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Stability of difference equations

generated by parabolic differential-

functional problems

Z. KAMONT – H. LESZCZYŃSKI

Riassunto: Si considera una classe di metodi alle differenze finite per problemi
differenziali-funzionali di tipo parabolico non lineare. Si indicano condizioni sufficienti
a garantire la convergenza delle soluzioni approssimate, quando i secondi membri delle
equazioni verificano le stime non lineari del tipo di Perron rispetto alla variabile fun-
zionale. Si dimostra un teorema di approssimazione per le equazioni di tipo di Volterra
e si applicano i risultati allo studio della stabilità degli schemi alle differenze. Si espone
anche un esempio numerico.

Abstract: We consider a class of difference methods for non - linear parabolic
differential - functional problems. We give sufficient conditions for the convergence
of approximate solutions under the assumption that the right hand sides of equations
satisfy the non - linear estimates of the Perron type with respect to the functional vari-
able. We prove a theorem on the error estimate of approximate solutions for difference
- functional equations of the Volterra type. We apply this general idea in the investiga-
tion of the stability of difference schemes. It is an essential fact in our results that we
consider differential - functional comparison problems. We give a numerical example.

1 – Introduction

A number of papers concerning difference methods or the method of

lines for parabolic differential or differential - functional equations have
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been published for last two decades ([4], [8] - [11], [13], [15], [17, [18]).

It is easy to construct an explicit or implicit Euler’s type difference

method for nonlinear parabolic problem which satisfies the consistency

conditions on all sufficiently regular solutions of a differential - functional

equation.

The main task in these investigations is to find a finite difference

approximation which is stable. The method of difference inequalities and

simple theorems on recurrent inequalities are used in the investigation of

the stability of nonlinear difference - functional equations generated by

parabolic problems ([8] - [10]). The authors have usually assumed that

given functions have partial derivatives with respect to all variables except

for (x, y). Our assumptions are more general. In the paper we introduce

nonlinear estimates of the Perron type with respect to the functional

variable in the right - hand of equations. Note that our theorems are new

also in the case of parabolic equations without a functional variable. We

do not discuss the method of lines for differential - functional problems.

In the first part of the paper we establish some estimates for the

difference between exact and approximate solutions to difference - func-

tional equations of the Volterra type with initial - boundary conditions

and with unknown functions of several variables. These estimates are un-

questionably basic tools in the investigation of the stability of difference

methods. We will use this general and simple idea in theorems on the

convergence of a class of difference methods for parabolic differential -

functional problems.

The paper is organized as follows. In section 2 we prove a theorem

on the error estimate for difference - functional equations. Section 3 deals

with nonlinear parabolic differential - functional equations and initial -

boundary conditions of the Dirichlet type. Some special algorithms are

proposed in Section 4 for almost linear equations. Finally, a numerical

example is given.

We use in the paper these general ideas for finite difference equations

which were introduced in [2], [7], [12], [14].

Differential equations with a retarded variable and integral - differ-

ential equations can be obtained from our general model by a natural

specification of given operators. Existence results for differential - func-

tional problems are given in [3]. General uniqueness criteria based on

differential inequalities method can be found in [16].
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2 – Difference - functional equations

For any two metric spaces X and Y we denote by F[X, Y ] the class of

all functions defined on X and taking values in Y . We will use vectorial

inequalities, understanding that the same inequalities hold between their

corresponding components. For y = (y1, ..., yn), ȳ = (ȳ1, ..., ȳn), y, ȳ ∈
Rn, we write y ∗ ȳ = (y1ȳ1, ..., ynȳn). We will denote by N and Z the set

of natural numbers and the set of integers, respectively. Let

E = [0, a] × (−b, b), D = [−τ0, 0] × [−τ, τ ] ,

where a > 0, b = (b1, ..., bn), bi > 0 for 1 ≤ i ≤ n, τ0 ∈ R+, τ =

(τ1, ..., τn) ∈ Rn
+ and R+ = [0,+∞). We put c = (c1, ..., cn) = b + τ and

∂0E=[0, a]×([−c, c] \ (−b, b)) , E0=[−τ0, 0]×[−c, c], E∗=E ∪ E0 ∪ ∂0E .

Fix d = (d0, d1, ..., dn) ∈ R1+n with di > 0, 0 ≤ i ≤ n. Let Id ⊂ (0, d].

We will adopt some assumptions on Id in the paper. The first condition

is the following. Assume that for h = (h0, h
′) ∈ Id, h′ = (h1, ..., hn),

there exist K0 ∈ Z and K = (K1, ..., Kn) ∈ Zn, such that K0h0 = τ0 and

K ∗ h′ = τ . We define nodal points in E∗ in the following way. Let m =

(m0, m
′) ∈ Z1+n, m′ = (m1, ..., mn). Put x(m0) = m0h0, y(m′) = m′ ∗ h′

and y(m′) = (y
(m1)
1 , ..., y(mn)

n ). Let |h| = h0 + h1 + ... + hn.

We define N = (N1, ..., Nn) ∈ Nn as follows. Let 1 ≤ i ≤ n. If τi = 0

then Ki = 0 and we assume that there is Ni ∈ N such that Nihi = bi = ci.

If τi > 0 then there is Ni ∈ N such that Nihi ≤ bi < (Ni + 1)hi. There

is N0 ∈ N such that N0h0 ≤ a < (N0 + 1)h0. Put M = (M1, ..., Mn) =

N + K. We define the sets

Eh = {(x(m0), y(m′)) : 0 ≤ m0 ≤ N0, −N < m′ < N} ,

E0.h = {(x(m0), y(m′)) : −K0 ≤ m0 ≤ 0, −M ≤ m′ ≤ M},

∂0Eh = {(x(m0), y(m′)) : 0 ≤ m0 ≤ N0, there is i ∈ {1, . . . , n}

such that Ni ≤ mi ≤ Mi or − Mi ≤ mi ≤ −Ni} .

Let L = (L1, ..., Ln), where Li = max{1, Ki} for 1 ≤ i ≤ n and

Ωh = {(x(m0), y(m′)) : −K0 ≤ m0 ≤ 0, −L ≤ m′ ≤ L} .
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Put E∗
h = Eh∪E0.h∪∂0Eh. For z : E∗

h → R we write z(m) = z(x(m0), y(m′)).

For the same z and for (x(m0), y(m′)) ∈ Eh we define the function z(m) :

Ωh → R by

z(m)(t, s) = z(x(m0) + t, y(m′) + s), (t, s) ∈ Ωh .

Let E′
h = {(x, y) ∈ Eh : (x + h0, y) ∈ Eh} and suppose that we have the

operator

Fh : E′
h × F[Ωh, R] → R .

For (x(m0), y(m′), w)∈E′
h ×F[Ωh, R] we write Fh[m, w]=Fh(x(m0), y(m′), w).

Given ϕh ∈ F[E0.h, R], ψh ∈ F[∂0Eh, R], we consider the initial -

boundary value problem

(1) z(m0+1,m′) = Fh[m, z(m)], z(m) = ϕ
(m)
h on E0.h, z(m) = ψ

(m)
h on ∂0Eh.

There exists exactly one solution uh : E∗
h → R of (1). Difference meth-

ods for parabolic differential-functional problems will be written in the

form (1). Now we construct comparison operators corresponding to prob-

lem (1). Let

X0.h = {x(i) : −K0 ≤ i ≤ 0}, Xh = {x(i) : 0 ≤ i ≤ N0} ,

X ′
h = {x(i) : 0 ≤ i ≤ N0 − 1}, X∗

h = X0.h ∪ Xh .

Given an operator σh:X′
h
×F[X0.h, R+]→R+, we write σh[i, µ] = σh(x(i), µ),

where (x(i), µ) ∈ X ′
h × F[X0.h, R+]. For ξ : X∗

h → R and x(i) ∈ Xh we

define the function ξ(i) : X0.h → R by ξ(i)(t) = ξ(x(i) + t), t ∈ X0.h. For

z ∈ F[E∗
h, R] we put

‖z‖h.i = max{|z(m)| : (x(m0), y(m′)) ∈ E∗
h, m0 ≤ i}, −K0 ≤ i ≤ N0 .

We will need the operator Vh : F[Ωh, R] → F[X0.h, R+]. Let w ∈ F[Ωh, R].

Then

(2) (Vhw)(x(i)) = max{|w(i,m′)| : −L ≤ m′ ≤ L}, −K0 ≤ i ≤ 0 .

Having done the above preparation, we can formulate a theorem on the

estimate of the difference between the exact and approximate solutions

to problem (1) in the form convenient for our purposes.
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Theorem 2.1. Suppose that Fh : E′
h × F[Ωh, R] → R, ϕh : E0.h →

R, ψh : ∂0Eh → R are given and

1◦ there exists σh : X ′
h × F[X0.h, R+] → R+ such that

(i) σh is non-decreasing with respect to the functional variable,

(ii) for w, w̄ ∈ F[Ωh, R] we have on E′
h

(3) |Fh[m, w] − Fh[m, w̄]| ≤ σh[m0, Vh(w − w̄)]

2◦ vh ∈ F[E∗
h, R] and there are αh : X∗

h → R+ and βh : X ′
h → R+

such that

(i) the initial - boundary estimates

(4) |v(m)
h − ϕ

(m)
h | ≤ α

(m0)
h on E0.h, |v(m)

h − ψ
(m)
h | ≤ α

(m0)
h on ∂0Eh

are satisfied, and

(5) | v
(m0+1,m′)
h − Fh[m, (vh)(m)] | ≤ β

(m0)
h on E′

h,

(ii) αh fulfills the difference - functional inequality

(6) α
(i+1)
h ≥ σh[ i, (αh)(i) ] + β

(i)
h , 0 ≤ i ≤ N0 − 1,

3◦ uh : E∗
h → R is the solution to problem (1).

Then we have

(7) | u
(m)
h − v

(m)
h | ≤ α

(m0)
h

for (x(m0), y(m′)) ∈ Eh.

Proof. We prove (7) by induction on m0. It follows from (4) that

estimate (7) is satisfied for m0 = 0. Assume that (7) holds for 0 ≤ m0 ≤ i,

(x(m0), y(m′)) ∈ Eh. It follows from (4) that

|u(m)
h − v

(m)
h | ≤ α

(m0)
h for − K0 ≤ m0 ≤ i, (x(m0), y(m′)) ∈ E∗

h .
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Then from (2), (3), (5), (6) we deduce

|u(i+1,m′)
h − v

(i+1,m′)
h | ≤ |Fh[(i, m′), (uh)(i,m′)] − Fh[(i, m′), (vh)(i,m′)]|+

+ |Fh[(i, m′), (vh)(i,m′)] − v
(i+1,m′)
h | ≤

≤ σh[i, Vh(uhvh)(i,m′)] + β
(i)
h ≤

≤σh[i, (αh)(i)]+β
(i+1)
h ≤α

(i+1)
h , (x(m0), y(m′))∈Eh .

Hence, the proof is completed.

Remark 2.2. If the assumptions of Theorem 2.1 are satisfied and

αh is non-decreasing on X∗
h, then ‖uh − vh‖h.i ≤ α

(i)
h for i = 0, 1, . . . , N0.

Remark 2.3. In applications we consider solutions αh : X∗
h → R+

of the difference-functional inequatlity (6) such that αh is non-decreasing

on X∗
h, the initial-boundary estimate (4) is satisfied and limh→0 αh = 0.

Then we obtain

lim
h→0

‖uh − vh‖h.i = 0

for i = 0, 1, . . . , N0.

3 – Initial-boundary value problems for parabolic differential-

functional equations

For any two metric spaces X and Y we denote by C(X, Y ) the class

of all continuous functions from X into Y. Let M [n] denote the class of

all n × n real matrices. If z : E∗ → R and (x, y) ∈ Ē (Ē is the closure of

E), then we define the function z(x,y) : D → R by

z(x,y)(t, s) = z(x + t, y + s), (t, s) ∈ D .

In fact, the function z(x,y) is the restriction of z to the set [x−τ0, x]× [y−
τ, y+τ ] and this restriction is shifted to the set D. We denote by ‖·‖D the

supremum norm in the space C(D, R). If η : [−τ0, a] → R and x ∈ [0, a],

then η(x) : [−τ0, 0] → R is given by η(x)(t) = η(x + t), t ∈ [−τ0, 0].

Write Σ = E × C(D, R) × Rn × M [n], and suppose that f : Σ → R and
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ϕ : E0 ∪ ∂0E → R. We consider the initial-boundary value problem

Dxz(x, y) = f(x, y, z(x,y), Dyz(x, y), Dyyz(x, y))(8)

z(x, y) = ϕ(x, y) for (x, y) ∈ E0 ∪ ∂0E(9)

where

Dyz = (Dy1
z, ..., Dyn), Dyyz = [Dyiyj

z]i,j=1,...,n .

We look for classical solutions to problem (8), (9).

Example 3.1. Suppose that G : E × R2 × Rn × M [n] → R, α : E →
R, β : E → Rn are given functions and (α(x, y) − x, β(x, y) − y) ∈ D for

(x, y) ∈ E. Differential equations with a deviated variable

Dxz(x, y) = G(x, y, z(x, y), z(α(x, y), β(x, y)), Dyz(x, y), Dyyz(x, y))

and differential-integral equations

Dxz(x, y)=G
(
x, y, z(x, y),

∫

D

z(x + t, y + s)dt ds, Dyz(x, y), Dyyz(x, y)
)

can be obtained from (8). The differential-functional equations consid-

ered in [8] - [11] are particular cases of (8) too.

For m = (m0, m1, ..., mn) ∈ R1+n and 1 ≤ i ≤ n we put

i(m) = (m0, ..., mi−1, mi + 1, mi+1, ..., mn) ,

−i(m) = (m0, ..., mi−1, mi − 1, mi+1, ..., mn) .

Write J = {(i, j) : 1 ≤ i, j ≤ n, i %= j}, and suppose that we have defined

the sets J+, J− ⊂ J such that J+ ∪ J− = J, J+ ∩ J− = ∅ (in particular, it

may happen that J+ = ∅ or J− = ∅). We assume that (i, j) ∈ J+ when

(j, i) ∈ J+. Let z : E∗
h → R and −N < m′ < N . We define

δ+
i z(m) =

1

hi

[
z(i(m)) − z(m)

]
, δ−

i z(m) =
1

hi

[
z(m) − z(−i(m))

]

for 1 ≤ i ≤ n.
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We apply the difference operators δ0, δ = (δ1, ..., δn), δ(2) = [δ
(2)
ij ]i,j=1,...,n

given by

δ0z
(m)=

1

h0

[
z(m0+1,m′) − z(m)

]
, δiz

(m)=
1

2

[
δ+

i z(m) + δ−
i z(m)

]
for 1≤ i≤n ,

δ
(2)
ii z(m) = δ+

i δ−
i z(m) for 1 ≤ i ≤ n ,

δ
(2)
ij z(m) =

1

2

[
δ+

i δ−
j z(m) + δ−

i δ+
j z(m)

]
for (i, j) ∈ J− ,

δ
(2)
ij z(m) =

1

2

[
δ+

i δ+
j z(m) + δ−

i δ−
j z(m)

]
for (i, j) ∈ J+ .

We introduce an interpolation operator Th : F[Dh, R] → F[D, R] as fol-

lows. Put

S+ = {e = (e0, e1, ..., en) : ei ∈ {0, 1} for 0 ≤ i ≤ n} .

Let w ∈ F[Dh, R] and (x, y) ∈ D. There exists m ∈ Z1+n such that

x(m0) ≤ x ≤ x(m0+1), y(m′) ≤ y ≤ y(m′+1) and (x(m0), y(m′)), (x(m0+1),

y(m′+1)) ∈ Dh where m′ + 1 = (m1 + 1, ..., mn + 1). We define

(Thw)(x, y) =
∑

e∈S+

w(m+e)
[(

Y − Y (m)
)
h−1

]e [
1 − (

Y − Y (m)
)
h−1

]1−e
,

where

[(
Y − Y (m)

)
h−1

]e
= [(x − x(m0))h−1

0 ]e0

n∏

i=1

[(
yi − y

(mi)
i

)
h−1

i

]ei ,

[
1−(

Y−Y (m)
)
h−1

]1−e
=

[
1−(x−x(m0))h−1

0

]1−e0
n∏

i=1

[
1−(

yi−y
(mi)
i

)
h−1

i

]1−ei ,

and we take 00 := 1 in the above definitions.

Remark 3.2. If w ∈ F[Dh, R], then Thw ∈ C(D, R). If w : D → R

is of class C1 and |Dtw(t, s)| ≤ C, ‖Dsw(t, s)‖ ≤ C for (t, s) ∈ D, then

‖Thwh − w‖D ≤ C|h|, where wh = w |Dh
. These estimates follow directly

from the definition of Th, see also [2].
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Given ϕh : E0.h ∪ ∂0Eh → R, we consider the difference-functional

problem

δ0z
(m) = f(x(m0), y(m′), Thz(m), δz

(m), δ(2)z(m)) ,(10)

z(m) = ϕ
(m)
h on ∂0 Eh ∪ E0.h .(11)

It is evident that there exists exactly one solution uh : E∗
h → R of

(10), (11).

Assumption H1. Suppose that the function σ:[0, a]×C([−τ0, 0], R+)

→ R+ satisfies the conditions:

1◦ σ is continuous on [0, a] × C([−τ0, 0], R+) and σ(x, θ̃) = 0 for

x ∈ [0, a], where θ̃(t) = 0 for t ∈ [−τ0, 0],

2◦ if (x, ξ), (x̄, ξ̄) ∈ [0, a] × C([−τ0, 0], R+) and x ≤ x̄, ξ ≤ ξ̄, then

σ(x, ξ) ≤ σ(x̄, ξ̄),

3◦ the function ω̄(x) = 0 for x ∈ [−τ0, a] is the unique solution to the

problem

(12) ω′(x) = σ(x, ω(x)), ω(x) = 0 for x ∈ [−τ0, 0] .

What is characteristic about comparison theorems in the theory of partial

differential or differential-functional inequalities is that the estimates of

functions of several variables are quite frequently obtained by means of

functions of one variable, ([1], [6]). Therefore, the following operator

V : C(D, R) → C([−τ0, 0], R+) will be considered

(13) (V w)(t) = max{|w(t, s)| : s ∈ [−τ, τ ]}, t ∈ [−τ0, 0] .

We denote by Γ[R+] the class of all functions γ : Id → R+ such that

limh→0 γ(h) = 0. For a function µ : [−τ0, 0] → R we denote by µh0
the

restriction of µ to the set X0.h. Let L[h0; ·] be the operator of linear

interpolation on X0.h. If ξ : X0.h → R then L[h0; ξ] : [−τ0, 0] → R is

given by

L[h0; ξ](x) = ξ(i+1)(x−x(i))h−1
0 +ξ(i)[1− (x−x(i))h−1

0 ], x(i) ≤ x ≤ x(i+1),

where ξ(i) = ξ(x(i)).
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Assumption H2. Suppose that the function f : Σ → R of the

variables (x, y, w, q, r), q = (q1, ..., qn), r = [rij]i,j=1,...,n, satisfies the con-

ditions:

1◦ f ∈ C(Σ, R), the derivatives

Dqf = (Dq1f, ..., Dqnf), Dr = [Drij
f ]i,j=1,...n ,

exist on Σ and Dqf(x, y, w, ·) ∈ C(Rn × M [n], Rn), Drf(x, y, w, ·) ∈
C(Rn × M [n], M [n]) for each (x, y, w) ∈ E × C(D, R),

2◦ the matrix Drf is symmetric and

(14) Drij
f(P )≥0 for (i, j)≤∈ J+, Drij

f(P )≤0 for (i, j)∈J− ,

(15) 1−2h0

n∑

j=1

1

h2
j

Drii
f(P )+h0

∑

(i,j)∈J

1

hihj

|Drij
f(P )|≥0 ,

(16) − 1

2
|Dqi

f(P )|+ 1

hi

Drii
f(P )−

n∑

j=1,j +=i

1

hj

|Drij
f(P )|≥0, 1≤ i≤n ,

where P = (x, y, w, q, r) ∈ Σ.

Assumption H3. Suppose that σ : [0, a] × C([−τ0, 0], R+) → R+

and

(17) |f(x, y, w, q, r) − f(x, y, w̄, q, r)| ≤ σ(x, |V (w − w̄|) on Σ .

Now, we prove a theorem on the convergence of method (10), (11).

Theorem 3.3. Suppose that Assumptions H1-H3 are satisfied and

1◦ uh : E∗
h → R is a solution of (10), (11) and there is α0 ∈ Γ[R+]

such that

(18) |ϕ(m)
h − ϕ(m)| ≤ α0(h) on E0.h ∪ ∂0Eh ,

2◦ v : E∗ → R is a solution of (8), (9), v is of class C3 on E∗,

3◦ there exists C0 >0 such that hih
−1
j ≤C0 for i, j = 1, . . . , n, h ∈ Id.

Then there exists γ ∈ Γ[R+] such that

(19) |u(m)
h − v

(m)
h | ≤ γ(h) on E∗

h ,

where vh = v |E∗
h
.
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Proof. We apply Theorem 2.1 in the proof of formula (19). Let

Fh : E′
h × F[Ωh, R] → R be defined by

Fh[m, w] = w(θ) + h0f(x(m0), y(m′), Thw, δw(θ), δ(2)w(θ))

for (x(m0), y(m′)) ∈ Eh ,

where θ = (0, ..., 0) ∈ R1+n, (x(m0), y(m′)) ∈ E′
h, w ∈ F[Ωh, R]. Then uh

satisfies (1). Let Γh : E′
h → R be defined by

δ0v
(m)
h = f

(
x(m0), y(m′), Th(vh)(m), δv

(m)
h , δ(2)v

(m)
h

)
+

+ Γ
(m)
h for (x(m0), y(m′)) ∈ E′

h ..

It follows that there is β ∈ Γ[R+] such that |Γ(m)
h | ≤ β(h) on E′

h. Then

we have

|v(m0+1,m′)
h − Fh[m, (vh)(m)]| ≤ h0β(h) on E′

h .

Now, we estimate the difference Fh[m, w] − Fh[m, w̄] on E′
h × F[Ωh, R].

Let

S′
+ = {e′ = (e1, ..., en) : ei ∈ {0, 1} for 1 ≤ i ≤ n} .

It is easy to prove by induction on n that

∑

e′∈S′
+

{ n∏

i=1

[(
yi − y

(mi)
i

)
h−1

i

]ei ·

·
n∏

i=1

[
1 −

(
yi − y

(mi)
i

)
h−1

i

]1−ei
}

= 1, y(m′) ≤ y ≤ y(m′+1) .

Therefore, by Assumption H3 we have

|f(x, y, Thw, q, r) − f(x, y, Thw̄, q, r)| ≤ σ(x, V Th(w − w̄)) =

= σ(x, L[h0;Vh(w − w̄]) ,

for w, w̄ ∈ F[Dh, R], where Vh is given by (2).
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It follows from Assumptions H2, H3 that

|Fh[m, w] − Fh[m, w̄]| ≤
∣∣∣(w − w̄)(θ)+

+h0

[
f(x(m0),y(m′),Thw,δw(θ),δ(2)w(θ))−f(x(m0),y(m′),Thw,δw̄(θ),δ(2)w̄(θ))

]∣∣∣+

+h0

∣∣∣f(x(m0),y(m′),Thw,δw̄(θ),δ(2)w̄(θ))−f(x(m0),y(m′),Thw̄,δw̄(θ),δ(2)w̄(θ))
∣∣∣≤

≤
∣∣∣(w − w̄)(θ)+ h0

n∑

i=1

Dqi
f(Q)δi(w−w̄)(θ)+ h0

n∑

i,j=1

Drij
f(Q)δ

(2)
ij (w−w̄)(θ)

∣∣∣+

+ h0σ(x(m0), L[h0;Vh(w − w̄)]) ,

where Q ∈ Σ is an intermediate point. Put

S0(Q)=1 − 2h0

n∑

i=1

h−2
i Drii

f(Q)+h0

∑

(i,j)∈J

(hihj)
−1|Drij

f(Q)| ,

S+
i (Q)=h0(2hi)

−1Dqi
f(Q)+h0h

−2
i Drii

f(Q)−h0

n∑

j=1,j +=i

(hihj)
−1|Drij

f(Q)| ,

S−
i (Q)=−h0(2hi)

−1Dqi
f(Q)+h0h

−2
i Drii

f(Q)−h0

n∑

j=1,j +=i

(hihj)
−1|Drij

f(Q)|,

for 1 ≤ i ≤ n. It follows from the definitions of the difference operators

that

|Fh[m, w] − Fh[m, w̄]| ≤
(20)

≤
∣∣S0(Q)(w−w̄)(θ)

∣∣+
∣∣∣

n∑

i=1

S+
i (Q)(w−w̄)(i(θ))

∣∣∣+
∣∣∣

n∑

i=1

S−
i (Q)(w−w̄)(−i(θ))

∣∣∣+

+ h0

∑

(i,j)∈J+

(2hihj)
−1Drij

f(Q)
[
|(w − w̄)(i(j(θ))) + (w − w̄)(−i(−j(θ)))|

]
−

− h0

∑

(i,j)∈J−

(2hihj)
−1Drij

f(Q)
[
|(w − w̄)(i(−j(θ))) + (w − w̄)(−i(j(θ)))|

]
+

+ h0σ(x(m0), L[h0;Vh(w − w̄)]) .
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The above estimates and (16)-(17) imply

(21) |Fh[m, w]−Fh[m, w̄]| ≤ Vh(w−w̄)(0)+h0σ(x(m0), L[h0;Vh(w−w̄)]) .

Denote by ηh : X∗
h → R+ the solution to the problem

(22) η(i+1) = η(i)+h0σ(x
(i),L[h0; η(i)])+h0β(h) for i∈{0, 1, ..., N0−1} ,

η(i) = α0(h) for − K0 ≤ i ≤ 0 .(23)

It follows from Theorem 1 that

(24) |u(m)
h − v

(m)
h | ≤ η

(m0)
h on E∗

h .

Consider the differential-functional problem

(25) ω′(x) = σ(x, ω(x)) + β(h), ω(x) = α0(h) for x ∈ [−τ0, 0] .

There is ε0 > 0 such that for 0 < |h| ≤ ε0 there exists a solution

ωh : [−τ0, a] → R+ to problem (25) and limh→0 ωh(x) = 0 uniformly with

respect to x ∈ I. Since ω′
h is non-decreasing on [0, a], we have

ωh(x(i+1)) ≥ ωh(x(i))+h0σ(x(i), (ωh)(x(i)))+h0β(h), i ∈ {0, 1, . . . , N0−1} .

The function α satisfies (22), (23) and αh(x(i)) = ωh(x(i)) for −K0 ≤
i ≤ 0. It follows that α

(i)
h ≤ ωh(x(i)) for i = 0, 1, . . . , N0. Then we have

|u(m)
h − v

(m)
h | ≤ ωh(a) on Eh which completes the proof.

Example 3.4. Suppose that σ0 : [0, a] × R+ → R+. We define

σ : [0, a] × C([−τ0, 0], R+) → R+ by

σ(x, ξ) = σ0(x, ‖ξ‖[−τ0,0]) ,

where ‖ ·‖[−τ0,0] is the supremum norm in the space C([−τ0, 0], R+). Then

condition (17) takes the form

|f(x, y, w, q, r) − f(x, y, w̄, q, r)| ≤ σ0(x, ‖w − w̄‖D) on Σ
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and the comparison problem (12) is equaivalent to

η′(x) = σ0(x, η(x)), η(0) = 0 .

It is an essential fact in our assumptions that we consider differential-

functional comparison problems. A function of the Perron type with a

deviated variable considered in [1] can be easily adopted for parabolic

problem (8), (9).

Remark 3.5. The condition 2◦ of Assumption H2 is very compli-

cated because we consider the differential-functional problem with all the

derivatives [Dyiyj
]1≤i,j≤n. We have obtained estimate (21) from (20) be-

cause the appropriate coefficients in (20) are nonnegative. Consider the

simple problem

Dxz(x, y) = f̃(x, y, z(x,y)) +
n∑

i=1

Dyiyi
z(x, y) ,

z(x, y) = ϕ(x, y) for (x, y) ∈ E0 ∪ ∂0E ,

where f̃ : E × C(D, R) → R and ϕ : E0 ∪ ∂0E → R are given functions,

and the difference method

1

h0

[
z(m0+1,m′) − z(m)

]
= f̃(x(m0), y(m′), Thz(m)) +

n∑

i=1

δ
(2)
ii z(m) ,

z(m) = ϕ
(m)
h on E0.h ∪ ∂0Eh

where ϕh : E0.h ∪ ∂0Eh → R and

δ
(2)
ii z(m) =

1

h2
i

[
z(i(m)) − 2z(m) + z(−i(m))

]
, 1 ≤ i ≤ n .

Then conditions (14)-(16) are equivalent to

1 − 2h0

n∑

i=1

1

h2
i

≥ 0 .

Remark 3.6. Suppose that the assumptions of Theorem 3.3 are sat-

isfied and that f is non-decreasing with respect to the functional variable.
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Then we can use a theorem on difference-functional inequalities ([5]) in

the investigation of the convergence of method (10), (11). If we define

zh, z̃h : E∗
h → R by

z
(m)
h = v

(m)
h + η

(m0)
h , z̃

(m)
h = v

(m)
h − η

(m0)
h ,

then estimate (24) is equivalent to

z̃
(m)
h ≤ u

(m)
h ≤ z

(m)
h on Eh .

The above estimates follow from the difference-functional inequalities

z
(m0+1,m′)
h ≥ Fh[m, (zh)(m) ], z̃

(m0+1,m′)
h ≤ Fh[m, (z̃h)(m) ], ,

which hold for (x(m0), y(m′)) ∈ E′
h, and from the initial-boundary inequal-

ities

z̃
(m)
h ≤ u

(m)
h ≤ z

(m)
h on E0.h ∪ ∂0Eh .

The most important fact in these considerations is that under the above

assumptions the operator Fh is nondecreasing with respect to the func-

tional variable.

We do not discuss any details of the method here. For further bibli-

ographical information see [5], [11].

4 – Difference equations generated by almost linear parabolic

problems

Put Σ0 = E × C(D, R) × Rn and suppose that

f0 : Σ0 → R, g : E → M [n], g = [ gij ]i,j=1,...,n, ϕ : E0 ∪ ∂0E → R .

In this section we consider the differential - functional problem

(26) Dxz(x, y) = f0(x, y, z(x,y), Dyz(x, y))+
n∑

i,j=1

gij(x, y)Dyiyj
z(x, y) ,

z(x, y) = ϕ(x, y) for (x, y) ∈ E0 ∪ ∂0E .(27)
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Let δ0, δ, δ(2) and Th be the operators defined in Section 3 and ϕh :

E0.h ∪ ∂0Eh → R. Consider the difference method

δ0z
(m) = f0(x

(m0), y(m′), Thz(m), δz
(m))+(28)

+
n∑

i,j=1

g
(m)
ij δ

(2)
ij z(m), (x(m0), y(m′)) ∈ E′

h ,

z(m) = ϕ
(m)
h on E0.h ∪ ∂0Eh(29)

where g
(m)
ij = g(x(m0), y(m′)). If we apply Theorem 2 to (28), (29) then

we need the following assumption on g: for each (i, j) ∈ J the function

g̃ij(x, y) = sign gij(x, y), (x, y) ∈ E,

is constant on the set E (see (14)). We prove that this condition can

be omitted if we modify δ
(2)
ij for (i, j) ∈ J . More precisely, we consider

problem (28), (29) with δ0, δ, δ
(2)
ii , 1 ≤ i ≤ n, given in Section 3, and we

define δ
(2)
ij , (i, j) ∈ J , by

δ
(2)
ij z(m) =

1

2

[
δ+

i δ−
j z(m) + δ−

i δ+
j z(m)

]
if g

(m)
ij ≤ 0 ,(30)

δ
(2)
ij z(m) =

1

2

[
δ+

i δ+
j z(m) + δ−

i δ−
j z(m)

]
if g

(m)
ij > 0 ,(31)

The method considered in this section is new also in the case of parabolic

equations without functional dependence.

Assumption H4. Suppose that the functions f0 and g satisfy the

conditions:

1◦ f0 ∈C(Σ0, R), g∈C(E, M [n]), the derivatives (Dq1f0, ..., Dqnf0) =

Dqf0 exist on Σ0 and Dqf0 ∈ C(Σ0, R
n),

2◦ the matrix g is symmetric on E and we have

(32) 1 − 2h0

n∑

i=1

1

h2
i

gii(x, y) + h0

∑

(i,j)∈J

1

hihj

|gij(x, y)| ≥0 ,
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(33) −1

2
|Dqi

f0(x, y, w, q)| +
1

hi

gii(x, y) −
n∑

j=1,j +=i

1

hj

|gij(x, y)| ≥ 0 ,

(x, y) ∈ E, (x, y, w, q) ∈ Σ0, i = 1, . . . , n.

Assumption H5. Suppose that σ : [0, a] × C([τ0, 0], R+) → R+

satisfies Assumption H1 and

(34) |f0(x, y, w, q) − f0(x, y, w̄, q)| ≤ σ(x, V (w − w̄)) on Σ0 .

where V is given by (13).

Theorem 4.1.

Suppose that Assumptions H4, H5 are satisfied and

1◦ uh : E∗
h → R is a solution of (28), (29) and there is α0 ∈ Γ[R+]

such that (18) holds,

2◦ v : E∗ → R is a solution of (26), (27) and v is of class C3 on E∗,

3◦ the assumption 3◦ of Theorem 3.3 is satisfied.

Then there exists γ ∈ Γ[R+] such that

(35) |u(m)
h − v

(m)
h | ≤ γ(h) on Eh .

Proof. We define Fh : E′
h × F[Ωh, R] → R by

Fh[m, w] = w(θ) + h0f0

(
x(m0), y(m′), Thw, δw(θ)

)
+ h0

n∑

i,j=1

g
(m)
ij δ

(2)
ij w(θ) .

Then uh satisfies (1) and there is β ∈ Γ[R+] such that

|v(m0+1,m′)
h − Fh[m, (vh)(m)]| ≤ h0β(h) on E′

h .

Now we estimate the difference Fh[m, w] − Fh[m, w̄] on E′
h × F[Ωh, R].
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Let (x(m0), y(m′)) ∈ E′
h, w, w̄ ∈ F[Ωh, R] and

J+[m] = {(i, j) ∈ J : g
(m)
ij > 0}, J−[m] = J \ J+[m] ,

S0[m] = 1 − 2h0

n∑

i=1

h−2
i g

(m)
ii + h0

∑

(i,j)∈J

(hihj)
−1|g(m)

ij | ,

S+
i (Q0) = h0(2hi)

−1Dqi
f0(Q0) + h0h

−2
i g

(m)
ii − h0

n∑

j=1,j +=i

(hihj)
−1|g(m)

ij | ,

S−
i (Q0) = −h0(2hi)

−1Dqi
f0(Q0) + h0h

−2
i g

(m)
ii − h0

n∑

j=1,j +=i

(hihj)
−1|g(m)

ij | ,

where i = 1, . . . , n, Q0 = (x(m0), y(m′), w, q).

It follows from Assumptions H4, H5 that there is Q0 ∈ Σ0 such that

|Fh[m, w] − Fh[m, w̄]| ≤ h0σ(x(m0), L[h0;Vh(w − w̄)])+

+
∣∣S0[m](w−w̄)(θ)

∣∣+
n∑

i=1

∣∣S+
i (Q0)(w−w̄)(i(θ))

∣∣+
n∑

i=1

∣∣S−
i (Q0)(w−w̄)(−i(θ))

∣∣+

+ h0

∑

(i,j)∈J−[m]

(2hihj)
−1g

(m)
ij

∣∣(w − w̄)(−i(j(θ))) + (w − w̄)(i(−j(θ)))
∣∣−

− h0

∑

(i,j)∈J+[m]

(2hihj)
−1g

(m)
ij

∣∣(w − w̄)(i(j(θ))) + (w − w̄)(−i(−j(θ)))
∣∣ .

The above estimates and (32), (33) yield

|Fh[m, w] − Fh[m, w̄]| ≤ Vh(w − w̄)(θ) + h0σ(x(m0), L[h0;Vh(w − w̄)]) .

Analysis similar to that in the proof of Theorem 3.3 shows that assertion

(35) is satisfied with γ(h) = ωh(a), where ωh : [−τ0, a] → R+ is the

solution to (25). This completes the proof.

Remark 4.2. If the assumptions of Theorem 4.1 are satisfied and

f0 is non-decreasing with respect to the functional variable, then we can

use difference - functional inequalities in the proof of the convergence of
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method (28), (29). Let z
(m)
h = v

(m)
h + η

(m0)
h , z̃

(m)
h = v

(m)
h − η

(m0)
h , where

(x(m0), y(m′)) ∈ E∗
h. Then we have

z
(m0+1,m′)
h ≥ Fh[m, (zh)(m)], z̃

(m0+1,m′)
h ≤ Fh[m, (z̃h)(m)]

for (x(m0), y(m′)) ∈ E′
h, and

z̃
(m)
h ≤ u

(m)
h ≤ z

(m)
h on E0.h ∪ ∂0Eh .

The above inequalities and the monotonicity of the operator Fh with

respect to the functional variable imply

z̃
(m)
h ≤ u

(m)
h ≤ z

(m)
h on Eh .

As a result, the assertion of Theorem 4.1 holds.

Example 4.3. Suppose that there is L0 ∈ R+ such that

|f0(x, y, w, q) − f0(x, y, w̄, q)| ≤ L0‖w − w̄‖D on Σ0 .

Then the function ηh is given by

η
(i)
h = α0(h)(1 + L0h0)

i+

+ h0β(h)
[
1 + (1 + L0h0) + . . . + (1 + L0h0)

i−1
]
, 1 ≤ i ≤ N0 .

and it obviously satisfies the inequalities

η
(i)
h ≤ α0(h) exp (L0a) + β(h)

exp (L0a) − 1

L0

, 1 ≤ i ≤ N0, if L0 > 0 ,

and

η(i) ≤ α0(h) + aβ(h), 1 ≤ i ≤ N0, if L0 = 0 .

Numerical example. For n = 2 we put

E = [0, 1] × (−1, 1) × (−1, 1), D = {0} × [−0.5, 0.5] × [−0.5, 0.5]

and

ϕ(x, y) = xy1y2 + sin (x + y1 + y2) .
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Consider the initial-boundary value problem

(36) Dxz(x, y) = Dy1y1
z(x, y) + Dy2y2

z(x, y) + 0.5(y1 + y2)Dy1y2
z(x, y)·

·
∫

D

z(x, y + s)ds+z(x, y1+0.5,y2 + 0.5)+z(x, y1−0.5,y2−0.5)+

+y1y2(1−3x) − x

2
+cos(x + y1 + y2)+0.5(y1 + y2)[z(x, y)−x−xy1y2],

(37) z(0, y) = sin(y1 + y2) for y = (y1, y2) ∈ [−1.5, 1.5] × [−1.5, 1.5] ,

(38) z(x, y) = ϕ(x, y) for (x, y) ∈ ∂0E .

The difference method for (36)-(38) is of the form

z(i+1,j,k) = z(i,j,k) + h0[δ
(2)
11 z(i,j,k) + δ

(2)
22 z(i,j,k) + (y

(j)
1 + y

(k)
2 )δ

(2)
12 z(i,j,k)]+

+ h0

∫

D

Thz(i,j,k)(0, s)ds + h0[z
(i,j+K1,k+K2) + z(i,j−K1,k−K2)]+

+ h0(y
(j)
1 + y

(k)
2 )(z(i,j,k) − x(i) − x(i)y

(j)
1 y

(k)
2 )+

+ h0

[
y

(j)
1 y

(k)
2 (1 − 3x(i)) − x(i)

2
+ cos (x(i) + y

(j)
1 + y

(k)
2 )

]
,

and

z(0,j,k) =sin(y
(j)
1 + y

(k)
2 ) for (−N1−K1,−N2−K2)≤(j, k)≤(N1+K1, N2+K2),

z(i,j,k) = ϕ(x(i), y
(j)
1 , y

(k)
2 ) on ∂0Eh ,

where

δ
(2))
ll z(i,j,k) = δ+

l δ−
l z(i,j,k), l = 1, 2,

δ
(2)
12 z(i,j,k) =

1

2

[
δ+
1 δ−

2 z(i,j,k) + δ−
1 δ+

2 z(i,j,k)
]
if (y

(j)
1 + y

(k)
2 ) ≤ 0 ,

δ
(2)
12 z(i,j,k) =

1

2

[
δ+
1 δ+

2 z(i,j,k) + δ−
1 δ−

2 z(i,j,k)
]
if (y

(j)
1 + y

(k)
2 ) > 0 ,
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and Th is defined in Section 3. The constants N0, (N1, N2) and (K1, K2)

are given by N1h1 = N2h2 = 1, N0h0 = 1, K1h1 = K2h2 = 0.5. We com-

pute the integral in the difference equation using the following property

of Th: if

w : Dh → R, (x(m0), y(m′)), (x(m0+1), y(m′+1)) ∈ Dh,

then

∫ (x(m0+1),y(m′+1))

(x(m0),y(m′))
(Thw) (t, s) dt ds =

1

2n+1

n∏

i=0

hi

∑

e∈S+

w(m+e) .

Consider the above difference-integral problem with h1 = h2 = h̃. If

h0 ≤ 1
4
h̃2, then the assumptions of Theorem 4.1 are satisfied and the

method is convergent. The function v(x, y) = xy1y2 + sin(x + y1 + y2) is

the solution to (36)-(38).

We take h0 = 10−5, h1 = h2 = 10−2. Denote by uh : E∗
h → R the

solution of the difference-integral problem. Let ε = uh − v. The values

ε(1, y
(j)
1 , y

(k)
2 ) are listed in the table.

Table of errors

y1 = −0.3 y1 = 0 y1 = 0.3

y2 = −0.3 −4.32 10−3 −2.45 10−3 −1.02 10−3

y2 = 0 −2.01 10−3 −1.70 10−3 −2.34 10−3

y2 = 0.3 −3.01 10−3 −2.11 10−3 −1.14 10−3

The table of errors is typical for the Euler method for initial-boundary

problems. The computation was performed by the computer IBM AT.

Remark 4.4. The results of the paper can be extended onto weakly

coupled differential - functional parabolic systems with initial-boundary

conditions of the Dirichlet type.
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