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Representation theorem for transom based

measures of fuzziness

E. ROVENTA – D. VIVONA

Riassunto: Scopo di questa nota è di collegare lo studio di una misura di fuzziness
basata sul transom con una classe particolare di norme triangolari. Si fornisce un
teorema di rappresentazione per misure di fuzzines basate sul transom.

Abstract: The purpose of this note is to connect the study of a transom based
measure of fuzziness with a special class of triangular norms. A representation theorem
for transom based measures of fuzziness is presented.

1 – Measures of fuzziness

Several authors have introduced and studied different types of mea-

sures of fuzziness ([1],[2], [7], [8]). The approach followed in this note is

the one from [9].

Let (X, B, µ) be a measure space, where B is a σ-algebra and µ :

B → IR+ is a positive finite measure. A fuzzy set F̃ ∈ [0, 1]X is said to

be B-measurable if for each α ∈ [0, 1] we have {x ∈ X : F̃ (x) > α} ∈ B.

We denote by M̃(X, B) the class of all measurable fuzzy subsets of X.
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Definition 1.1 We shall call transom of F̃ the usual (crisp) set

T (F̃ ) = {x ∈ X : 0 < F̃ (x) < 1} .

Further we shall also use the notations:

S(F̃ ) = {x ∈ X : F̃ (x) > 0} (the support of F̃ ) ,

Z(F̃ ) = {x ∈ X : F̃ (x) = 0} (the zero part of F̃ ) ,

H(F̃ ) = {x ∈ X : F̃ (x) = 1} (the height or kernel of F̃ ).

We notice that S(F̃ ) = T (F̃ ) ∪ H(F̃ ) and T (F̃ ) ∩ H(F̃ ) = ∅. If F̃ is

measurable, then T (F̃ ), S(F̃ ), H(F̃ ), Z(F̃ ) are all members of B.

For the properties of the function: F̃ −→T (F̃ ) and F̃ −→S(F̃ ) ,

called transom and support function, respectively, we refer to the pa-

per [6], in which two measures were introduced, called the transom M̃ -

measure and the support M̃ -measure, with interesting applications.

Definition 1.2 We call M̃ -measure defined on M̃(X, B) a function

m : M̃(X, B)−→ IR+, verifying the following properties:

m(0̃) = 0 (0̃ means 0̃(x) = 0 , x ∈ X) ;(M1)

if F̃n ∈ M̃(X, β) ∀n ∈ IN, F̃n ∩ F̃m = 0̃ , n %= m , then(M2)

m
( ⋃

n∈IN

F̃n

)
=

∑

n∈IN

m(F̃n) .

Definition 1.3 (i) We call transom M̃ -measure (related to µ) the

function mT : M̃(X, B)−→ IR+ defined by

mT (F̃ ) = µ(T (F̃ )) .

(ii) We call support M̃ -measure (related to µ) the function mS :

M̃(X, B) −→ IR+ defined by

mS(F̃ ) = µ(S(F̃ )) .

Both functions mT and mS are M̃ -measures on M̃(X, B) .
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In fact T (0̃) = S(0̃) = ∅ , and, if F̃n ∩ F̃m = 0̃ , it is:

T (F̃n) ∩ T (F̃m) = ∅, S(F̃n) ∩ S(F̃m) = ∅ ,

T (∪F̃n) = ∪[T (F̃n)]. S(∪F̃n) = ∪[S(F̃n)] .

Then both functions are null in 0̃ and countably additive in M̃(X, B).

But it is important to stress that the properties of mT and mS are

different from the properties of the measures for crisp sets. The differences

will occur in respect to the monotonicity, the subtractivity and the limit

properties.

Thus, the transom M̃ -measure is not necessarily monotonic and it

is not subtractive, while the support M̃ -measure is monotonic but not

necessarily subtractive.

Both M̃ -measures are not continuous in general because, as F̃i → F̃ ,

it is not true in general that T (F̃i) → T (F̃ ) or that S(F̃i) → S(F̃ ).

The transom measure mT characterizes the fuzzy degree of a fuzzy

set; using the functions mT we identify the fuzzy sets which have the

same fuzzy degree.

In [4] De Luca and Termini have introduced a definition of fuzziness

measure, founded on the following order relation (fuzziness order).

Definition 1.4 Given two fuzzy sets F̃1 and F̃2 , we say that F̃2 is

less fuzzy than F̃1 ( F̃2 ≺ F̃1 ) or equivalentely that F̃1 is more fuzzy than

F̃2 ( F̃1 A F̃2 ) if:

F̃1(x) <
1

2
=⇒ F̃2(x) ≤ F̃1(x) ,

F̃1(x) >
1

2
=⇒ F̃2(x) ≥ F̃1(x) .

Definition 1.5 A fuzziness measure d is a map from M̃(X, B) to

[0,1] such that:

d(F ) = 0, for every crisp set F ,

d is monotone with respect to the fuzziness order,

d(X
2
) = 1, (X

2
is the maximum in fuzzines relations: X

2
(x) = 1

2
),

d(F̃ c) = d(F̃ ) , ( F̃ c is the complement of F̃ : F̃ c(x) = 1 − F̃ (x)).
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Remark 1.6 If µ(X) = 1, the function mT is a fuzziness measure.

In fact, if F̃ coincides with a crisp set, we have T (F̃ ) = ∅; moreover

when F̃1 A F̃2, it holds T (F̃1) ⊇ T (F̃2), and then mT (F̃1) ≥ mT (F̃2);

finally, mT (X
2
) = µ(X) = 1 and mT (F̃ c) = mT (F̃ ) because F̃ and F̃ c

have the same transom.

In the paper [7], we have studied the notions of transom based (re-

spectively, support based) measures of fuzziness. Let f : X −→ IR+ be

any measurable function.

Definition 1.7 (i) The function If : M̃(X, B) −→ IR+, defined as

If (F̃ ) =

∫

T (F̃ )

fF̃ dµ

will be called the transom based indefinite integral of f (shortly, TMF)

corresponding to µ.

(ii) The function Ĩf : M̃(X, B) −→ IR+, defined as

Ĩf (F̃ ) =

∫

S(F̃ )

fF̃ dµ

will be called the support based indefinite integral of f (shortly, SMF)

corresponding to µ.

If F̃ is a crisp set, then T (F̃ ) = ∅ and hence If (F̃ ) = 0 and Ĩf (F̃ ) is

the usual indefinite integral.

If f = 1, we shall denote:

I1(F̃ ) =

∫

T (F̃ )

F̃ dµ and Ĩ1(F̃ ) =

∫

S(F̃ )

F̃ dµ .

If µ(X) = 1, then Ĩ1 coincides with the probability generated by µ

on M̃(X, B), introduced in [11] by Zadeh.
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2 – Triangular norms

Triangular norms have been introduced in the context of probabilistic

metric spaces [10]. We follow in this note the approach given in [3].

Definition 2.1 A triangular norm (t-norm) is a two-place function

T : [0, 1]2 −→[0, 1] which is commutative, associative, monotone in each

variable, and satisfies the boundary conditions:

T (x, 0) = 0 , T (x, 1) = x , x ∈ [0, 1] .

Definition 2.2 To every t-norm T , a t-conorm S : [0, 1]2 → [0, 1] is

associated, defined by:

S(x, y) = 1 − T (1 − x, 1 − y) (x, y) ∈ [0, 1]2 .

The t-conorm S is commutative, associative, monotone in each vari-

able, and satisfies the boundary conditions:

S(x, 0) = x , S(x, 1) = 1 , x ∈ [0, 1] .

Definition 2.3 The fundamental t-norms and t-conorms are:

Ts(x, y)=





min(x, y) (s = 0)

x · y (s = 1)

max{0, x + y − 1} (s = ∞)

logs[1 + (sx − 1)(sy − 1)/(s − 1)] (s ∈ (0, 1) ∪ (1,∞))

Ss(x, y)=





max(x, y) (s = 0)

x + y − x · y (s = 1)

min{1, x + y} (s = ∞)

1−logs[1+(s1−x−1)(s1−y−1)/(s−1)] (s∈(0, 1)∪(1,∞)) .

The family of fundamental t-norms and t-conorms has been intro-

duced by Frank [5]. It is characterized by the functional equation:

Ts(x, y) + Ss(x, y) = x + y ,
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and it is a continuous family w.r.t. the parameter s:

lim
s→t

Ts = Tt , lim
s→t

Ss = St .

Any t-norm and its corresponding t-conorm can be used to introduce

two binary operations on M̃(X, B), which generalize the usual intersection

and union for fuzzy sets:

(Ã T B̃)(x) = T (Ã(x), B̃(x)) ,

(Ã S B̃)(x) = S(Ã(x), B̃(x)) .

For T = T0 , and S = S0 , we obtain exactly the operations ∩ and ∪
for fuzzy sets.

Definition 2.4 A function m : M̃(X, B) → ĨR+ will be called a

T -valuation iff

m(∅) = 0 ,

m(ÃT B̃) + m(Ã S B̃) = m(Ã) + m(B̃) ∀ Ã, B̃ ∈ M̃(X, B) .

Definition 2.5 m is called a T -measure if it is a T valuation and is

left-continuous in the following sense:

(Ãn)n∈IN ⊆ M̃(X, B) , Ãn ↗ Ã =⇒ lim
n→∞

m(Ãn) = m(Ã) .

3 – Representation Theorem

In this section we are ready to prove the main result of the paper. It

is expressed by the following representation theorem, which generalizes a

previous result [9].

A necessary and sufficient condition is given, that a couple (T ,S) of

a t-norm and a t-conorm defines on M̃(X, B) two binary operations w.r.t.

which, for every f measurable and not vanishing a.e., the TMS turns out

to be a T -measure.

Theorem 3.1. Given any measurable function f : X −→ IR+, not

vanishing a.e., the following conditions are equivalent:



[7] Representation theorem for transom based etc. 295

i) T and S enjoy the properties:

i1) S(a, b) = 1 if and only if max(a, b) = 1;

i2) T (a, b) + S(a, b) = a + b, for all a, b ∈ [0, 1].

ii) For any measurable function f : X −→ IR+, not vanishing a.e., the

TMS If is a T -measure, i.e.

ii1) If (0̃) = 0;

ii2) If (Ã T B̃) + If (Ã S B̃) = If (Ã) + If (B̃), for every fuzzy set Ã

and B̃;

ii3) If is left-continuous.

Proof. i) =⇒ ii): According with definition 1.8, ii1) is obvious.

In order to prove ii2), we observe that

(3.1) If (F̃ ) =

∫

T (F̃ )

fF̃ dµ =

∫

S(F̃ )

f F̃ dµ −
∫

H(F̃ )

f F̃ dµ =

∫

X

fF̃ dµ −
∫

H(F̃ )

fdµ

and so

If (Ã S B̃) + If (Ã T B̃) =

∫

X

f(Ã S B̃) dµ +

∫

X

f(Ã T B̃) dµ−

−
∫

H(ÃSB̃)

f dµ −
∫

H(ÃT B̃)

f dµ .

Then we have the first equality:

(3.2)

∫

X

f(Ã S B̃) dµ +

∫

X

f(Ã T B̃) dµ =

=

∫

X

f(x)(Ã(x)SB̃(x)) + Ã(x)T B̃(x)) dµ =

=

∫

X

f(x)(Ã(x) + B̃(x)) dµ =

∫

X

f Ã dµ +

∫

X

f B̃ dµ .

Furthermore, by using the condition i1), we recognize that

H(ÃT B̃) = H(Ã) ∩ H(B̃) , and H(ÃSB̃) = H(Ã) ∪ H(B̃) .
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So, we have the second equality:

(3.3)

∫

H(ÃSB̃)

f dµ +

∫

H(ÃT B̃)

f dµ =

=

∫

H(Ã)∩H(B̃)

f dµ +

∫

H(Ã)∪H(B̃)

f dµ =

∫

H(Ã)

f dµ +

∫

H(B̃)

f dµ .

So, from (3.1), (3.2) and (3.3) we have exactly the condition ii2).

If (ÃSB̃)+If (ÃT B̃)=

∫

X

fÃ dµ+

∫

X

fB̃ dµ−
∫

H(Ã)

f dµ−
∫

H(B̃)

f dµ =If (Ã)+If (B̃)

ii3) derives from monotonicity and continuity of Lebesgue’s integral.

Proof. ii) =⇒ i): First of all we prove i1). By absurd, we suppose

that i1) is false, i.e. there exist a and b such that 0 < a ≤ b < 1 and

S(a, b) = 1. Now, fixed a crisp set C, we consider the fuzzy sets Ã and

B̃ defined by

Ã(x) = aC(x) =

{
a if x ∈ C

0 if x /∈ C ,
B̃(x) = bC(x) =

{
b if x ∈ C

0 if x /∈ C .

Putting Ã and B̃ in ii2) we obtain

T (a, b)

∫

C

f dµ = a

∫

C

f dµ + b

∫

C

f dµ,

which is impossible if
∫
C

f dµ %= 0, because T (a, b) ≤ a < a + b.

We observe now that i2) is always valid if a = 1 or b = 1, as T (1, b) = b

and S(1, b) = 1. Fix then a ∈ [0, 1) and b ∈ [0, 1), it follows, from

definition (2.1): S(a, b) ∈ [0, 1) and from condition i1): T (a, b) ∈ [0, 1).

Putting in ii2) the fuzzy sets Ã = aC and B̃ = bC defined as above, we get

T (a, b)

∫

C

f dµ + S(a, b)

∫

C

f dµ = a

∫

C

f dµ + b

∫

C

f dµ .

So the condition i2) follows if C is chosen in such way that
∫
C

f dµ %= 0.
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The foundamental t-norms and t-conorms verify the conditions of

theorem (3.1) for every s < +∞.

For every f : X −→ IR+, measurable and not vanishing a.e., the TMS

defines a Ts-measure w.r.t. these operations.
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