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Covariant second variation for first order

Lagrangians on fibered manifolds

I: Generalized Jacobi fields

B. CASCIARO – M. FRANCAVIGLIA

Riassunto: Si considerano, da un punto di vista covariante ed in maniera si-
stematica, la seconda variazione e le equazioni di Jacobi generalizzate dei problemi
variazionali (del primo ordine). Si mette in evidenza il ruolo e il significato delle varie
integrazioni per parti. Infine, si danno esempi di applicazioni alla Meccanica e alla
teoria dei Lagrangiani armonici generalizzati.

Abstract: The second variation of a (first–order) Lagrangian theory is revisited
and the notion of generalized Jacobi equation is considered from a systematic and co-
variant viewpoint. The role and significance of various integrations by parts are pointed
out. Examples of application are given in Mechanics and in the theory of generalized
harmonic Lagrangians.

– Introduction

As is well known, the second variation of an action functional gov-

erns the behaviour of the action itself in the neighborhood of critical

sections. In particular the Hessian of the Lagrangian defines a quadratic

form whose sign properties allow to distinguish between minima, maxima

and degenerate critical sections [1].
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A fairly well known example is the case of geodesics in a Riemannian

manifold (M, g), whose variational properties have been the subject of

various investigations and have inspired whole chapters in the Calculus

of Variations [2]. In this case those fields which govern the transition

from geodesics to geodesics (i.e., those vectorfields which make the second

variation to vanish identically modulo boundary terms) are called Jacobi

fields [2] and they are solutions of a second order differential equation

known as Jacobi equation (of geodesics).

The notion of Jacobi equation as an outcome of the second variation is

in fact fairly more general than this. General formulae for the second vari-

ation and generalized Jacobi equations along critical sections have been

already considered in the Calculus of Variations (see, e.g., the review of

results contained in [3]). Strangely enough, however, in all current litera-

ture the second variation of functionals seems to be always considered in

a direct way, without resorting to general expressions, and integration by

parts to reduce it to more suitable forms are always performed by ad–hoc

procedures, in spite of the fact that fairly general formulae exist. Just to

mention a few examples we can quote the calculations of [4], [5], [6], [7].

Because of this, we have reached the conclusion that it is worthy to

revisit the theory of second variations (for the action functionals defined

by first order Lagrangians), also in view of a number of applications

which we shall mention later and will form the subject of forthcoming

papers. Working in the framework of jet–extensions of fibered manifolds

we discuss then in this paper the notion of generalized Jacobi equation.

Section 1 is devoted to recall the main concepts from Calculus of

Variations on jet–bundles and to discuss a geometric setting for covariant

variations in a trivial bundle M × N endowed with a “product connec-

tion” (see [8]). This situation is fairly general, since the case of fibered

manifolds π : M → N can be suitably recovered by restricting the at-

tention to (local) sections of the fibered product M ×M N satisfying an

obvious condition. In Section 2 we recall the first variation and calculate

the second variation δ2A of an action A for curves in a configuration

manifold Q (“generalized Classical Mechanics”). We then show how a

number of different integrations by parts allow to recast the Hessian in

a more suitable form, which contains the Euler–Lagrange operator, and

to define some ordinary differential equations of the second order which

we call the generalized Jacobi equations. These are in fact the equations
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which define along critical curves those vectorfields in Q which make δ2A
to vanish identically (modulo boundary conditions); a description of these

equations as the Euler–Lagrange equations of the first variation δL will

be considered elsewhere ([9], [10]). Section 3 is devoted to discuss, along

similar lines, the second variation δ2A and the generalized Jacobi equa-

tions for Lagrangians of Field Theory, i.e. defined on (local) sections of

fibered manifolds (B, M, π). In this case the generalized Jacobi equations

are second order partial differential equations for vertical vectorfields de-

fined on critical sections. In the subsequent Section the results of Section

3 are rewritten in an explicitly covariant form, based on the use of product

connections in the trivial bundle M ×N (see above for a discussion about

generality). As a particular case in Section 4 we also consider the case

of “generalized harmonic Lagrangians”, which contain the Lagrangians

of harmonic mappings between Riemannian manifolds as a special case

(see, e.g., [4] and [5]).

As is well known, the classical Jacobi equation for geodesics of a Rie-

mannian manifold (M, g) defines in fact the Riemann curvature tensor of

g. Because of this we can say that the second variation δ2A and the gen-

eralized Jacobi equations define the “curvature” of any given variational

principle in a fibered manifold. In the generic case, of course, this notion

has very little to say. In the second part of this investigation [11] we shall

show that this general concept of “curvature” takes a particularly signifi-

cant form in the case of generalized harmonic Lagrangians, giving rise to

suitable ”curvature tensors” which satisfy suitable “generalized Bianchi

identities”.

The case of generalized Jacobi equations for higher order Lagrangians

will be considered in a further paper [12]. The applications to second

variations of relativistic Lagrangians (i.e., Lagrangians depending on the

full curvature of a Riemannian metric) will form the subject of the further

papers [13] and [14]. Notation will follow [15], [16] and [17].

1 – Preliminaries and Notation

1.1 – The General Case

Let (B, M, π) be a fibered manifold over an m-dimensional manifold

M , with r-dimensional fibers. We will denote by (xµ) a local coordi-
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nate system on M and by (xµ, ya) a fibered coordinate system on B over

(xµ). As usual, V B will denote the vector bundle of vertical vectors (i.e.,

vectors tangent to fibers of B) and the sections of this bundle will be

called vertical vectorfields; the space of vertical vectorfields is denoted

by XV (B). For any (regular) domain D (i.e., D ⊆ M is a compact n-

dimensional submanifold with boundary), ΓD(π) will denote the set of

(local) sections σ : D → B. Moreover, J1(B) will denote the 1–st or-

der jet-prolongation of B, with naturally induced charts (xµ, ya, ya
µ). If

σ ∈ ΓD(π) is any local section, locally expressed by (xµ, σa(xµ)), thence

its 1–st jet-prolongation j1σ has local expression (xµ, σa(xµ), σa
ν(xµ)),

where σa
ν stands for ∂σa/∂xν . An analogous notation will be used for

the second jet-prolongation J2(B) over B. Let σε be a homotopic varia-

tion of σ = σ0 ∈ ΓD(π), with ε ∈] − a, a[= S ⊆ R and a > 0; the mapping

defining the homotopy will be denoted by λ : D × S → B

(1.1) λ : (x; ε) *−→ σε(x)

We shall set:

ηa(x; ε) ≡
(∂λa

∂ε

)
(x;ε)

, ηa
µ(x; ε) ≡ ∂ηa

∂xµ
=

( ∂2λa

∂xµ∂ε

)
(x;ε)

,

(1.2) ρa(x; ε) ≡ ∂ηa

∂ε
=

(∂2λa

∂ε2

)
(x;ε)

;

with some abuse of notation, we shall denote by the same symbol also

their values at ε = 0 .

A fibered morphism L : J1(B) → ΛmTM is called a Lagrangian. It

defines a variational problem (of the first order) on (B, M, π). Locally:

(1.3) (L ◦ j1σ)x = L
(
xµ, σa(xµ), σa

ν(xµ)
)
ds

for any section σ ∈ ΓD(π), with:

(1.4) ds = dx1 ∧ · · · ∧ dxm .

Moreover we put:

(1.5) dsµ = i∂µ(ds) = (−1)µdx1 ∧ · · · ∧ dxµ−1 ∧ dxµ+1 ∧ · · · ∧ dxm .
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The variational problem determined by the bundle morphism L is based

on the action:

(1.6) A(σ) =

∫

D

L ◦ j1(σ) ,

whose critical sections are those sections along which the first variation

δA of A vanishes if it is taken with respect to homotopic variations λ

with fixed values at the boundary ∂D. As is well known, critical sections

are those sections σ which satisfy the equation:

(1.7) e(L)j2σ = 0

which is called the Euler–Lagrange equation. Here the Euler–Lagrange

morphism e(L) : J2(B) → Λm(TM) ⊗ V ∗B, where V ∗B is the dual bun-

dle of V B, is locally defined by:

e(L)j2σ =
[
(∂aL) − ∂

∂xµ

(
pµ

a ◦ j1σ
)]

ds ⊗ dya

=ea(L)j2σds ⊗ dya.(1.8)

There is a further global bundle morphism f(L) : J1(B) → Λm−1(TM)⊗
V ∗B, having local expression:

(1.9) f(L)j1σ = (pµ
a ◦ j1σ)dsµ ⊗ dya ,

with

(1.10) ∂aL =
∂L

∂ya
and pµ

a =
∂L

∂ya
µ

= pµ
a(L) ,

where pµ
a(L) are the canonical momenta. This morphism enters the fol-

lowing expression for the total differential TL of L:

(1.11) (TL)j1σ(v) =
(
e(L)

)
j2σ

(v) + d[f(L)j1σ(v)]

for any local section σ ∈ ΓD(π) and any vertical vectorfield v, which

projects onto σ; equation (1.11) is called the global first variation formula

of L. For more details see, e.g., [15], [16].
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1.2 – A Simpler Case

Here we are interested in the simpler case (which shall be useful

in Section 5) in which B = M × N and π = pr1 : M × N → N is the

canonical projection, where N is any r-dimensional manifold. In this case

the bundle chart (xµ, ya) can be taken to be the product chart of (xµ) by

a local chart (ya) of N . Moreover, if σ : M → M × N is a (local) section

of this bundle, then σ(x) = (x, f(x)), where f : M → N is a (local)

differentiable mapping. In the sequel we will identify σ to f , so that the

previous notation can be used. Notice that, by choosing B = M × N ,

we do not loose generality. In fact, if N is a fiber bundle over M , with

canonical projection ν : N → M , in order to obtain the sections of this

bundle one needs only to impose the constraint ν ◦ f(x) = x, for each

x ∈ M , to any section σ : M → M × N . The above constraint can

be implemented by restricting our attention to the closed submanifold

M ×M N of M × N .

Consider now the splitting of the whole tensor algebra of M × N ,

determined by the splittings TB = T (M ×N) = TM ×TN and T ∗(B) =

T ∗(M × N) = T ∗(M) × T ∗(N) of the tangent and cotangent bundle of

M × N , respectively. For any quadruple of integers (v, s, t, u) the bundle

T vs
tu (M×N) ≡ T v

s (M)⊗T u
t (N) is hence defined. In particular, the bundles

T 01
10 (M ×N) = T ∗(M)⊗T (N) and T 11

10 (M ×N) = T 1
1 (M)⊕M T 01

01 (M ×N)

of the tensor bundle T 1
1 (M × N) will be used. If σ = σ0 : M → N is a

differentiable mapping, from (1.2) we have:

(1.12) (j1σ) = σa
µ(x)

∂

∂ya
⊗ dxµ ∈ T ∗

x (M) ⊗ Tσ(x)(N) , ∀x ∈ M .

Moreover, the total differential Tσ of σ, thought as a section of the trivial

bundle pr1 : M × N → M , is given by:

(1.13) (Tσ)x = KM + (j1σ)x = δµ
ν

∂

∂xµ
⊗ dxν + σa

ν(x)
∂

∂ya
⊗ dxν

where KM is the Kronecker tensor in M . We have then (Tσ)x ∈ T 1
1x

(M)

⊕M T 01
10(x,σ(x))

(M × N) for each x ∈ M . Usually (1.12) is considered as

a tensorfield along the mapping σ : M → N and (1.13) as a bundle

morphism induced by the section associated to σ. Here we consider both



[7] Covariant second variation for first order etc. 239

of them as tensorfields on M × N , defined on the graph Gσ = σ(M) =

{(x, y) ∈ (M × N)/y = σ(x), x ∈ M}, the mapping σ being identified

with the associated section. Obviously, Gσ is a closed submanifold of

M × N diffeomorphic to M .

Let σε be a homotopic variation of σ = σ0 ∈ ΓD(π), with ε ∈]−a, a[=

S and a > 0, and let λ : M × S → N be the mapping defining the

homotopy. Then for each ε ∈ S, the graph Gσε can be identified with

the closed submanifold Gσε × {ε} of Gλ. Then the tensorfields defined

by (1.12) and (1.13) can be split by the product structure on M × S.

In accordance with the notation (1.2) this allows to define the following

objects:

j1
(1)λ ≡ j1σε = σa

µ

∂

∂ya
⊗ dxµ ;

T(1)λ ≡ Tσε = δµ
ν

∂

∂xµ
⊗ dxν + σa

µ

∂

∂ya
⊗ dxµ ;

(1.15)

j1
(2)λ ≡ η = ηa ∂

∂ya
⊗ dε ;

T(2)λ ≡ η̃ =
d

dε
⊗ dε + ηa ∂

∂ya
⊗ dε .

In this notation the lower index k in j1
(k) (k = 1, 2) denotes either deriva-

tion with respect to variables in M (k = 1) or with respect to ε in S

(k = 2). Since the standard chart (S, ε) has been fixed on S, by an abuse

of notation we can identify the tensorfields η and η̃ with the vectorfields:

(1.16) η = ηa ∂

∂ya
and η̃ =

d

dε
+ η =

d

dε
+ ηa ∂

∂ya
.

Now we fix two connections ∇̆ and ∇̃ on M and N , respectively, and

denote by Γα
µν and Γ̃a

bc their respective local components. Then the prod-

uct connection ∇ = ∇̆ × ∇̃ on M × N defines a covariant differential by:

(1.17) C[(∇Z) ⊗ X] = ∇XZ ; ∀X ∈ X (M × N) , ∀Z ∈ It
s(M × N) ,

where X (M ×N) is the Lie algebra of vectorfields on M ×N , It
s(M ×N)

is the C∞–module of tensorfields of type (t,s) on M × N and C is the
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standard contraction C[(∇Z) ⊗ X]i1,...,it
j1,...,js

≡ (∇iZ
i1,...,it
j1,...,js

)ξi (by an abuse

of notation here indices run from 1 to m + r). The following generalized

Leibnitz rule holds:

(1.18)
∇(Z ⊗ Z ′) = I((∇Z) ⊗ Z ′) + Z ⊗ ∇Z ′ ;

∀Z ∈ It
t′(M × N) , ∀Z ′ ∈ Is

s′(M × N) ,

where I : It+s
t′+s′+1(M × N) → It+s

t′+s′+1(M × N) is the linear bundle iso-

morphism defined by

(1.19)
I(Z ⊗ ω ⊗ Z ′) = Z ⊗ Z ′ ⊗ ω ;

∀Z ∈ It
t′(M × N) , ∀Z ′ ∈ Is

s′(M × N) , ∀ω ∈ I0
1 (M × N) .

We have also:

(1.20) ∇(Ct
t′Z) = Ct

t′(∇Z) , ∀Z ∈ Is
s′(M × N) ,

whenever the contraction Ct
t′ of the t-th upper index with the t’-th lower

index can be considered (i.e., if s > 1, s′ > 1, 1 ≤ t≤s and 1≤ t′ ≤s′). The

definition (1.17) may be generalized to the following differential operator:

(1.21)
∇P Z = C[(∇Z) ⊗ P ] ∈ It

s+1(M × N)

∀P ∈ I1
1 (M × N) , ∀Z ∈ It

s(M × N)

locally given by C[(∇P Z)]i1,...,it
j1,...,js,j ≡ (∇iZ

i1,...,it
j1,...,js

)P i
j (also in this case Latin

indices run from 1 to m + r). This operator satisfies (1.18) and (1.20).

The same construction can be repeated by replacing M by M × R

and ∇̆ by ∇̆ × ∇̇, where ∇̇ = d/dt is the standard connection on R.

In particular we have the following: (i) if P is a family of elements of

I1
1 (M × N) smoothly depending on ε ∈ R then the product connection

∇̇ × ∇̆ × ∇̃ operates as ∇ for any ε; (ii) if P (x, ε, y, ) ∈ T(x,y)(M × N) ⊗
T ∗(R) then ∇̇×∇̆×∇̃ operates as in (1.17) provided P is replaced by the

vectorfield of M × N obtained from P by dropping dε as in (1.16); (iii)

finally, in all the other cases the new connection operates exactly as the

derivative with respect to ε ∈ R. By an abuse of notation we shall identify

∇̆×∇̇×∇̃ with ∇. The new differential operator above allows us to extend
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to connections the notion of “formal derivative” (see [16]). Notice that

the operator defined by (1.21) induces a ”differential operator” on each

submanifold of M × N . Consequently, from the tensorfields defined by

(1.15) and (1.16), the following tensorfields defined on the graph Gλ of λ

can be obtained:

(1.22)

∇η̃T1λ = ∇η̃j
1σε =

(∇η̃σ
a
µ

) ∂

∂ya
⊗ dxµ ,

∇T1λη̃ = ∇Tσε η̃ = ∇Tσεη =
(∇Tσεη

a
)
µ

∂

∂ya
⊗ dxµ ,

∇η̃η̃ = ∇η̃η =ρ̃a ∂

∂ya
,

∇T1λT1λ = ∇TσεTσε = ∇Tσεj
1σε =

(∇Tσεσ
a
µ

)
ν

∂

∂ya
⊗ dxµ ⊗ dxν ,

with

(1.23)

∇η̃σ
a
µ =ηa

µ + Γ̃a
bcσ

b
µηc ,

(∇Tσεη
a
)
µ

=ηa
µ + Γ̃a

bcη
bσc

µ ,

ρ̃a =ρa + Γ̃a
bcη

bηc ,

(∇Tσεσ
a
µ

)
ν

=
∂σa

µ

∂xν
− Γρ

µνσ
a
ρ + Γ̃a

bcσ
b
µσc

ν .

We have also:

(1.24) ∇η̃T1λ − ∇T1λη̃ = T̃ a
bcσ

b
µηc ∂

∂ya
⊗ dxµ

where T̃ a
bc are the local components of the torsion tensorfield T̃ of ∇̃. Now

we set:

(1.25)

Dµ =
∂

∂xµ
+ ya

γΓγ
νµ

∂

∂ya
ν

,

Da =
∂

∂ya
− yc

µΓ̃b
ca

∂

∂yb
µ

,

Dya
µ =dya

µ − ya
γΓγ

µνdxν + yb
µΓ̃a

bcdyc .
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It is well known that (Dµ, Da,
∂

∂ya
µ
) is a local basis of the tangent vector

bundle T
(
T 01

10 (M × N)
)
, while (dxµ, dya, Dya

µ) is its dual basis. The ele-

ments of the above bases (called adapted bases) obey the same trasforma-

tion rules as ∂
∂xµ , ∂

∂ya , ∂
∂ya ⊗dxµ, dxµ, dya, ∂

∂xµ ⊗dya and will be identified

with them, in the given order. Moreover, if F : T 01
10 (M × N) → R is any

differentiable mapping we can consider the following tensorfields along

the canonical projection π01
10 : T 01

10 (M × N) → M × N , defined by:

(1.26)

dh
(1)F = (DµF )dxµ =

( ∂F

∂xµ
+ ya

γΓγ
νµ

∂F

∂ya
ν

)
dxµ ,

dh
(2)F = (DaF )dya =

( ∂F

∂ya
− yc

µΓ̃b
ca

∂F

∂yb
µ

)
dya ,

dvF = (dvF )µ
a

∂

∂xµ
⊗ dya = pµ

a

∂

∂xµ
⊗ dya .

A simple local calculation shows that the following identity holds for the

total differential dF :

(1.27)
dF = (DµF )dxµ + (DaF )dya + (dvF )µ

aDya
µ

= dh
(1)F + dh

(2)F + dvF .

Let now X be a vectorfield along π01
10, i.e. locally: X = Xµ ∂

∂xµ +

X̃a ∂
∂ya . In the sequel we shall use the following notation for some of the

local components of the covariant differential defined by (1.19):

(1.28)

∇(1)
ν Xµ = DνX

µ + Γµ
ρνX

ρ ,

∇(2)
b X̃a = DbX̃

a + Γ̃a
cbX̃

c ,

(dvXµ)ν
a =

∂Xµ

∂ya
ν

,

(dvX̃a)ν
b =

∂X̃a

∂yb
ν

.

Since (X ◦ j1σε) is a vectorfield defined on the graph Gλ of λ the
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following covariant derivatives can be calculated:

(1.29)

∇Tσε(X ◦ j1σε) =
[∇(1)

ν Xµ + σb
νDbX

µ + (∇Tσεσ
b
ρ)ν(d

vXµ)ρ
b

] ∂

∂xµ
⊗ dxν+

[
DνX̃

a + σb
ν∇(2)

b X̃a + (∇Tσεσ
b
ρ)ν(d

vX̃a)ρ
b

] ∂

∂ya
⊗ dxν ,

∇η̃(X ◦ j1σε) =
[
ηbDbX

µ + (∇η̃σ
b
ρ)(d

vXµ)ρ
b

] ∂

∂xµ
+

[
ηb∇(2)

b X̃a + (∇η̃σ
b
ρ)(d

vX̃a)ρ
b

] ∂

∂ya
.

This is the required “formal derivative”. This “derivative” can be ex-

tended to the whole tensor algebra on (M × N), so that, using local

coordinates, the rules (1.18) and (1.20) still hold as for standard connec-

tions. Let us also remark that if F : T 01
10 (M × N) → R is a differentiable

function the following holds:

(1.30)
∂

∂ε
(F ◦ jσε) = ηaDaF + (∇η̃σ

a
µ)(dvF )µ

a .

Suppose now that M is an orientable manifold and that Ω is a glob-

ally defined volume form. Then we replace (1.3) by the global formula

L = LΩ, where L : T 01
10 (M ×N) → R is a function. Then for an arbitrary

coordinate system (xµ) equation (1.4) must be replaced by:

(1.31) Ω = αds ,

with α a positive function defined on the domain of the chart (xµ). If X

is a vectorfield on M , locally given by X = Xµ ∂
∂xµ , we set:

(1.32) div∗X = ∂µXµ + Xµ∂µ lnα .

Hence div X = (div∗ X)Ω, and div∗ X defines a differentiable function

on M . We also consider the 1–form ω = ωµdxµ, with:

(1.33) ωµ = Γν
µν − ∂µ lnα .

By (1.32) and (1.33) we have:

(1.34) C(∇X) = div∗X + ω(X) ,

where C is the unique possible contraction.
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2 – The Second Variation Formulae and Jacobi Equations for

Mechanics

2.1 – The general setting

In this section we shall consider the first and second variation formu-

lae for the case of Classical Mechanics and discuss some of their relevant

features. Let then M = R, B = R × Q (where Q is the configuration

space) and J1(B) ∼= R×TQ (where TQ is the tangent bundle of Q). Local

coordinates in J1(B) will be denoted by (t, qa, ua), a = 1, . . . , n = dimQ.

Consequently (1.1) simplifies to:

L = L(qa, ua, t)dt .

The canonical momenta, in this case, are:

(2.1) pa = pa(L) =
∂L

∂ua

and they behave as sections of the phase space R × T ∗Q. The Poincaré–

Cartan form is

(2.2) ΘL = Ldt + pa(dqa − uadt)

and the Euler–Lagrange equations (in J2(B) = R × T 2Q) are:

(2.3) ea(L) = 0

where ea(L) is the Euler–Lagrange morphism:

(2.4) ea(L) = ∂aL − ṗa

and the dot denotes (as usual) time–derivative. The first variation of the

action

A =

∫

I

Ldt ,

(I = [t0, t1] ⊆ R being a compact interval) is evaluated by assuming

qa = qa(t; ε) and ua = (∂qa/∂t)(t; ε) to depend smoothly on a deformation
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parameter ε ∈ R and by taking the ε-derivative at ε = 0 of the real

function:

(2.5) A(ε) =

∫

I

L
(
qa(t; ε),

∂qa

∂t
(t; ε), t

)
dt .

As is well known this gives:

(2.6) δA =
dA(ε)

dε

∣∣∣∣∣
ε=0

=

∫

I

( ∂L

∂qa
δqa +

∂L

∂ua
δua

)
dt

where:

δqa =
∂

∂ε
qa(t; ε)

∣∣
ε=0

and δua =
∂

∂ε
ua(t; ε)

∣∣
ε=0

.

One goes then “on shell” by setting ua = q̇a and δua = δq̇a = (δqa).. An

integration by parts then gives:

(2.7) δA = paη
a
∣∣t1
t0

+

∫

I

(∂aL − ṗa)η
adt

where η = ηa∂a = (δqa)∂a ∈ XV (B) is a vectorfield representing the “first

variation”. Notice that we are using a notation consistent with (1.2).

The Euler-Lagrange equations (2.3) then follow by requiring

δA = paη
a
∣∣t1
t0

for any η = ηa∂a ∈ XV (B) .

Obviously, the boundary term disappears if one imposes the standard

condition:

(2.8) ηa = 0 for t = t0 and t = t1

or under other suitable conditions (see e.g. [2]). Alternatively, the result

(2.7) may be obtained by Taylor expanding qa and ua = q̇a as follows:

(2.9)
qa(t; ε) = qa

(0) + εηa + o(ε2)

ua(t; ε) = ua
(0) + εη̇a + o(ε2)
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and ε-differentiating:

A(ε) =

∫

I

L(qa
(0) + εηa + o(ε2), ua

(0) + εη̇a + o(ε2), t)dt .

To calculate the second variation of A one has to go one step further and

Taylor expand qa and ua as follows:

(2.10)
qa(t; ε) = qa

(0) + εηa +
1

2
ε2ρa + o(ε3) ,

ua(t; ε) = ua
(0) + εη̇a +

1

2
ε2ρ̇a + o(ε3) ,

where

ηa = δqa =
∂

∂ε
qa(t; ε)

∣∣
ε=0

and ρa = δ2qa =
∂2

∂ε2
qa(t; ε)

∣∣
ε=0

are the first and second variation, respectively. Calculating then the

second ε-derivative (at ε = 0) of A(ε), after an integration by parts on

the term ∂L
∂ua ρ̇a = paρ̇

a one finds:

(2.11)
δ2A = paρ

a
∣∣∣
t1

to
+

∫

I

(∂aL − ṗa)ρ
adt +

∫

I

Hess(L)(η, η̇)dt

= paρ
a
∣∣∣
t1

t0
+

∫

I

ea(L)ρadt +

∫

I

Hess(L)(η, η̇)dt

where

(2.12) Hess(L)(η, η̇) =
∂2L

∂qa∂qb
ηaηb + 2

∂2L

∂qa∂ub
ηaη̇b +

∂2L

∂ua∂ub
η̇aη̇b

is the Hessian of L, which depends quadratically on η and η̇. (Actually,

one finds two terms ∂2L
∂qa∂ub η

aη̇b and ∂2L
∂ua∂qb η̇

aηb, which sum up to the

second term in (1.12) because of the Schwarz’ simmetry of the second

derivatives. This is a non–trivial remark, since, as we shall see below, the

procedure to derive Jacobi equations is based on integrating by parts just

one of these two terms!). From (2.11) we see that the following holds “on

shell”:

(2.13) [δ2A]shell = paρ
a
∣∣t1
t0

+

∫

I

Hess(L)(η, η̇)dt
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i.e., along solutions of (2.3). Obviously the first term disappears under

the further boundary conditions:

(2.14) ρa = 0 for t = t0 and t = t1 .

There are now various integrations by parts which can be performed

on (2.11) to re-express under more convenient forms the second varia-

tion δ2A “on shell”. To this purpose, let us first introduce the following

notation:

∂apb =
∂pb

∂qa
=

∂2L

∂qa∂ub
;(2.15)

hab = hab(L) =
∂2L

∂ua∂ub
;(2.16)

F (η) = (∂apb)η
aηb.(2.17)

(Notice that hab is the u-Hessian of L, i.e. the matrix which controls the

regularity of L and of the corresponding Legendre transformation). A

first integration by parts can be now performed as follows. Split again the

second term of (2.12) as the sum of two identical addenda (∂apb)η
aη̇b and

integrate only one of them by parts, leaving the second unchanged. Using

the definition (2.4) of ea(L) and performing some easy manipulation, this

simple artifice allows us to re-cast as follows the Hessian:

(2.18) Hess(L)(η, η̇) = H1(L)(η, η̇) + [F (η)]. ,

where the “modified Hessian” H1(L) is given by:

(2.19) H1(L)(η, η̇) =
[
(∂aeb(L))ηa + (∂bpa − ∂apb)η̇

a
]
ηb + habη̇

aη̇b

(to obtain (2.19) one uses in fact the equality of (∂bea)η
aηb with (∂aeb)

ηaηb). The second term of (2.18) is a boundary term, so that the second

variation (2.11) can be re-expressed as follows:

(2.20) δ2A = (paρ
a + F (η))

∣∣∣
t1

t0
+

∫

I

ea(L)ρadt +

∫

I

H1(L)(η, η̇)dt .
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This expression reduces “on shell” to the following:

(2.21) [δ2A]shell =

∫

I

H1(L)(η, η̇)dt

provided (2.8) and (2.14) hold. Roughly speaking, Hess(L) and H1(L)

are quadratic forms which determine the directions along which the ac-

tion A increases, decreases or is stationary in a neighborhood of a critical

curve, provided (2.8) and (2.14) or other suitable boundary conditions are

satisfied. A simple consequence of the observation above is that Hess(L)

and H1(L) have the same number of eigenvalues with the same multiplic-

ity and the same signature. To our knowledge, the “modified Hessian”

H1(L) has not been previously considered explicitly in the literature. We

stress, however, that it is worth considering it because of a number of

reasons: first, it is explicitly written in terms of momenta and field equa-

tions (2.4); second, it seems to be best suited to determine the sign of the

second variation; third, as we shall see below, it generates an alternative

new Jacobi equation.

A further integration by parts based on the following identity:

(2.22) habη̇
aη̇b = (habη

aη̇b). − ḣabη
aη̇b − habη

aη̈b

can now be performed into the Hessian to obtain “Jacobi equations”,

under a number of equivalent forms. We can first use (2.22) to recast

(2.12) as follows:

(2.23) Hess(L)(η, η̇) = J1(L)(η, η̇, η̈) + [P (η, η̇)]. ,

where we set

(2.24a) J1(j
2η) = ηaJ̃ (1)

a (j2η)

with

(2.24b) J̃ (1)
a (j2η) =

∂2L

∂qa∂qb
ηb + (2∂apb − dhab

dt
)η̇b − habη̈

b

and

(2.25) P (η, η̇) = habη
aη̇b .
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With these positions equation (2.11) can be written as follows:

(2.26) δ2A =
[
paρ

a + P (η, η̇)
]∣∣∣

t1

t0
+

∫

I

ea(L)ρadt +

∫

I

J1(L)(η, η̇, η̈)dt ,

which “on shell” reduces to:

(2.27) [δ2A]shell =
[
paρ

a + P (η, η̇)
]∣∣∣

t1

t0
+

∫

I

J1(L)(η, η̇, η̈)dt .

This generates the (generalized) Jacobi equation (of the first kind):

(2.28) J̃ (1)
a (η, η̇, η̈) = 0 .

The solutions of equation (2.28) are the Jacobi fields, i.e. those vertical

vectorfields η ∈ XV (B) along which δ2A reduces to the boundary value

given by the first term of (2.27).

Performing the same integration by parts on (2.18) gives instead:

(2.29) Hess(L) = J2(L)(η, η̇, η̈) + [G(η, η̇)]. ,

where

(2.30a) J2(L)(η, η̇, η̈) = ηaJ̃ (2)
a (η, η̇, η̈)

and

(2.30b) J̃ (2)
a (η, η̇, η̈) =

[
∂bea(L)

]
ηb + (∂apb − ∂bpa)η̇

b − dhab

dt
η̇b − habη̈

b

being

(2.31) G(η, η̇) = F (η) + P (η, η̇) = ηa
[
(∂apb)η

b + habη̇
b
]
.

With these positions equation (2.11) can now be written as follows:

(2.32) δ2A =
[
paρ

a + G(η, η̇)
]∣∣∣

t1

t0
+

∫

I

ea(L)ρadt +

∫

I

ηaJ̃ (2)
a (η, η̇, η̈)dt .

Equivalently:

(2.32′) δ2A =
[
δ(paρ

a)
]∣∣∣

t1

t0
+

∫

I

ea(L)ρadt +

∫

I

ηaJ̃ (2)
a (η, η̇, η̈)dt ,
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since it is easy to see that the following holds

G(η, η̇) = δ(paη
a) − paρ

a .

Equation (2.32′) becomes “on shell”:

(2.33) [δ2A]shell =
[
δ(paη

a)
]∣∣∣

t1

t0
+

∫

I

ηaJ̃ (2)
a (η, η̇, η̈)dt ,

which gives us the Jacobi equation of the second kind:

(2.34) J̃ (2)
a (η, η̇, η̈) = 0 .

Using the fact that partial derivatives ∂a and the formal derivative d
dt

commute, this can be shown immediately to be equivalent to the following

equation:

(2.35) J̃S
a (η, η̇, η̈) =

∂2L

∂qa∂qb
ηb + (∂apb)η̇

b − [
(∂apb)η

a + habη̇
b
].

= 0 ,

which is well known in the literature (see e.g., [3]) and can be called the

standard Jacobi equation.

Before proceeding further it is interesting to provide an alternative

and more compact description of the above constructions using a language

which is more suited to applications in differential geometry. Let then

γ : R → Q be a curve and let us denote by γε, ε ∈]−a, a[= S a homotopic

variation of γ = γ0. Each γε defines a section σε : R → B = R × Q, by

σε : t *→ (
t, γε(t)

)
. The action is defined by the integral:

A(γε) =

∫

I

L
(
λ,

∂λ

∂t
, t

)
dt

where λ : S × R → Q is the mapping defining the homotopy. The first

variation δA is thence:

(2.36)

δA =
d

dε

∫ t1

t0

L
(
λ,

∂λ

∂t
, t

)
dt =

∫ t1

t0

[
e(L) ∂2λ

∂t2

(∂λ

∂ε

)]
dt+

+

∫ t1

t0

∂

∂t

[
f(L) ∂λ

∂t

(∂λ

∂ε

)]
dt
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having identified, by an abuse of notations, (∂λ/∂t)ε with j1σε and

(∂2λ/∂t2)ε with j2σε, for each ε ∈ S. Here, f(L) is the relevant part of

the Poincaré–Cartan form ΘL, i.e., f(L) = pa(dqa − uadt). The second

variation δ2A can now be expressed as:

(2.37)

δ2A =
d2

dε2

[A(γε)
]
=

∫ t1

t0

[
e(L) ∂2λ

∂t2

(∂2λ

∂ε2

)]
dt

+

∫ t1

t0

[ ∂

∂ε

(
e(L) ∂2λ

∂t2

)(∂λ

∂ε

)]
dt +

∫ t1

t0

∂2

∂ε∂t

[
f(L) ∂λ

∂t

(∂λ

∂ε

)(∂λ

∂ε

)]
dt .

This gives “on shell”:

(2.38) δ2A = H ≡ [
δ(paη

a)
]∣∣t1

t0
+

∫ t1

t0

[ ∂

∂ε

(
e(L) ∂2λ

∂t2

)](∂λ

∂ε

)
dt

and the boundary term is zero under the assumptions (2.8) and (2.14).

Let us remark that for ε = 0, equation (2.37) coincides exactly with

equation (2.32), apart from the change of notation. Consequently, for

ε = 0, the quantity H coincides with (2.33). The standard Jacobi fields

(2.35) thence determine homotopic variations λ verifying the equation:

(2.39)
[ ∂

∂ε

(
e(L) ∂2λ

∂t2

)]∣∣∣
ε=0

= 0 .

2.2 – Examples

To illustrate the previous results let us consider two simple examples.

We first discuss the Lagrangian for a simple harmonic oscillator. One has

Q = R and the Lagrangian is:

(2.40) L =
1

2
(u2 − q2) .

Denoting by η and ρ the first and second variation of q, we have:

δA = uη
∣∣t1
t0

−
∫

I

(u̇ + q)ηdt
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from which the field equation u̇ + q = q̈ + q = 0 follows. Moreover:

(2.41) δ2A = uρ
∣∣t1
t0

+

∫

I

(η̇2 − η2)dt −
∫

I

(u̇ + q)ρdt ,

being Hess(L)(η, η̇) = η̇2 − η2. Since p(q, u) ≡ ∂L/∂u = u, we have

∂p/∂q = 0 and consequently Hess(L) = H1(L). By an integration by

parts we have also:

(2.42) δ2A = (uρ + ηη̇)
∣∣t1
t0

−
∫

I

(η̈ + η)ηdt −
∫

I

(u̇ + q)dt .

The Jacobi equation (of the first kind) is then:

(2.43) η̈ + η = 0

and it coincides, as for the Hessian, with the other Jacobi equations. It

is easy to see that (2.41) is a particular case of (2.11) and (2.20), while

(2.43) is a particular case of (2.28) and (2.35) at the same time.

As a second example we shall derive the classical Jacobi equation for

geodesics. Let then (Q, g) be a Riemannian manifold, with metric tensor

g = gabdxa ⊗ dxb. The Lagrangian for geodesics is then:

(2.44) L =
1

2
gab(q

c)uaub

and the action is the energy of (Q, g)

(2.45) A(γ) =
1

2

∫

I

(‖γ̇‖g)
2dt =

1

2

∫

I

gab(γ(t))γ̇a(t)γ̇b(t)dt .

From (2.44) we have:

(2.46) pa(L) = gabu
b , hab(L) = gab

and the Euler-Lagrange equation is given by:

(2.47) ea(L) = −[
gabq̈

b + {bc, a}q̇bq̇c
]
,
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where {bc, a} are the Christoffel symbols of the first kind. As is well

known, setting ea(L) = 0 characterizes the geodesics of (Q, g) as the

critical curves of A(γ), which are the solutions of the geodesic equation:

(2.48) q̈a +
{ a

bc

}
q̇bq̇c = 0 ,

being
{ a

bc

}
the Christoffel symbols of the second kind. From (2.46), (2.47)

and (2.30) we infer immediately the Jacobi equation for the unknown

vertical vectorfield Y ∈ XV (R × Q) ∼= X (Q):

(2.49)

−
[
(∂agbcq̈

b + ∂a

({bd, c})
q̇bq̇d

]
Y c

+
(
(∂agbc)q̇

b − (∂cgab)q̇
b
)dY c

dt

− (∂bgac)q̇
b dY c

dt
− gac

d2Y c

dt2
= 0 .

Notice that the four terms of (2.49) correspond exactly to the four terms

of (2.30). We can now replace into (2.49) the value of q̈b given by the

Euler–Lagrange equation (2.48) and gather together its second and third

terms. We obtain thus:

(2.50)
[
(∂agbc)

{ b

de

}−∂c{de, a}
]
q̇dq̇eY c − 2{cb, a}q̇b dY c

dt
− gac

d2Y c

dt2
= 0 .

Multiplying the equation by gfa and performing some further manipula-

tion, it is not hard to see that its first term generates the Riemannian

curvature tensor of (Q, g) and that the equation is turned into the well–

known Jacobi equation for geodesics (see, e.g., [2], page 82):

(2.51) ∇2
γ̇Y + Riem(Y, γ̇, γ̇) = 0 ,

where γ is any geodesic curve and ∇2
γ̇ denotes the second–order covariant

derivative along the curve γ.
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3 – The Second Variation Formulae and Jacobi Equations for

Field Teory

We are now ready to discuss the formulae for the second variation

and the generalized Jacobi equation for a (first order) Lagrangian defined

on a fibered manifold (B, M, π). As in the previous section, we shall first

develop the equations in a coordinate language and later consider their

intrinsic rappresentation. Let us then consider a Lagrangian:

(3.1) L = L(xλ, ya, ya
µ)ds

(see Section 1 for notation). Over a compact domain D with regular

boundary ∂D any homotopic variation of the (local) section σ ∈ ΓD(π)

can be Taylor expanded as follows:

(3.2) ya(xλ) = ya
(0)(x

λ) + εηa(xλ) +
ε2

2
ρa(xλ) + o(ε3)

together with its 1–prolongation j1σ:

(3.3) ya
µ(xλ) = ya

µ(0)(x
λ) + εηa

µ(xλ) +
ε2

2
ρa

µ(xλ) + o(ε3) .

The first variation of the action A defined by (1.6) is thence given by:

(3.4) δA =

∫

∂D

(pµ
aηa)dsµ +

∫

D

ea(L)ηads ,

where ea(L) is given by (1.7), pµ
a are defined by (1.9) and we have made use

of Stokes’ theorem. Then the critical sections of L are determined by the

Euler–Lagrange equation (1.11) under the boundary condition η|∂D = 0.

Taking the second ε-derivative of A(ε) we obtain after integration by

parts:

(3.5) δ2A =

∫

∂D

(pµ
aρa)dsµ +

∫

D

(
ea(L)ρa

)
ds +

∫

D

Hess(L)(j1η)ds ,

where the Hessian is defined by:

(3.6) Hess(L)(j1η) = (∂2
abL)ηaηb + 2(∂ap

µ
b )ηaηb

µ + hρµ
ab ηa

ρηb
µ ,
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having set for simplicity:

(3.7) ∂2
abL =

∂2L

∂ya∂yb
, hµρ

ab (L) =
∂2L

∂ya
µ∂yb

ρ

.

Integrating by parts, as in Section 2, half of the central term of the

Hessian and using the expression (1.7) for the Euler–Lagrange operator

we obtain the following splitting for the Hessian:

(3.8) Hess(L)(j1η) = H1(L)(j1η) + ∂µF µ ,

where H1(L) is the “modified Hessian”

(3.9) H1(L)(j1η) =
[
∂aeb(L)

]
ηaηb + (∂ap

µ
b − ∂bp

µ
a)ηa

µηb + hρµ
ab ηa

ρηb
µ

and we set

(3.10) F µ(η) = (∂ap
µ
b )ηaηb .

Integrating the third term of (3.6) by parts gives instead:

(3.11) Hess(L)(j1η) = J1(j
2η) + ∂µP µ ,

with

(3.12) J1(j
2η) =

[[
∂bea(L)

]
ηb + 2(∂ap

µ
b − ∂σhσµ

ab )ηb
µ − hσµ

ab ηb
σµ

]
ηa

and

(3.13) P µ
(
j1η

)
= hρµ

ab ηa
ρηb .

Finally, the two integrations by parts performed on (3.9) allow us to

re–express the Hessian (3.6) as follows:

(3.14) Hess(L)(j1η) = J2(j
2η) + δ

[
∂µ(pµ

aηa)
] − ∂µ(pµ

aρa) ,

with

(3.15) J2(j
2η) =

[(
∂bea(L)

)
ηb +

[
(∂ap

µ
b − ∂bp

µ
a) − ∂σhσµ

ab

]
ηb

µ − hρµ
ab ηb

ρµ

]
ηa
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and

(3.16) δ
[
∂µ(pµ

aηa)
]
= F (η) + G(j1η) .

The second variation can thus be re–written as follows:

(3.17) δ2A =

∫

∂D

(pµ
aρa + F µ)dsµ +

∫

D

(
ea(L)ρa

)
ds +

∫

D

H1(L)(j1η)ds .

Equivalently one has

(3.18) δ2A =

∫

∂D

(pµ
aρa + Gµ)dsµ +

∫

D

(
ea(L)ρa

)
ds +

∫

D

J1(j
2η)ds

or, finally,

(3.19) δ2A = δ

∫

∂D

(pµ
aηa)dsµ +

∫

D

(
ea(L)ρa

)
ds +

∫

D

J2(j
2η)(η)ds .

Under suitable boundary conditions (such as ηa
/∂D = 0, or M = D and

∂D = ∅) equations (3.5) and (3.16) become “on shell”:

(3.20) [δ2A]shell =

∫

D

Hess(L)(j1η)ds =

∫

D

H1(L)(j1η)ds .

As a consequence, Hess(L) and H1(L) are both quadratic forms, whose

signature forces the solutions of the Euler–Lagrange equations (1.11) to

be a minimum, a maximum or a “saddle point” in suitable subspaces of

ΓD(π). Moreover, (3.17) and (3.18) become “on shell”:

(3.21)
[δ2A]shell =

∫

∂D

(pµ
aρa + Gµ)dsµ +

∫

D

J1(j
2η)ds ,

[δ2A]shell = δ

∫

D

(pµ
aηa)dsµ +

∫

D

J2(j
2η)ds .

A vertical vectorfield η = ηa∂a ∈ XV (B) along a critical section σ is called

a Jacobi field (of the first kind) iff it satisfies the Jacobi equation (of the

first kind):

(3.22) J1(j
2η) = 0 ,
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while it is called a Jacobi field if it satisfies the Jacobi equation:

(3.23) J2(j
2η) = 0 ,

so that (3.16) and (3.17) reduce to their respective boundary terms when

(3.22) or (3.23) are satisfied.

The equations we have found have a fairly general structure. Spe-

cializing them to particular Lagrangians allows to re–obtain a number

of important results which have been already found in the literature in

various contexts (e.g., [3], [4], [5],[6], [7]). We can now re-express the

above results in a coordinate–free language. We consider then a homo-

topic variation σε, ε ∈] − a, a[⊆ R, of the (local) section σ ∈ ΓD(π), so

that the vertical vectorfield η is identified with ∂σε/∂ε, while ρ equals

∂2σε/∂ε2. The action is then:

(3.24) A(σε) =

∫

D

L(x, λ, ∂λ)ds ,

where λ :] − a, a[×D → π−1(D) ⊆ B is the mapping defining the homo-

topy. For the first variation we have then:

(3.25) δA =

∫

∂D

(
fµ

a (L)
∂λa

∂ε

)
dsµ +

∫

D

[
ea(L)

∂λa

∂ε

]
ds ,

with fµ
a (L) = pµ

a(L), as defined by the first variation formula (3.4).

A second variation gives then:

(3.26)

δ2A =
d

dε

[∫

∂D

(fµ
a ηa)dsµ

]
+

∫

D

[
ea(L)

∂2λa

∂ε2

]
ds +

∫

D

[ ∂

∂ε

(
ea(L) ◦ j2σε

)∂λa

∂ε

]
ds ,

which corresponds to the splitting (3.19), in exactly the same order.



258 B. CASCIARO – M. FRANCAVIGLIA [26]

4 – A Covariant and Global Formulation for Trivial Bundles

With the explicit aim of applying our results to the particular case

of “generalized harmonic Lagrangians”, which shall be defined later in

this Section, we shall here re–express the results of Sections 2 and 3 in

the trivial bundle M × N , using the framework developed in subsection

(1.2). Replacing partial derivatives with formal covariant derivatives with

respect to product connections in M × N will provide, as usual, a glob-

alization procedure for the (globally valid) results of the above sections,

which were written there for convenience in their local form in a given

chart. Moreover, as we shall see below, these new expressions are partic-

ularly useful when dealing with Lagrangians and/or manifolds in which

one (or more than one) connection plays a role as a dynamical variable

or as a globalizing tool. As in subsection (1.2) we assume that M is an

orientable manifold; we recall that if N is a fibered manifold on M , the

case considered in Section 3 can be recovered by replacing M × N by

M ×M N and suitably identifying sections.

Let us first rewrite (3.25) under its differential form:

(4.1)
∂

∂ε
(L ◦ j1σε) = div∗[(f(L) ◦ (j1σε)

)
(η)

] − e(L)j2σε
(η) .

Using (1.22), (1.31), (1.32) and (1.37) we obtain, after some tedious but

easy calculations:

(4.2)

(
ea(L)

)
j2σε

= DaL + pν
dT̃

d
caσ

c
ν + ωνp

ν
a−

− ∇(1)
µ pµ

a − σb
ν∇(2)

b pν
a − (∇Tσεσ

b
ν

)
µ
hµν

ab ,

where T̃ is the torsion of ∇̃. Computing the second ε-derivative of L ◦
(j1σε) and performing covariant integration by parts as in (2.11) and

(3.5), one obtains:

(4.3)
∂2

∂ε2

(
L ◦ j1σε

)
= Hess∇(L)(η,∇Tσεη) + e(L)j2σε

(ρ̃) + div∗(f(L)ρ̃
)
,
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with

(4.4)

Hess∇(L)(η,∇Tσεη) =

{
∇(2)

b (DaL) + hµν
ef T̃ e

caT̃
f
dbσ

c
µσd

ν+

+
[
2(∇(2)

b pµ
d)T̃ d

ca + pµ
d

(
R̃d

acb + T̃ d
ebT̃

e
ca + ∇(2)

b T̃ d
ca

)]
σc

µ

}
ηaηb+

+
[
2∇ap

µ
b + pµ

c T̃ c
ba + 2hµν

db T̃ d
caσ

c
µ

]
ηa(∇Tσεη

b)µ+

+ hµν
ab (∇Tσεη

a)µ(∇Tσεη
b)ν ,

where R̃ is the curvature of ∇̃. We recall that div∗ Y is defined as in

(1.32). To obtain (4.4) we have in fact to use the following formula:

(4.5)
∇η̃∇η̃σ

d
µ − (∇Tσε∇η̃η

d)µ = (R̃d
acb + ∇(2)

b T̃ d
ca + T̃ d

ebT̃
e
ca)η

aσc
µηb+

+ T̃ d
ab(∇Tσεη

a)µηb + T̃ d
abσ

a
µ∇η̃η

b ,

which is identically vanishing for partial derivatives and thence had no

counterpart in Sections 2 and 3.

We can now perform, in the appropriate framework, calculations sim-

ilar to those which in Sections 2 and 3 gave rise to the modified Hessian

and the Jacobi equations. A first (covariant) integration by parts gives:

(4.6) Hess∇(L)(η,∇Tσεη) = H
(1)
∇ (η,∇Tσεη) + div∗(F∇(η)

)
,

with

(4.7)

H
(1)
∇ (η,∇Tσεη) =

[
eab(L)j2σε

]
ηaηb+

+ [∇(2)
a pµ

b − ∇(2)
b pµ

a + pµ
c T̃ c

ba + 2hµν
db T̃ d

caσ
c
ν ]η

a(∇Tσεη
b)µ+

+ hµν
ab (∇Tσεη

a)µ(∇Tσεη
b)ν

and

(4.8) F µ
∇(η) = (∇(2)

a pµ
b )ηaηb .
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Here eab(L) is given by:

(4.9)

eab(L)j2σε
= ∇(2)

b DaL + ωµ∇(2)
a pµ

b − ∇(2)
a ∇(1)

µ pµ
b +

+
[
2(∇(2)

b pµ
d)T̃ d

ac − T̃ d
ac∇(2)

d pµ
b + pµ

d(∇(2)
b T̃ d

ac+

+ T̃ d
ebT̃

e
ca) − ∇(2)

a ∇(2)
c pµ

b

]
σc

µ+

+
[
hµν

ef T̃ e
caT̃

f
db − hµν

be R̃e
dac

]
σc

µσd
ν − (∇Tσεσ

c
ν)µ∇(2)

a hµν
bc .

It replaces the term ∂aeb(L) of (3.9) and, in a suitable sense, it is the

“covariant derivative of e(L) with respect to ∇”. To see this fact we

should however use a further “horizontal lift”, as in subsection (1.1) and

this would require further computations which we do not consider worth

to be reported here. The splitting corresponding to (3.11) is then the

following:

(4.10)
Hess∇(L)(η,∇Tσε) = J

(1)
∇ (η,∇Tσεη,∇Tσε∇Tσεη)+

+ div∗[P∇(η,∇Tσεη)
]

with

(4.11)

J
(1)
∇ (η,∇Tσεη,∇Tσε∇Tσεη) =

{[
(∇(2)

b DaL) + hµν
ef T̃ e

caT̃
f
dbσ

c
µσd

ν+

+
(
2(∇(2)

b pµ
d)T̃ d

ca + pµ
d(R̃d

acb + T̃ d
ebT̃

e
ca + ∇(2)

b T̃ d
ca

)
σc

µ

]
ηb+

+
[
2∇(2)

a pµ
b + pµ

c T̃ c
ba + 2hµν

db T̃ d
caσ

c
ν + ωνh

µν
ab − (∇Tσεh

µν
ab )ν

]
(∇Tσεη

b)µ+

− hµν
ab

(∇Tσε(∇Tσεη
b)ν

)
µ

}
ηa

and

(4.12) P µ
∇(η,∇Tσεη) = hµν

ab ηa(∇Tσεη
b)ν .

Finally, the splitting (3.14) corresponds to:

(4.13)
Hess∇(L)(j1η) = J

(2)
∇ (η,∇Tσεη,∇Tσε∇Tσεη)(η)+

+ δ
[
div∗(f(L)η)

] − div∗(f(L)ρ̃)
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being:

(4.14)

J
(2)
∇ (η,∇Tσεη,∇Tσε∇Tσεη)(η) = ∇η̃

(
e(L) ◦ j2σε) =

=
{(

eab(L)j2σε

)
ηb +

[∇(2)
a pµ

b − ∇(2)
b pµ

a + pµ
c T̃ c

ba + 2hµν
db T̃ d

caσ
c
ν+

− (∇Tσεh
νµ
ab )ν

]
(∇Tσεη

b)µ − hµν
ab

(∇Tσε(∇Tσεη
b)ν

)
µ

}
ηa .

Replacing (4.13) into (4.3) we get:

(4.15)

∂2

∂ε2
(L ◦ j1σε) = J

(2)
∇ (η,∇Tσεη,∇Tσε∇Tσεη)(η)+

+ e(L)j2σε
(ρ̃) + δ

[
div∗(f(L)η)

]
.

We can compare this identity involving differential forms with the in-

tegral identities (3.18), or equivalently with (3.26), in their appropriate

differential form. This allows us to set:

(4.16)

ELJ(L)j2σε

(∂λ

∂ε
,
∂2λ

∂ε2

)
≡

≡ e(L)j2σε
(ρ̃) + J

(2)
∇ (η,∇Tσεη,∇Tσε∇Tσεη)(η) =

= ea(L)
∂2λa

∂ε2
+ J (2)

a (j2η)
∂λa

∂ε
.

Since
[
(ELJ)j2σε

]
x

belongs to T ∗
(∂λ/∂ε)x

(TN) for each x ∈ M and (4.6)

has a global meaning, we see that ELJ(L) is a globally defined 1–form

along the canonical projection ν : T (TN) = T (TvB) → TvB = TN .

The first term of (4.16) is simply the decomposition of ELJ(L) into its

horizontal and vertical part, with respect to the splitting determined on

N by the connection ∇̃. Accordingly, the form ELJ(L) will be called the

total Euler-Lagrange-Jacobi 1–form of L.

A particular case which is of great importance for our later purposes

is the case of generalized harmonic Lagrangians, i.e. the case in which L

is given by:

(4.17) L =
1

2
gµν

ab ya
µyb

ν ,

where g = gµν
ab

∂
∂xµ ⊗ ∂

∂xν ⊗dya⊗dyb is a tensorfield of type (2,2) on M ×N .

The corresponding action is thence given by:

(4.18) A =
1

2

∫

D

gµν
ab (xρ, σc(xρ))σa

µ(xρ)σb
ν(x

ρ)ds .
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The solutions of the Euler-Lagrange equations corresponding to the ac-

tion (4.18) will be called generalized harmonic fields. Our terminology is

justified by the following fact: taking g = h ⊗ k∗, h being a Riemannian

metric on M and k∗ the dual tensor of a Riemannian metric on N , then

(4.17) reduces to the standard Lagrangian for harmonic mappings from

M to N with respect to the given Riemannian metrics (see [3]). Since L

is given by (4.17), the definitions (1.9), (3.7) and (1.28) give, respectively:

pµ
a(L) = gµν

ab yb
ν , hµν

ab (L) = gµν
ab , DaL = (∇(2)

a gµν
bc )yb

µyc
ν .

Let us then set:

(4.19) H∇(j1σε)a = Hµν
bc,aσ

b
µσc

ν ,

with

(4.20) Hµν
bc,a ≡ 1

2
[∇(2)

b gµν
ac + ∇(2)

c gµν
ba − ∇(2)

a gµν
bc − gµν

bd T̃ d
ca − gµν

dc T̃ d
ba] .

The coefficients Hµν
bc,a will be called reduced generalized Christoffel symbols

of the first kind. With these positions, the Euler–Lagrange equations for

(4.17) turn out to be

(4.21)

e∇(L)a = −[
gµν

ab (∇Tσεσ
b
ν)µ + Hµν

bc,aσ
b
µσc

ν +
(∇(1)

µ gµν
ab − ωµgµν

ab

)
σb

ν

]
= 0 ,

while the Jacobi equation (4.14) becomes explicitly:

(4.22)

− J∇(η,∇Tση,∇Tσ∇Tση)a =
{(∇(2)

d gµν
ab + gµν

ac T̃ c
bd

)
(∇Tσσb

ν)µ+

+
[∇(2)

d Hµν
bc,a + gµν

ae R̃e
cdb + gµν

ae ∇(2)
b T̃ e

cd + 2Hµν
ec,aT̃

e
bd

]
σb

µσc
ν+

− [
ωµ(∇(2)

d gµν
ab + gµν

ae T̃ e
bd) + ∇(2)

d ∇(1)
µ gµν

ab + (∇(1)
µ gµν

ac )T̃ c
bd

]
σb

ν

}
ηd+

−
{[

2Hµν
bc,a + gµν

ad T̃ d
cb

]
σc

ν − ωνg
νµ
ab + ∇(1)

ν gνµ
ab

}
(∇Tσηb)µ+

+ gµν
ab

(∇Tσ(∇Tσηb)ν

)
µ

= 0 ,

being σ = σ0 and η any vectorfield along σ. Assuming, in particular,

g = h ⊗ k∗ as above, one recovers from (4.21) the equation for standard
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harmonic mappings (M,h) → (N, k), locally given by σa = σa(xν). In

fact, if ∇̆ and ∇̃ are the Levi–Civita connections of (M,h) and (N, k),

respectively, then (4.21) is the standard equation for harmonic maps and

(4.22) is transformed into the following:

(4.23)
J∇(η,∇Tση,∇Tσ∇Tση)a ≡ −gµν

ae R̃e
cdbσ

b
µσc

νη
d+

− gµν
ab

(∇Tσ(∇Tσηb)ν

)
µ

=0 ,

which is the Jacobi equation for harmonic mappings (see, e.g., [4], [5]).

Moreover, if M ≡ R, ∇̆ = ∇̇ and ğ is the Euclidean metric on R, then

(4.23) coincides with the standard equation of Jacobi field for geodesics

and R̆ = R(k).

5 – Conclusions

We have been able in Sections 2, 3 and 4 to recast the second varia-

tion of the first order Lagrangians under various forms which are suited

to discuss the generalized Jacobi fields along critical sections. In par-

ticular, we have explicitly constructed the generalized Jacobi equations

for the family of Lagrangians (4.17), which we called “generalized har-

monic Lagrangians” and which include as special cases the geodesics La-

grangian (M ≡ R) and the standard Lagrangians for harmonic mappings

between Riemannian manifolds. As is well known, the Jacobi equation

for geodesics of a Riemannian manifold (M, g) can be interpreted as an

equation directly defining the curvature of the metric g itself. In the

second part of this work [11] we shall discuss our general notion of “cur-

vature” for the variational principles of generalized harmonic Lagrangians

and see that this gives rise to appropriate generalizations of the notions

of Riemann tensors, as well as fundamental curvature identities, like, e.g.,

the Bianchi identities.
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