν−1 def
= Φ1(EN)

with Φ1 begin an analytic function (independent of N) the radius of

convergence of which is [(p + 2)PC]−1. Finally, by condition ν ≥ 2 in

(72), it follows that Φ1(0) = 0.

Let us now come to the case (3), k < h1 ≤ hi ≤ hν . As before, we

will have to estimate the terms

1

h!s
Γh+1ρ

h

but in this case, having h > k, we will always use (67) (instead of (68)).

Hence, thanks to the definition of k given in (69), we may write

(73)
1

h!s
Γh+1ρ

h ≤ C ρ
p+3∑

i=2

η(h + 1) (h > k) .

Thus, we can estimate
∑(3) as follows:

(74)

∑(3) ≤ C
∑

2≤ν≤h≤N−1

Pν Cν−1 νks−s−1
∑

h2+...+hν=h
k<h1≤hi≤hν

p+3∑

i=2

η(h1 + i) . . .

. . .
p+3∑

i=2

η(hν−1 + i)
ρhν+ν−k

hν !s hσ
ν

(hν + 1)ks−s−1
√

Fhv+2 .

Again, having ν ≥ 2, one has

ρhν+ν−k

hν !s hσ
ν

(hν + 1)ks−s−1
√

Fhv+2 ≤ η(hν + 2) ,
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and like before, if we perform the sum in h, h1 . . . , hν we find

∑(3) ≤ C
∑

2≤ν≤∞
Pν Cν−1 νks−s−1

(
(p + 2)EN

)ν
= CΦ2(EN) .

finally, keeping track of all the cases discussed, we have

(75)
∑

(1) +
∑

(2) +
∑

(3) ≤ C ρ + Φ(EN)

where, Φ(E) is an analytic functions which vanishes at 0. The constant

C and Φ(E) do not depend on N .

5 – Conclusion of the proof of Theorem 1

Let u(t, x) be the (unique) solution of problem (41), u(t, x)∈C2([0, T );

H∞(IRn
x)). Thus, Lemma 2 and (56) hold, if ρ ≤ 1/2(Λ + 1). Moreover,

fixed T ′ < T the conclusion of Lemma 4 is true in the interval [0, T ′],

since all the energies
√

Fi are uniformly bounded in [0, T ′].

Hence, there exist 0 < ρ0 < 1, E0 > 0 such that, for ρ ≤ ρ0, EN ≤ E0,

the following estimate holds

(76)
d

dτ
EN ≤ ρ′ +Cρ+Φ(EN)+

N∑

j=k+1

ρj−k−1

(j − 1)!s
jks−σ

{j − k

j
ρ′ +Cρ

}√
Fj

∀N ≥ k + 1 and ∀τ ∈ [0, T ′].
Now, being Φ(E) a smooth function which satisfies Φ(0) = 0, we

define

(77) ρ(τ) = ρ1 exp
( −Cτ

k + 1

)

with 0 < ρ1 ≤ ρ0 such that the solution E(τ) of the Cauchy problem

(78)
d

dτ
E = Φ(E), E(0) = ρ1

exists in the interval [0, T ′] and satisfies E(τ) ≤ E0, ∀τ ∈ [0, T ′].



228 R. MANFRIN – F. TONIN [26]

Introducing (77) into the estimate (76) and observing that EN(0) =

ρ(0) = ρ1, we conclude that EN(τ) ≤ E0, ∀N ≥ k + 1, ∀τ ∈ [0, T ′]. This

completes the proof of Theorem 1.

– Appendix

We sketch here some conventions and notations on the derivation of

a composite function.

Given f(x, p) : IRn × IRm → IR a differentiable function and p(x) =

(p1(x), . . . , pm(x)) : IRn → IRm a differentiable vector, let us consider the

composite function f(x, p(x)) : IRn → IR. Then, for any integer ν > 0

and for all multi-indices β = (β1, . . . , βn) ∈ INn we define the ν-order

mν-components tensor:

∇ν∂β
x f(x, p)

with components:

wβ
i1,... ,iν = ∂pi1

. . . ∂piν
∂β

x f(x, p)

for 1 ≤ i1, . . . , iν ≤ m and such that

∇ν∂β
x f(x, p){V1, . . . , Vν}

∑

1≤i1,... ,iν≤m

wβ
11,... ,iν V i1

1 . . . V iν
ν

where V1, . . . ,Vν are vectors with components (V 1
i , . . . ,V m

i ) for 1≤ i ≤ν.

In this situation we can then write down Leibnitz’s formula for the

function f(x, p(x)) in the form:

Dα f(x, p) = ∂α
x f(x, p) +

∑

1≤ν≤|µ|
µ≤α

(
α

µ

)
1

ν!

∑

β1+...+βν=µ
βi>0

µ!

β1! . . . βν !
∇ν∂α−µ

x f(x, p){∂β1
x p, . . . , ∂βν

x p} .

If we suppose f(x, p) to be a Gevrey function in p, i.e.

|∂r1
11

. . . ∂rm
pm

f(x, p)| ≤ C Λr1+...+rmr1!
s . . . rm!s
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∀r1, . . . , rm ≥ 0 then it is easily to verify that the norm of ∇ν f(x, p) as

a tensor, i.e

sup
V1,... ,Vν +=0

∇ν f(x, p){V1, . . . , Vν}
|V1| . . . |Vν |

= ‖∇ν f(x, p)‖

is estimated in the following way

‖∇ν f(x, p)‖ ≤ C P ν ν!s

where the constant P depends only on m, Λ, s. In fact every element of

∇ν f(x, p) may be written as

∂r1
p1

. . . ∂rm
pm

f(x, p)

with r1 + . . .+ rm = ν. Finally, assuming f(x, p) to be a Gevrey function

also in the variable x, that is

|∂r1
11

. . . ∂rm
pm

∂α
x f(x, p)| ≤ C M |α||α|!s Λr1+...+rmr1!

s . . . rm!s

we end up with the following estimate:

|Dα f(x, p)| ≤ C M |α||α|!s + C
∑

1≤ν≤|µ|
µ≤α

(
α

µ

)
M |α−µ|P ν |α − µ|!sν!s

ν!s

∑

β1+...+βν=µ
βi>0

µ!
|∂β1p|
β1!

. . .
|∂βνp|
βν !

.
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